Search results for: text representation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2464

Search results for: text representation

1834 A Critical Discourse Analysis on Ableist Ideologies in Primary Education English Language Textbooks in the Philippines

Authors: Brittany Joi B. Kirsch

Abstract:

Textbooks carry a crucial role in imparting ideologies that stimulate inclusivity and social diversity. In the Philippines, a law on inclusive education (IE) for differently-abled learners has recently been signed in order to ensure their rights to quality and IE are protected and upheld (Republic Act No. 11650, 2022). With the presence of ableism in textbooks, the promotion of IE may be challenged. A considerable amount of research has been done on disability representation and ableism in foreign countries; however, none, to the extent of the researcher’s knowledge, has been conducted on ableist ideologies in primary education English language textbooks in the Philippines. Hence, this paper aims to investigate the negotiation of ableist ideologies in primary education English language textbooks in the Philippines. Utilizing Fairclough’s (1995) three-dimensional model of critical discourse analysis (CDA) as the framework, six prescribed primary education English language textbooks from different grade levels were analyzed to examine instances of ableism in the texts. To further support the analysis of the study, supplemental data were gathered from the accounts of six public elementary school English language teachers. Findings reveal that the textbooks contain ableist ideologies with a limited representation of differently-abled people; by disclosing them as (1) invisible, (2) equipped with negative abilities, and (3) plagued with delicate health. By identifying ableist ideologies in textbooks, educational institutions and publishers may benefit in assessing and reforming instructional materials to resolve the presence of such ideologies, thereby abiding by the country’s law on IE and strengthening its overall implementation.

Keywords: textbooks, ideologies, inclusive education, critical discourse analysis, ableism

Procedia PDF Downloads 111
1833 PaSA: A Dataset for Patent Sentiment Analysis to Highlight Patent Paragraphs

Authors: Renukswamy Chikkamath, Vishvapalsinhji Ramsinh Parmar, Christoph Hewel, Markus Endres

Abstract:

Given a patent document, identifying distinct semantic annotations is an interesting research aspect. Text annotation helps the patent practitioners such as examiners and patent attorneys to quickly identify the key arguments of any invention, successively providing a timely marking of a patent text. In the process of manual patent analysis, to attain better readability, recognising the semantic information by marking paragraphs is in practice. This semantic annotation process is laborious and time-consuming. To alleviate such a problem, we proposed a dataset to train machine learning algorithms to automate the highlighting process. The contributions of this work are: i) we developed a multi-class dataset of size 150k samples by traversing USPTO patents over a decade, ii) articulated statistics and distributions of data using imperative exploratory data analysis, iii) baseline Machine Learning models are developed to utilize the dataset to address patent paragraph highlighting task, and iv) future path to extend this work using Deep Learning and domain-specific pre-trained language models to develop a tool to highlight is provided. This work assists patent practitioners in highlighting semantic information automatically and aids in creating a sustainable and efficient patent analysis using the aptitude of machine learning.

Keywords: machine learning, patents, patent sentiment analysis, patent information retrieval

Procedia PDF Downloads 90
1832 Mining User-Generated Contents to Detect Service Failures with Topic Model

Authors: Kyung Bae Park, Sung Ho Ha

Abstract:

Online user-generated contents (UGC) significantly change the way customers behave (e.g., shop, travel), and a pressing need to handle the overwhelmingly plethora amount of various UGC is one of the paramount issues for management. However, a current approach (e.g., sentiment analysis) is often ineffective for leveraging textual information to detect the problems or issues that a certain management suffers from. In this paper, we employ text mining of Latent Dirichlet Allocation (LDA) on a popular online review site dedicated to complaint from users. We find that the employed LDA efficiently detects customer complaints, and a further inspection with the visualization technique is effective to categorize the problems or issues. As such, management can identify the issues at stake and prioritize them accordingly in a timely manner given the limited amount of resources. The findings provide managerial insights into how analytics on social media can help maintain and improve their reputation management. Our interdisciplinary approach also highlights several insights by applying machine learning techniques in marketing research domain. On a broader technical note, this paper illustrates the details of how to implement LDA in R program from a beginning (data collection in R) to an end (LDA analysis in R) since the instruction is still largely undocumented. In this regard, it will help lower the boundary for interdisciplinary researcher to conduct related research.

Keywords: latent dirichlet allocation, R program, text mining, topic model, user generated contents, visualization

Procedia PDF Downloads 187
1831 Representation of Master–Disciple Relationship in Rumi’s Poems: Spirituality Vis-A-Vis Collective Consciousness

Authors: Nodi Islam

Abstract:

This paper critically reads Rumi’s poems in The Masnavi (Book One) and the philosophy of master-disciple relationship, as reflected as a medium to attain the higher consciousness in the poems which is considered as spiritual by the Sufi practitioners. This paper further applies the concept of collective consciousness introduced by Durkheim, which stands for a set of beliefs, ideas, moral attitudes that operate as a unifying force in a certain society, in reading Rumi’s poems. According to Sufi philosophy, in order to reach to the beloved who is the Higher Being, a lover has to be a disciple of a master and dedicate himself completely even if it means to give up the earthly desires. When the process is completed, he achieves the divinity which is the utmost happiness to be one with the beloved. As this process is considered spiritual by the Sufi practitioners, this paper suggests that, apart from being spiritual, this is a reflection of collective consciousness also. This process plays a part to construct the collectivity as a means to create masters and disciples. Collective consciousness operates in this particular belief system of Sufis who tend to follow this phenomenon as a rule of obedience and accepts the rule because this is how their particular community proceeds on. This paper offers a view of Rumi’s poems which reflect such relationship and tends to offer a general discussion on the hegemonic approach of the Sufi society especially of the Mevlevi order. Finally, this paper offers a constructive representation of Mevlevi society based upon the idea of spirituality which could be an outcome of psychological and social issues and practices.

Keywords: collective consciousness, divinity, master-disciple relationship, Mevlevi order

Procedia PDF Downloads 171
1830 On the Relationship between the Concepts of "[New] Social Democracy" and "Democratic Socialism"

Authors: Gintaras Mitrulevičius

Abstract:

This text, which is based on the conference report, seeks to briefly examine the relationship between the concepts of social democracy and democratic socialism, drawing attention to the essential aspects of its development and, in particular, discussing the contradictions in the relationship between these concepts in the modern period. In the preparation of this text, such research methods as historical, historical-comparative methods were used, as well as methods of analyzing, synthesizing, and generalizing texts. The history of the use of terms in social democracy and democratic socialism shows that these terms were used alternately and almost synonymously. At the end of the 20th century, traditional social democracy was transformed into the so-called "new social democracy." Many of the new social democrats do not consider themselves democratic socialists and avoid the historically characteristic identification of social democracy with democratic socialism. It has become quite popular to believe that social democracy is a separate ideology from democratic socialism. Or that it has become a variant of the ideology of liberalism. This is a testimony to the crisis of ideological self-awareness of social democracy. Since the beginning of the 21st century, social democracy has also experienced a growing crisis of electoral support. This, among other things, led to her slight shift to the left. In this context, some social democrats are once again talking about democratic socialism. The rise of the ideas of democratic socialism in the United States was catalyzed by Bernie Sanders. But the proponents of democratic socialism in the United States have different concepts of democratic socialism. In modern Europe, democratic socialism is also spoken of by leftists of non-social democratic origin, whose understanding is different from that of democratic socialism inherent in classical social democracy. Some political scientists also single out the concepts in question. Analysis of the problem shows that there are currently several concepts of democratic socialism on the spectrum of the political left, both social-democratic and non-social-democratic.

Keywords: democratic socializm, socializm, social democracy, new social democracy, political ideologies

Procedia PDF Downloads 113
1829 Postfeminism, Femvertising and Inclusion: An Analysis of Changing Women's Representation in Contemporary Media

Authors: Saveria Capecchi

Abstract:

In this paper, the results of qualitative content research on postfeminist female representation in contemporary Western media (advertising, television series, films, social media) are presented. Female role models spectacularized in media culture are an important part of the development of social identities and could inspire new generations. Postfeminist cultural texts have given rise to heated debate between gender and media studies scholars. There are those who claim they are commercial products seeking to sell feminism to women, a feminism whose political and subversive role is completely distorted and linked to the commercial interests of the cosmetics, fashion, fitness and cosmetic surgery industries, in which women’s ‘power’ lies mainly in their power to seduce. There are those who consider them feminist manifestos because they represent independent ‘modern women’ free from male control who aspire to achieve professionally and overcome gender stereotypes like that of the ‘housewife-mother’. Major findings of the research show that feminist principles have been gradually absorbed by the cultural industry and adapted to its commercial needs, resulting in the dissemination of contradictory values. On the one hand, in line with feminist arguments, patriarchal ideology is condemned and the concepts of equality and equal opportunity between men and women are promoted. On the other hand, feminist principles and demands are ascribed to individualism, which translates into the slogan: women are free to decide for themselves, even to objectify their own bodies. In particular, it is observed that femvertising trend in media industry is changing female representation moving away from classic stereotypes: the feminine beauty ideal of slenderness, emphasized in the media since the seventies, is ultimately challenged by the ‘curvy’ body model, which is considered to be more inclusive and based on the concept of ‘natural beauty’. Another aspect of change is the ‘anti-romantic’ revolution performed by some heroines, who are not in search of Prince Charming, in television drama and in the film industry. In conclusion, although femvertising tends to simplify and trivialize the concepts characterizing fourth-wave feminism (‘intersectionality’ and ‘inclusion’), it is also a tendency that enables the challenging of media imagery largely based on male viewpoints, interests and desires.

Keywords: feminine beauty ideal, femvertising, gender and media, postfeminism

Procedia PDF Downloads 150
1828 Examining Reading Comprehension Skills Based on Different Reading Comprehension Frameworks and Taxonomies

Authors: Seval Kula-Kartal

Abstract:

Developing students’ reading comprehension skills is an aim that is difficult to accomplish and requires to follow long-term and systematic teaching and assessment processes. In these processes, teachers need tools to provide guidance to them on what reading comprehension is and which comprehension skills they should develop. Due to a lack of clear and evidence-based frameworks defining reading comprehension skills, especially in Turkiye, teachers and students mostly follow various processes in the classrooms without having an idea about what their comprehension goals are and what those goals mean. Since teachers and students do not have a clear view of comprehension targets, strengths, and weaknesses in students’ comprehension skills, the formative feedback processes cannot be managed in an effective way. It is believed that detecting and defining influential comprehension skills may provide guidance both to teachers and students during the feedback process. Therefore, in the current study, some of the reading comprehension frameworks that define comprehension skills operationally were examined. The aim of the study is to develop a simple and clear framework that can be used by teachers and students during their teaching, learning, assessment, and feedback processes. The current study is qualitative research in which documents related to reading comprehension skills were analyzed. Therefore, the study group consisted of recourses and frameworks which made big contributions to theoretical and operational definitions of reading comprehension. A content analysis was conducted on the resources included in the study group. To determine the validity of the themes and sub-categories revealed as the result of content analysis, three educational assessment experts were asked to examine the content analysis results. The Fleiss’ Cappa coefficient revealed that there is consistency among themes and categories defined by three different experts. The content analysis of the reading comprehension frameworks revealed that comprehension skills could be examined under four different themes. The first and second themes focus on understanding information given explicitly or implicitly within a text. The third theme includes skills used by the readers to make connections between their personal knowledge and the information given in the text. Lastly, the fourth theme focus on skills used by readers to examine the text with a critical view. The results suggested that fundamental reading comprehension skills can be examined under four themes. Teachers are recommended to use these themes in their reading comprehension teaching and assessment processes. Acknowledgment: This research is supported by Pamukkale University Scientific Research Unit within the project, whose title is Developing A Reading Comprehension Rubric.

Keywords: reading comprehension, assessing reading comprehension, comprehension taxonomies, educational assessment

Procedia PDF Downloads 82
1827 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
1826 Manufacturing the Authenticity of Dokkaebi’s Visual Representation in Tourist Marketing

Authors: Mikyung Bak

Abstract:

The dokkaebi, a beloved icon of Korean culture, is represented as an elf, goblin, monster, dwarf, or any similar creature in different media, such as animated shows, comics, soap operas, and movies. It is often described as a mythical creature with a horn or horns and long teeth, wearing tiger-skin pants or a grass skirt, and carrying a magic stick. Many Korean researchers agree on the similarity of the image of the Korean dokkaebi with that of the Japanese oni, a view that is regard as negative from an anti-colonial or nationalistic standpoint. They cite such similarity between the two mythical creatures as evidence that Japanese colonialism persists in Korea. The debate on the originality of dokkaebi’s visual representation is an issue that must be addressed urgently. This research demonstrates through a diagram the plurality of interpretations of dokkaebi’s visual representations in what are considered ‘authentic’ images of dokkaebi in Korean art and culture. This diagram presents the opinions of four major groups in the debate, namely, the scholars of Korean literature and folklore, art historians, authors, and artists. It also shows the creation of new dokkaebi visual representations in popular media, including those influenced by the debate. The diagram further proves that dokkaebi’s representations varied, which include the typical persons or invisible characters found in Korean literature, original Korean folk characters in traditional art, and even universal spirit characters. They are also visually represented by completely new creatures as well as oni-based mythical beings and the actual oni itself. The earlier dokkaebi representations were driven by the creation of a national ideology or national cultural paradigm and, thus, were more uniform and protected. In contrast, the more recent representations are influenced by the Korean industrial strategy of ‘cultural economics,’ which is concerned with the international rather than the domestic market. This recent Korean cultural strategy emphasizes diversity and commonality with the global culture rather than originality and locality. It employs traditional cultural resources to construct a global image. Consequently, dokkaebi’s recent representations have become more common and diverse, thereby incorporating even oni’s characteristics. This argument has rendered the grounds of the debate irrelevant. The dokkaebi has been used recently for tourist marketing purposes, particularly in revitalizing interest in regions considered the cradle of various traditional dokkaebi tales. These campaign strategies include the Jeju-do Dokkaebi Park, Koksung Dokkaebi Land, as well as the Taebaek and Sokri-san Dokkaebi Festivals. Almost dokkaebi characters are identical to the Japanese oni in tourist marketing. However, the pursuit for dokkaebi’s authentic visual representation is less interesting and fruitful than the appreciation of the entire spectrum of dokkaebi images that have been created. Thus, scholars and stakeholders must not exclude the possibilities for a variety of potentials within the visual culture. The same sentiment applies to traditional art and craft. This study aims to contribute to a new visualization of the dokkaebi that embraces the possibilities of both folk craft and art, which continue to be uncovered by diverse and careful researchers in a still-developing field.

Keywords: Dokkaebi, post-colonial period, representation, tourist marketing

Procedia PDF Downloads 278
1825 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph

Authors: Zhifei Hu, Feng Xia

Abstract:

In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.

Keywords: graph attention network, knowledge graph, recommendation, information propagation

Procedia PDF Downloads 116
1824 A Controlled Natural Language Assisted Approach for the Design and Automated Processing of Service Level Agreements

Authors: Christopher Schwarz, Katrin Riegler, Erwin Zinser

Abstract:

The management of outsourcing relationships between IT service providers and their customers proofs to be a critical issue that has to be stipulated by means of Service Level Agreements (SLAs). Since service requirements differ from customer to customer, SLA content and language structures vary largely, standardized SLA templates may not be used and an automated processing of SLA content is not possible. Hence, SLA management is usually a time-consuming and inefficient manual process. For overcoming these challenges, this paper presents an innovative and ITIL V3-conform approach for automated SLA design and management using controlled natural language in enterprise collaboration portals. The proposed novel concept is based on a self-developed controlled natural language that follows a subject-predicate-object approach to specify well-defined SLA content structures that act as templates for customized contracts and support automated SLA processing. The derived results eventually enable IT service providers to automate several SLA request, approval and negotiation processes by means of workflows and business rules within an enterprise collaboration portal. The illustrated prototypical realization gives evidence of the practical relevance in service-oriented scenarios as well as the high flexibility and adaptability of the presented model. Thus, the prototype enables the automated creation of well defined, customized SLA documents, providing a knowledge representation that is both human understandable and machine processable.

Keywords: automated processing, controlled natural language, knowledge representation, information technology outsourcing, service level management

Procedia PDF Downloads 432
1823 Translation as a Cultural Medium: Understanding the Mauritian Culture and History through an English Translation

Authors: Pooja Booluck

Abstract:

This project seeks to translate a chapter in Le Silence des Chagos by Shenaz Patel a Mauritian author whose work has never been translated before. The chapter discusses the attempt of the protagonist to return to her home country Diego Garcia after her deportation. The English translation will offer an historical account to the target audience of the deportation of Chagossians to Mauritius during the 1970s. The target audience comprises of English-speaking translation scholars translation students and African literature scholars. In light of making the cultural elements of Mauritian culture accessible the translation will maintain the cultural items such as food and oral discourses in Creole so as to preserve the authenticity of the source culture. In order to better comprehend the cultural elements mentioned the target reader will be provided with detailed footnotes explaining the cultural and historical references. This translation will also address the importance of folkloric songs in Mauritius and its intergenerational function in Mauritian communities which will also remain in Creole. While such an approach will help to preserve the meaning of the source text the borrowing technique and the foreignizing method will be employed which will in turn help the reader in becoming more familiar with the Mauritian community. Translating a text from French to English while maintaining certain words or discourses in a minority language such as Creole bears certain challenges: How does the translator ensure the comprehensibility of the reader? Are there any translation losses? What are the choices of the translator?

Keywords: Chagos archipelagos in Exile, English translation, Le Silence des Chagos, Mauritian culture and history

Procedia PDF Downloads 317
1822 A Methodology for Automatic Diversification of Document Categories

Authors: Dasom Kim, Chen Liu, Myungsu Lim, Su-Hyeon Jeon, ByeoungKug Jeon, Kee-Young Kwahk, Namgyu Kim

Abstract:

Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we previously proposed a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. In this paper, we design a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.

Keywords: big data analysis, document classification, multi-category, text mining, topic analysis

Procedia PDF Downloads 272
1821 Discursive Legitimation Strategies in ISIS’ Online Magazine, Dabiq: A Discourse Historical Approach

Authors: Sahar Rasoulikolamaki

Abstract:

ISIS (also known as DAASH) is an Islamic fundamentalist group that has been known as a global threat to the whole world for their radicalizing approach and application of online platforms as a tool to portray their activities, to disseminate their ideology, and to commit recruiting activities. This study is an attempt to carry out a critical discourse analysis on the argumentative devices by which ISIS legitimizes or delegitimizes positive or negative constructions of social practices in Dabiq. It tries to shed light on how texts in Dabiq as linguistic elements in the micro level of analysis relate to ISIS’ ideology as the higher-up macro level and in other words, how local structures contributed to the construction and transference of a global structure or ideology and vice versa. Therefore, following the relevant analytical frameworks, the study focuses on both micro-level of analysis of arguments (topoi) and macro-structure of legitimation and delegitimation in Dabiq. This purpose is nailed using the analytical categories and tools provided by Wodak’s Discourse Historical Approach (DHA) such as argumentation strategies (topoi), by which the coded language of legitimation/delegitimation and persuasion as used in Dabiq are explored. The ensuing findings demonstrate that Dabiq rigorously relies on the positive representation of the in-group course of actions and justifying its violence and, at the same time, the negative representation of the out-group behavior through implementing various topoi to achieve its desired outcome, which is the ideological manipulation and powerful self-depiction, as well as the supporter recruitment.

Keywords: argumentation, discourse-historical approach, ideology, legitimation and delegitimation, topoi

Procedia PDF Downloads 135
1820 Eroticism as a Tool for Addressing Socio-Cultural Inequalities

Authors: Amin Khaksar

Abstract:

The popular music scene is a highly speculative field of cultural production in which eroticism plays an essential role in attracting audiences. The juxtaposition of eroticism and cultural products possibly implies the importance of the representation of cultural values in popular music videos. As with norms in conservative societies, however, there are some types of inequalities, most of which are dominated by institutional inclinations as opposed to socio-cultural inclinations. This paper explores the challenges that increasing structural inequality poses to erotic representations, focusing on Iranian popular music videos. It outlines how eroticism is becoming a leading tool for circumventing institutional inequalities that affect some cultural values. Using the value-based approach, which draws on visual semiotics and content analysis of Iranian popular music videos compared to Western popular music videos, this study contends that the problematic nature of eroticism emerges when sexual representation takes on meaning beyond its commercial purpose. Indeed, erotica has more to say about freedom, social violence, gender discrimination, and, most importantly, values that can be shared and communicated. The concept of eroticism used in this study functions as a shared practice and can be perceived through symbols. Furthermore, the conclusions show that music artists (performers) use eroticism in three ways to represent cultural values: erotic performances, erotic qualities, and erotic narratives. The expected contribution highlights the role that eroticism can play in the encounter with institutional inequality and injustice. Consider a female celebrity whose erotic qualities help her body gain attention.

Keywords: inequality, value- based economics, eroticism, popular music video

Procedia PDF Downloads 124
1819 Cognitive Translation and Conceptual Wine Tasting Metaphors: A Corpus-Based Research

Authors: Christine Demaecker

Abstract:

Many researchers have underlined the importance of metaphors in specialised language. Their use of specific domains helps us understand the conceptualisations used to communicate new ideas or difficult topics. Within the wide area of specialised discourse, wine tasting is a very specific example because it is almost exclusively metaphoric. Wine tasting metaphors express various conceptualisations. They are not linguistic but rather conceptual, as defined by Lakoff & Johnson. They correspond to the linguistic expression of a mental projection from a well-known or more concrete source domain onto the target domain, which is the taste of wine. But unlike most specialised terminologies, the vocabulary is never clearly defined. When metaphorical terms are listed in dictionaries, their definitions remain vague, unclear, and circular. They cannot be replaced by literal linguistic expressions. This makes it impossible to transfer them into another language with the traditional linguistic translation methods. Qualitative research investigates whether wine tasting metaphors could rather be translated with the cognitive translation process, as well described by Nili Mandelblit (1995). The research is based on a corpus compiled from two high-profile wine guides; the Parker’s Wine Buyer’s Guide and its translation into French and the Guide Hachette des Vins and its translation into English. In this small corpus with a total of 68,826 words, 170 metaphoric expressions have been identified in the original English text and 180 in the original French text. They have been selected with the MIPVU Metaphor Identification Procedure developed at the Vrije Universiteit Amsterdam. The selection demonstrates that both languages use the same set of conceptualisations, which are often combined in wine tasting notes, creating conceptual integrations or blends. The comparison of expressions in the source and target texts also demonstrates the use of the cognitive translation approach. In accordance with the principle of relevance, the translation always uses target language conceptualisations, but compared to the original, the highlighting of the projection is often different. Also, when original metaphors are complex with a combination of conceptualisations, at least one element of the original metaphor underlies the target expression. This approach perfectly integrates into Lederer’s interpretative model of translation (2006). In this triangular model, the transfer of conceptualisation could be included at the level of ‘deverbalisation/reverbalisation’, the crucial stage of the model, where the extraction of meaning combines with the encyclopedic background to generate the target text.

Keywords: cognitive translation, conceptual integration, conceptual metaphor, interpretative model of translation, wine tasting metaphor

Procedia PDF Downloads 131
1818 Gaybe-Boom TV: Reading Homonormative Fatherhood on Israeli Television

Authors: Itay Harlap

Abstract:

Over the past decade, LGBT figures have become increasingly visible on Israeli television in its various channels and genres. In recent years, however, the representation of gays on Israeli television has undergone an interesting shift, whereby many television texts feature gay people as fathers. These texts, mostly news items and documentaries, usually present gay parenthood as a positive phenomenon. The question in paper is whether LGBT parenting (in reality and as representation) fated to be part of the homonormativity that characterizes the LGBT community in Israel, or can it be an alternative to the hegemonic discourse? This paper embraces a dialectical position and explores the tension between mainstream and radical, or homonormativity and queer politics in the specific Israeli Jewish context through a textual and discursive reading of a selection of television programs that revolve principally around gay parenting in Israel. The first part of this lecture addresses the cultural and social context that generated these representations, dealing with three key Israeli areas: The fertility cult, the evolution of the LGBT community, and the evolution of local television. The second part offers a queer reading of these ‘positive’ representations (mainly in special reports on the news and programs labeled as ‘documentaries’ by broadcasters) and highlight the possible price of the ‘bear hug’ given by Israeli media to gay parents. The last part focuses on a single case study, the TV serial drama Ima Veabaz, and suggests that this drama exposes the performative aspect of parenting and the connection between ethnicity and fertility, and offers an alternative to normative displays of gay parenting.

Keywords: fatherhood, heteronormativity, Israel, queer theory, television

Procedia PDF Downloads 362
1817 Theoretical Investigation of the Singlet and Triplet Electronic States of ⁹⁰ZrS Molecules

Authors: Makhlouf Sandy, Adem Ziad, Taher Fadia, Magnier Sylvie

Abstract:

The electronic structure of 90ZrS has been investigated using Ab-initio methods based on Complete Active Space Self Consistent Field and Multi-reference Configuration Interaction (CASSCF/MRCI). The number of predicted states has been extended to 14 singlet and 12 triplet lowest-lying states situated below 36000cm-1. The equilibrium energies of these 26 lowest-lying electronic states have been calculated in the 2S+1Λ(±) representation. The potential energy curves have been plotted in function of the inter-nuclear distances in a range of 1.5 to 4.5Å. Spectroscopic constants, permanent electric dipole moments and transition dipole moments between the different electronic states have also been determined. A discrepancy error of utmost 5% for the majority of values shows a good agreement with available experimental data. The ground state is found to be of symmetry X1Σ+ with an equilibrium inter-nuclear distance Re= 2.16Å. However, the (1)3Δ is the closest state to X1Σ+ and is situated at 514 cm-1. To the best of our knowledge, this is the first time that the spin-orbit coupling has been investigated for all the predicted states of ZrS. 52 electronic components in the Ω(±) representation have been predicted. The energies of these components, the spectroscopic constants ωe, ωeχe, βe and the equilibrium inter-nuclear distances have been also obtained. The percentage composition of the Ω state wave-functions in terms of S-Λ states was calculated to identify their corresponding main parents. These (SOC) calculations have determined the shift between (1)3Δ1 and X1Σ+ states and confirmed the ground state type being 1Σ+.

Keywords: CASSCF/MRCI, electronic structure, spin-orbit effect, zirconium monosulfide

Procedia PDF Downloads 168
1816 Building Information Management in Context of Urban Spaces, Analysis of Current Use and Possibilities

Authors: Lucie Jirotková, Daniel Macek, Andrea Palazzo, Veronika Malinová

Abstract:

Currently, the implementation of 3D models in the construction industry is gaining popularity. Countries around the world are developing their own modelling standards and implement the use of 3D models into their individual permitting processes. Another theme that needs to be addressed are public building spaces and their subsequent maintenance, where the usage of BIM methodology is directly offered. The significant benefit of the implementation of Building Information Management is the information transfer. The 3D model contains not only the spatial representation of the item shapes but also various parameters that are assigned to the individual elements, which are easily traceable, mainly because they are all stored in one place in the BIM model. However, it is important to keep the data in the models up to date to achieve useability of the model throughout the life cycle of the building. It is now becoming standard practice to use BIM models in the construction of buildings, however, the building environment is very often neglected. Especially in large-scale development projects, the public space of buildings is often forwarded to municipalities, which obtains the ownership and are in charge of its maintenance. A 3D model of the building surroundings would include both the above-ground visible elements of the development as well as the underground parts, such as the technological facilities of water features, electricity lines for public lighting, etc. The paper shows the possibilities of a model in the field of information for the handover of premises, the following maintenance and decision making. The attributes and spatial representation of the individual elements make the model a reliable foundation for the creation of "Smart Cities". The paper analyses the current use of the BIM methodology and presents the state-of-the-art possibilities of development.

Keywords: BIM model, urban space, BIM methodology, facility management

Procedia PDF Downloads 124
1815 Methodologies for Deriving Semantic Technical Information Using an Unstructured Patent Text Data

Authors: Jaehyung An, Sungjoo Lee

Abstract:

Patent documents constitute an up-to-date and reliable source of knowledge for reflecting technological advance, so patent analysis has been widely used for identification of technological trends and formulation of technology strategies. But, identifying technological information from patent data entails some limitations such as, high cost, complexity, and inconsistency because it rely on the expert’ knowledge. To overcome these limitations, researchers have applied to a quantitative analysis based on the keyword technique. By using this method, you can include a technological implication, particularly patent documents, or extract a keyword that indicates the important contents. However, it only uses the simple-counting method by keyword frequency, so it cannot take into account the sematic relationship with the keywords and sematic information such as, how the technologies are used in their technology area and how the technologies affect the other technologies. To automatically analyze unstructured technological information in patents to extract the semantic information, it should be transformed into an abstracted form that includes the technological key concepts. Specific sentence structure ‘SAO’ (subject, action, object) is newly emerged by representing ‘key concepts’ and can be extracted by NLP (Natural language processor). An SAO structure can be organized in a problem-solution format if the action-object (AO) states that the problem and subject (S) form the solution. In this paper, we propose the new methodology that can extract the SAO structure through technical elements extracting rules. Although sentence structures in the patents text have a unique format, prior studies have depended on general NLP (Natural language processor) applied to the common documents such as newspaper, research paper, and twitter mentions, so it cannot take into account the specific sentence structure types of the patent documents. To overcome this limitation, we identified a unique form of the patent sentences and defined the SAO structures in the patents text data. There are four types of technical elements that consist of technology adoption purpose, application area, tool for technology, and technical components. These four types of sentence structures from patents have their own specific word structure by location or sequence of the part of speech at each sentence. Finally, we developed algorithms for extracting SAOs and this result offer insight for the technology innovation process by providing different perspectives of technology.

Keywords: NLP, patent analysis, SAO, semantic-analysis

Procedia PDF Downloads 262
1814 Biography and Psychotherapy: Oral History Interviews with Psychotherapists

Authors: Barbara Papp

Abstract:

Purpose: This article aims to rethink the relationship between the trauma and the choice of professions. By studying a homogenous sample of respondents, it seeks answers to the following question: how did personal losses that were caused by historical upheavals motivate people to enter the helping professions. By becoming helping professionals, the respondents of the survey sought to handle both historical representation and self-representation. How did psychotherapists working in the second half of the 20th century (Kádár-era in Hungary) shape their course of life? How did their family members respond to their choice of career? What forces supported or hindered them? How did they become professional helpers? Methodology: When interviewing 40 psychotherapists, the interviewer used the oral history technique. In-depth interviews were made with a focus on motivation. First, the collected material was examined using traditional content analysis tools: searching for content patterns, applying a word frequency analysis, and identifying the connections between key events and key persons. Second, a narrative psychological content analysis (NarrCat) was made. Findings: Interconnections were established between attachment, family and historical traumas and career choices. The history of the mid-20th-century period was traumatic and full of losses for the families of most of the psychotherapists concerned. Those experiences may have considerably influenced their choice of career. Working as helping therapists, they could get the opportunity to revise their losses. Conclusion: The results revealed core components that play a role in the psychotherapists’ choice of career, and also emphasized the importance of post-traumatic growth.

Keywords: biography, identity, narrative psychological content analysis, psychotherapists, trauma

Procedia PDF Downloads 137
1813 Optimal Image Representation for Linear Canonical Transform Multiplexing

Authors: Navdeep Goel, Salvador Gabarda

Abstract:

Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4x4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4*4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4*4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.

Keywords: chirp signals, image multiplexing, image transformation, linear canonical transform, polynomial approximation

Procedia PDF Downloads 412
1812 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory

Authors: Xu Jiaqiao

Abstract:

Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.

Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments

Procedia PDF Downloads 94
1811 Predicting Personality and Psychological Distress Using Natural Language Processing

Authors: Jihee Jang, Seowon Yoon, Gaeun Son, Minjung Kang, Joon Yeon Choeh, Kee-Hong Choi

Abstract:

Background: Self-report multiple choice questionnaires have been widely utilized to quantitatively measure one’s personality and psychological constructs. Despite several strengths (e.g., brevity and utility), self-report multiple-choice questionnaires have considerable limitations in nature. With the rise of machine learning (ML) and Natural language processing (NLP), researchers in the field of psychology are widely adopting NLP to assess psychological constructs to predict human behaviors. However, there is a lack of connections between the work being performed in computer science and that psychology due to small data sets and unvalidated modeling practices. Aims: The current article introduces the study method and procedure of phase II, which includes the interview questions for the five-factor model (FFM) of personality developed in phase I. This study aims to develop the interview (semi-structured) and open-ended questions for the FFM-based personality assessments, specifically designed with experts in the field of clinical and personality psychology (phase 1), and to collect the personality-related text data using the interview questions and self-report measures on personality and psychological distress (phase 2). The purpose of the study includes examining the relationship between natural language data obtained from the interview questions, measuring the FFM personality constructs, and psychological distress to demonstrate the validity of the natural language-based personality prediction. Methods: The phase I (pilot) study was conducted on fifty-nine native Korean adults to acquire the personality-related text data from the interview (semi-structured) and open-ended questions based on the FFM of personality. The interview questions were revised and finalized with the feedback from the external expert committee, consisting of personality and clinical psychologists. Based on the established interview questions, a total of 425 Korean adults were recruited using a convenience sampling method via an online survey. The text data collected from interviews were analyzed using natural language processing. The results of the online survey, including demographic data, depression, anxiety, and personality inventories, were analyzed together in the model to predict individuals’ FFM of personality and the level of psychological distress (phase 2).

Keywords: personality prediction, psychological distress prediction, natural language processing, machine learning, the five-factor model of personality

Procedia PDF Downloads 78
1810 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision

Procedia PDF Downloads 125
1809 Transferring Cultural Meanings: A Case of Translation Classroom

Authors: Ramune Kasperaviciene, Jurgita Motiejuniene, Dalia Venckiene

Abstract:

Familiarising students with strategies for transferring cultural meanings (intertextual units, culture-specific idioms, culture-specific items, etc.) should be part of a comprehensive translator training programme. The present paper focuses on strategies for transferring such meanings into other languages and explores possibilities for introducing these methods and practice to translation students. The authors (university translation teachers) analyse the means of transferring cultural meanings from English into Lithuanian in a specific travel book, attribute these means to theoretically grounded strategies, and make calculations related to the frequency of adoption of specific strategies; translation students are familiarised with concepts and methods related to transferring cultural meanings and asked to put their theoretical knowledge into practice, i.e. interpret and translate certain culture-specific items from the same source text, and ground their decisions on theory; the comparison of the strategies employed by the professional translator of the source text (as identified by the authors of this study) and by the students is made. As a result, both students and teachers gain valuable experience, and new practices of conducting translation classes for a specific purpose evolve. Conclusions highlight the differences and similarities of non-professional and professional choices, summarise the possibilities for introducing methods of transferring cultural meanings to students, and round up with specific considerations of the impact of theoretical knowledge and the degree of experience on decisions made in the translation process.

Keywords: cultural meanings, culture-specific items, strategies for transferring cultural meanings, translator training

Procedia PDF Downloads 350
1808 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context

Authors: Nicole Merkle, Stefan Zander

Abstract:

Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.

Keywords: ambient intelligence, machine learning, semantic web, software agents

Procedia PDF Downloads 281
1807 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning

Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah

Abstract:

Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.

Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning

Procedia PDF Downloads 32
1806 Representation of Dalits and Tribal Communities in Psychological Autopsy in India: A Systematic Scoping Review

Authors: Anagha Pavithran Vattamparambil, Niranjana Regimon

Abstract:

Dalit and tribal communities in India have the largest suicide rate; however, the current literature does not reflect this reality. While existing research acknowledges socio-cultural risk factors, it fails to discuss structural issues pertaining to marginalized communities in India. Furthermore, the language is framed in an individualistic manner which denies room for recognizing systemic violence and injustice among causative agents of suicide. We aim to examine the representation of Dalit and tribal identities and their experiences of marginalisation as a contributive factor of suicide, as well as discuss the epistemic injustice involved in its exclusion. Electronic searches of PubMed, PsychInfo, and Web of Science databases will be carried out from inception till January 2023 to conduct a systematic scoping review of peer-reviewed articles; it will include all studies involving psychological autopsy in India. A narrative synthesis will be performed to gain insight into the inclusion of the experiences of Dalits and Tribals, the absence of which indicates a lacking understanding of suicide in India. It is also expected to highlight the alienation of lived experiences and narratives of marginalisation from mainstream discourse on suicide that constitutes epistemic injustice. There is a complex interplay of psychological, socio-cultural, economic, and political factors for suicide in the Indian setting. But, political and systemic issues are often downplayed in suicide etiology, including casteist assault, rape, violence, public humiliation, and discrimination which deserves more research attention.

Keywords: dalits, marginalisation, psychological autopsy, suicide, tribals

Procedia PDF Downloads 88
1805 Primary Level Teachers’ Response to Gender Representation in Textbook Contents

Authors: Pragya Paneru

Abstract:

This paper explores ten primary teachers’ views on gender representation in primary-level textbooks altogether. Data was collected from the teachers who taught in private schools in Kailali and Kathmandu District. This research uses a semi-structured interview method to obtain information regarding teachers’ attitudes toward gender representations in textbook content. The interview data were analysed by using critical skills of qualitative research analysis methods, as suggested by Saldana and Omasta (2018). The findings revealed that most of the teachers were unaware and regarded gender issues as insignificant to discuss in primary-level classes. Most of them responded to the questions personally and claimed that there were no gender issues in their classrooms. Some of the teachers connected gender issues with contexts other than textbook representations, such as school discrimination in the distribution of salary among male and female teachers, school practices of awarding girls rather than boys as the most disciplined students, following girls’ first rule in the assembly marching, encouraging only girls in the stage shows, and involving students in gender-specific activities such as decorating works for girls and physical tasks for boys. The interview also revealed teachers’ covert gendered attitudes in their remarks. Nevertheless, most of the teachers accepted that gender-biased contents have an impact on learners, and this problem can be solved with more gender-centred research in the education field, discussions, and training to increase awareness regarding gender issues. Agreeing with the suggestion of teachers, this paper recommends proper training and awareness regarding how to confront gender issues in textbooks.

Keywords: content analysis, gender equality, school education, critical awareness

Procedia PDF Downloads 95