Search results for: plant N derived from N fixation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6064

Search results for: plant N derived from N fixation

5434 Mechanisms of Metals Stabilization in the Soil by Biochar Material as Affected by the Low Molecular Weight Organic Acids

Authors: Md. Shoffikul Islam, Hongqing Hu

Abstract:

Immobilizing trace elements by reducing their mobility and bioavailability through amendment application, especially biochar (BC), is a cost-effective and efficient method to address their toxicity in the soil environment. However, the low molecular weight organic acids (LMWOAs) in the rhizosphere could affect BC's efficiency to immobilize trace metals as the LMWOAs could either mobilize or fix metals in the soils. Therefore, understanding the BC's and LMWOAs' interaction mechanisms on metals stabilization in the rhizosphere is crucial. The present study examined the impact of BC derived from rice husk, tartaric acid (TA), and oxalic acid (OA), and the combination of BC and TA/OA on the changes of cadmium (Cd), lead (Pb), and zinc (Zn) among their geochemical forms through incubation experiment. The changes of zeta potential and X-ray diffraction (XRD) pattern of BC and BC-amended soils to investigate the probable mechanisms of trace elements' immobilization by BC under the attacks of TA and OA were also examined. The rice husk BC at 5% (w/w) was mixed with the air-dry soil (an Anthrosols) contaminated with Cd, Pb, and Zn in the plastic pot. The TA and OA each at 2, 5, 10, and 20 mM kg-1 (w/v) were added separately into the pot. All the ingredients were mixed thoroughly with the soil. A control (CK) treatment was also prepared without BC, TA, and OA addition. After 7, 15, and 60 days of incubation with 60% (w/v) moisture level at 25 °C, the incubated soils were determined for pH and EC and were sequentially extracted to assess the metals' transformation in soil. The electronegative charges and XRD peaks of BC and BC-amended soils were also measured. The BC, low level of TA (2 mM kg-1 soil), and BC plus the low concentration of TA (BC-TA2) addition considerably declined the acid-soluble Cd, Pb, and Zn in which BC-TA2 was found to be the most effective treatment. The trends were reversed concerning the high levels of TA (>5-20 mM kg-1 soil), all levels of OA (2-20 mM kg-1 soil), and the BC plus high levels of TA/OA treatments. BC-TA2 changed the highest amounts of acid-soluble and reducible metals to the oxidizable and residual fractions with time. The most increased electronegative charges of BC-TA2 indicate its (BC-TA2) highest metals' immobilizing efficiency, probably through metals adsorption and fixation with the negative charge sites. The XRD study revealed the presence of P, O, CO32-, and Cl1- in BC, which might be responsible for the precipitation of CdCO3, pyromorphite, and hopeite concerning Cd, Pb, and Zn immobilization, respectively. The findings demonstrated that the low level of TA increased metals immobilization, while the high levels of TA and all levels of OA enhanced their mobilization. The BC-TA2 was the best treatment in stabilizing metals in soil.

Keywords: biochar, immobilization, low molecular weight organic acids, trace elements contaminated soil

Procedia PDF Downloads 79
5433 The Effect of Microwave Radiation on Biogas Production Efficiency Using Different Plant Substrates

Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski

Abstract:

The purpose of the present work was to assess the impact of using electromagnetic microwave radiation as a means of stimulating the thermal conditions in anaerobic reactors on biomethanation efficiency of different plant substrates, as measured by the quantity and quality of the resultant biogas. Using electromagnetic microwave radiation to maintain optimal thermal conditions during biomethanation allows for achievement of much higher technological effects in comparison with a conventional heating system. After subjecting different plant substrates to fermentation in the model fermentation chambers, the largest improvements in regard to biogas production efficiency and biogas quality were recorded in the series with corn silage and grass silage. In the first case, the quantity of methane produced in the microwave-stimulated technological system exceeded by 15.26% the quantities produced in reactors heated conventionally. When grass silage was utilized as the organic substrate in the process of biomethanation, anaerobic reactors treated with microwave radiation produced 12.62% more methane.

Keywords: microwave radiation, biogas, methane fermentation, biomass

Procedia PDF Downloads 527
5432 Multi-Perspective Learning in a Real Production Plant Using Experiential Learning in Heterogeneous Groups to Develop System Competencies for Production System Improvements

Authors: Marlies Achenbach

Abstract:

System competencies play a key role to ensure an effective and efficient improvement of production systems. Thus, there can be observed an increasing demand for developing system competencies in industry as well as in engineering education. System competencies consist of the following two main abilities: Evaluating the current state of a production system and developing a target state. The innovative course ‘multi-perspective learning in a real production plant (multi real)’ is developed to create a learning setting that supports the development of these system competencies. Therefore, the setting combines two innovative aspects: First, the Learning takes place in heterogeneous groups formed by students as well as professionals and managers from industry. Second, the learning takes place in a real production plant. This paper presents the innovative didactic concept of ‘multi real’ in detail, which will initially be implemented in October/November 2016 in the industrial engineering, logistics and mechanical master’s program at TU Dortmund University.

Keywords: experiential learning, heterogeneous groups, improving production systems, system competencies

Procedia PDF Downloads 422
5431 Depolymerised Natural Polysaccharides Enhance the Production of Medicinal and Aromatic Plants and Their Active Constituents

Authors: M. Masroor Akhtar Khan, Moin Uddin, Lalit Varshney

Abstract:

Recently, there has been a rapidly expanding interest in finding applications of natural polymers in view of value addition to agriculture. It is now being realized that radiation processing of natural polysaccharides can be beneficially utilized either to improve the existing methodologies used for processing the natural polymers or to impart value addition to agriculture by converting them into more useful form. Gamma-ray irradiation is employed to degrade and lower the molecular weight of some of the natural polysaccharides like alginates, chitosan and carrageenan into small sized oligomers. When these oligomers are applied to plants as foliar sprays, they elicit various kinds of biological and physiological activities, including promotion of plant growth, seed germination, shoot elongation, root growth, flower production, suppression of heavy metal stress, etc. Furthermore, application of these oligomers can shorten the harvesting period of various crops and help in reducing the use of insecticides and chemical fertilizers. In recent years, the oligomers of sodium alginate obtained by irradiating the latter with gamma-rays at 520 kGy dose are being employed. It was noticed that the oligomers derived from the natural polysaccharides could induce growth, photosynthetic efficiency, enzyme activities and most importantly the production of secondary metabolite in the plants like Artemisia annua, Beta vulgaris, Catharanthus roseus, Chrysopogon zizanioides, Cymbopogon flexuosus, Eucalyptus citriodora, Foeniculum vulgare, Geranium sp., Mentha arvensis, Mentha citrata, Mentha piperita, Mentha virdis, Papaver somniferum and Trigonella foenum-graecum. As a result of the application of these oligomers, the yield and/or contents of the active constituents of the aforesaid plants were significantly enhanced. The productivity, as well as quality of medicinal and aromatic plants, may be ameliorated by this novel technique in an economical way as a very little quantity of these irradiated (depolymerised) polysaccharides is needed. Further, this is a very safe technique, as we did not expose the plants directly to radiation. The radiation was used to depolymerize the polysaccharides into oligomers.

Keywords: essential oil, medicinal and aromatic plants, plant production, radiation processed polysaccharides, active constituents

Procedia PDF Downloads 440
5430 Evaluation of Sugarcane Straw Derived Biochar for the Remediation of Chromium and Nickel Contaminated Soil

Authors: Selam M. Tefera

Abstract:

Soil constitutes a crucial component of rural and urban environments. This fact is making role of heavy and trace elements in the soil system an issue of global concern. Heavy metals constitute an ill-defined group of inorganic chemical hazards, whose main source is anthropogenic activities mainly related to fabrications. This accumulation of heavy metals soils can prove toxic to the environment. The application of biochar to soil is one way of immobilizing these contaminants through sorption by exploiting the high surface area of this material among its other essential properties. This research examined the ability of sugar cane straw, an organic waste material from sugar farm, derived biochar and ash to remediate soil contaminated with heavy metals mainly Chromium and Zinc from the effluent of electroplating industry. Biochar was produced by varying the temperature from 300 °C to 500 °C and ash at 700 °C. The highest yield (50%) was obtained at the lowest temperature (300 °C). The proximate analysis showed ash content of 42.8%, ultimate analysis with carbon content of 67.18%, the Hydrogen to Carbon ratio of 0.54 and the results from FTIR analysis disclosed the organic nature of biochar. Methylene blue absorption indicated its fine surface area and pore structure, which increases with severity of temperature. Biochar was mixed with soil with at a ration varying from 4% w/w to 10% w/w of soil, and the response variables were determined at a time interval of 150 days, 180 days, and 210 days. As for ash (10% w/w), the characterization was performed at incubation time of 210 days. The results of pH indicated that biochar (9.24) had a notable liming capacity of acidic soil (4.8) by increasing it to 6.89 whereas ash increased it to 7.5. The immobilization capacity of biochar was found to effected mostly by the highest production temperature (500 °C), which was 75.5% for chromium and 80.5% for nickel. In addition, ash was shown to possess an outstanding immobilization capacity of 95.5% and 90.5% for Chromium and Nickel, respectively. All in all, the results from these methods showed that biochar produced from this specific biomass possesses the typical functional groups that enable it to store carbon, the appropriate pH that could remediate acidic soil, a fine amount of macro and micro nutrients that would aid plant growth.

Keywords: biochar, biomass, heavy metal immobalization, soil remediation

Procedia PDF Downloads 141
5429 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models

Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai

Abstract:

Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.

Keywords: plant identification, CNN, image processing, vision transformer, classification

Procedia PDF Downloads 98
5428 Triose Phosphate Utilisation at the (Sub)Foliar Scale Is Modulated by Whole-plant Source-sink Ratios and Nitrogen Budgets in Rice

Authors: Zhenxiang Zhou

Abstract:

The triose phosphate utilisation (TPU) limitation to leaf photosynthesis is a biochemical process concerning the sub-foliar carbon sink-source (im)balance, in which photorespiration-associated amino acids exports provide an additional outlet for carbon and increases leaf photosynthetic rate. However, whether this process is regulated by whole-plant sink-source relations and nitrogen budgets remains unclear. We address this question by model analyses of gas-exchange data measured on leaves at three growth stages of rice plants grown at two-nitrogen levels, where three means (leaf-colour modification, adaxial vs abaxial measurements, and panicle pruning) were explored to alter source-sink ratios. Higher specific leaf nitrogen (SLN) resulted in higher rates of TPU and also led to the TPU limitation occurring at a lower intercellular CO2 concentration. Photorespiratory nitrogen assimilation was greater in higher-nitrogen leaves but became smaller in cases associated with yellower-leaf modification, abaxial measurement, or panicle pruning. The feedback inhibition of panicle pruning on rates of TPU was not always observed because panicle pruning blocked nitrogen remobilisation from leaves to grains, and the increased SLN masked the feedback inhibition. The (sub)foliar TPU limitation can be modulated by whole-plant source-sink ratios and nitrogen budgets during rice grain filling, suggesting a close link between sub-foliar and whole-plant sink limitations.

Keywords: triose phosphate utilization, sink limitation, panicle pruning, oryza sativa

Procedia PDF Downloads 87
5427 Alleviation of Salt Stress Effects on Solanum lycopersicum (L.) Plants Grown in a Saline Soil by Foliar Spray with Salicylic Acid

Authors: Saad Howladar

Abstract:

Salinity stress is one of the major abiotic stresses, restricting plant growth and crop productivity in different world regions, especially in arid and semi-arid regions, including Saudi Arabia. The tomato plant is proven to be moderately sensitive to salt stress. Therefore, two field experiments were conducted using tomato plants (Hybrid 6130) to evaluate the effect of four concentrations of salicylic acid (SA; 0, 20, 40, and 60 µM) applied as foliar spraying in improving plant tolerance to saline soil conditions. Tomato plant growth, yield, osmoprotectants, chloeophyll fluorescence, and ionic contents were determined. The results of this study displayed that growth and yield components and physiological attributes of water-sprayed plants (the control) grown under saline soil conditions were negatively impacted. However, under the adverse conditions of salinity, SA-treated plants had enhanced growth and yield components of tomato plants compared to the control. Free proline, soluble sugars, chlorophyll fluorescence, relative water content, membrane stability index, and nutrients contents (e.g., N, P, K⁺, and Ca²⁺) were also improved significantly, while Na⁺ content was significantly reduced in SA-applied tomato plants. SA at 40 µM was the best treatment, which could be recommended to use for salt-stressed tomato plants to enable them to tolerate the adverse conditions of saline soils.

Keywords: tomatoes, salt stress, chlorophyll fluorescence, dehydration tolerance, osmoprotectants

Procedia PDF Downloads 107
5426 Assessment of Heavy Metals and Radionuclide Concentrations in Mafikeng Waste Water Treatment Plant

Authors: M. Mathuthu, N. N. Gaxela, R. Y. Olobatoke

Abstract:

A study was carried out to assess the heavy metal and radionuclide concentrations of water from the waste water treatment plant in Mafikeng Local Municipality to evaluate treatment efficiency. Ten water samples were collected from various stages of water treatment which included sewage delivered to the plant, the two treatment stages and the effluent and also the community. The samples were analyzed for heavy metal content using Inductive Coupled Plasma Mass Spectrometer. Gross α/β activity concentration in water samples was evaluated by Liquid Scintillation Counting whereas the concentration of individual radionuclides was measured by gamma spectroscopy. The results showed marked reduction in the levels of heavy metal concentration from 3 µg/L (As)–670 µg/L (Na) in sewage into the plant to 2 µg/L (As)–170 µg/L (Fe) in the effluent. Beta activity was not detected in water samples except in the in-coming sewage, the concentration of which was within reference limits. However, the gross α activity in all the water samples (7.7-8.02 Bq/L) exceeded the 0.1 Bq/L limit set by World Health Organization (WHO). Gamma spectroscopy analysis revealed very high concentrations of 235U and 226Ra in water samples, with the lowest concentrations (9.35 and 5.44 Bq/L respectively) in the in-coming sewage and highest concentrations (73.8 and 47 Bq/L respectively) in the community water suggesting contamination along water processing line. All the values were considerably higher than the limits of South Africa Target Water Quality Range and WHO. However, the estimated total doses of the two radionuclides for the analyzed water samples (10.62 - 45.40 µSv yr-1) were all well below the reference level of the committed effective dose of 100 µSv yr-1 recommended by WHO.

Keywords: gross α/β activity, heavy metals, radionuclides, 235U, 226Ra, water sample

Procedia PDF Downloads 441
5425 Selection of Developmental Stages of Bovine in vitro-Derived Blastocysts Prior to Vitrification and Embryo Transfer: Implications for Cattle Breeding Programs

Authors: Van Huong Do, Simon Walton, German Amaya, Madeline Batsiokis, Sally Catt, Andrew Taylor-Robinson

Abstract:

Identification of the most suitable stages of bovine in vitro-derived blastocysts (early, expanded and hatching) prior to vitrification is a straightforward process that facilitates the decision as to which blastocyst stage to use for transfer of fresh and vitrified embryos. Research on in vitro evaluation of suitable stages has shown that the more advanced developmental stage of blastocysts is recommended for fresh embryo transfer while the earlier stage is proposed for embryo transfer following vitrification. There is, however, limited information on blastocyst stages using in vivo assessment. Hence, the aim of the present study was to determine the optimal stage of a blastocyst for vitrification and embryo transfer through a two-step procedure of embryo transfer followed by pregnancy testing at 35, 60 and 90 days of pregnancy. 410 good quality oocytes aspirated by the ovum pick-up technique from 8 donor cows were subjected to in vitro embryo production, vitrification and embryo transfer. Good quality embryos were selected, subjected to vitrification and embryo transfer. Subsequently, 77 vitrified embryos at different blastocyst stages were transferred to synchronised recipient cows. The overall cleavage and blastocyst rates of oocytes were 68.8% and 41.7%, respectively. In addition, the fertility and blastocyst production of 6 bulls used for in vitro fertilization was examined and shown to be statistically different (P<0.05). Results of ongoing pregnancy trials conducted at 35 days, 60 days and 90 days will be discussed. However, preliminary data indicate that individual bulls demonstrate distinctly different fertility performance in vitro. Findings from conception rates would provide a useful tool to aid selection of bovine in vitro-derived embryos for vitrification and embryo transfer in commercial settings.

Keywords: blastocyst, embryo transfer, in vitro-derived embryos, ovum pick-up, vitrification

Procedia PDF Downloads 302
5424 Hybrid Inventory Model Optimization under Uncertainties: A Case Study in a Manufacturing Plant

Authors: E. Benga, T. Tengen, A. Alugongo

Abstract:

Periodic and continuous inventory models are the two classical management tools used to handle inventories. These models have advantages and disadvantages. The implementation of both continuous (r,Q) inventory and periodic (R, S) inventory models in most manufacturing plants comes with higher cost. Such high inventory costs are due to the fact that most manufacturing plants are not flexible enough. Since demand and lead-time are two important variables of every inventory models, their effect on the flexibility of the manufacturing plant matter most. Unfortunately, these effects are not clearly understood by managers. The reason is that the decision parameters of the continuous (r, Q) inventory and periodic (R, S) inventory models are not designed to effectively deal with the issues of uncertainties such as poor manufacturing performances, delivery performance supplies performances. There is, therefore, a need to come up with a predictive and hybrid inventory model that can combine in some sense the feature of the aforementioned inventory models. A linear combination technique is used to hybridize both continuous (r, Q) inventory and periodic (R, S) inventory models. The behavior of such hybrid inventory model is described by a differential equation and then optimized. From the results obtained after simulation, the continuous (r, Q) inventory model is more effective than the periodic (R, S) inventory models in the short run, but this difference changes as time goes by. Because the hybrid inventory model is more cost effective than the continuous (r,Q) inventory and periodic (R, S) inventory models in long run, it should be implemented for strategic decisions.

Keywords: periodic inventory, continuous inventory, hybrid inventory, optimization, manufacturing plant

Procedia PDF Downloads 377
5423 Overview About Sludge Produced From Treatment Plant of Bahr El-Baqar Drain and Reusing It With Cement in Outdoor Paving

Authors: Khaled M.Naguib, Ahmed M.Noureldin

Abstract:

This paper aims to achieve many goals such as knowing (quantities produced- main properties- characteristics) of sludge produced from Bahr EL-Baqar drains treatment plant. This prediction or projection was made by laboratory analysis and modelling of Model samples from sludge depending on many studies that have previously done, second check the feasibility and do a risk analysis to know the best alternatives for reuse in producing secondary products that add value to sludge. Also, to know alternatives that have no value to add. All recovery methods are relatively very expensive and challenging to be done in this mega plant, so the recommendation from this study is to use the sludge as a coagulant to reduce some compounds or in secondary products. The study utilized sludge-cement replacement percentages of 10%, 20%, 30%, 40% and 50%. Produced tiles were tested for water absorption and breaking (bending) strength. The study showed that all produced tiles exhibited a water absorption ratio of around 10%. The study concluded that produced tiles, except for 50% sludge-cement replacement, comply with the breaking strength requirements of 2.8 MPa for tiles for external use.

Keywords: cement, tiles, water treatment sludge, breaking strength, absorption, heavy metals, risk analysis

Procedia PDF Downloads 102
5422 Slow and Controlled Release Fertilizer Technology via Application of Plant-available Inorganic Coatings

Authors: Eugene Rybin

Abstract:

Reduction of nutrient losses when using mineral fertilizers is a very important and urgent challenge, which is of both economic and environmental significance. This paper shows the production of slow- and controlled release fertilizers through application of inorganic coatings, which make the released nutrients plant-available. The method of production of coated fertilizers with inorganic cover material is an alternative to other methods where polymer coatings are used. The method is based on spraying an aqueous slurry onto the surface of granules with simultaneous drying in drums under certain conditions and subsequent cooling of granules. This method of production of slow- and controlled-release fertilizers is more ecofriendly compared with others because inorganic materials are used to create a membrane. That is why the coating material is definitely biodegradable. There is also shown the effect of these coatings on the properties of fertilizers, as well as on the agrochemical efficiency and nutrient efficiency/ availability to the plants. The agrochemical tests have proved the increase of nutrient efficiency for every nutrient in compound fertilizers (NPK, NPS) for 3 consecutive years by 10-20 % and by 25-28% for urea, as well as an increase in crop yield, by 10-15% in general, and its quality. Moreover, the decrease in caking by almost 70% was proven as well as slowing down the release rate of nutrients from fertilizers. Control of the release rate was achieved by regulation of thickness and contents of coating materials. All of those characteristics were researched according to the standard-used methods. The performed research has developed the fertilizer technology of slow- and controlled release of nutrients through applying of plant-available inorganic coatings. It leads to a better synchronization of nutrient release rate and plants needs, as well as reduces the harmful effects on the environment from the fertilizers applied.

Keywords: controlled release, fertilizers, nutrients, plant-available coatings

Procedia PDF Downloads 93
5421 Isolation and Identification of Fungi from Different Types of Medicinal Plants Cultivated in Ecuador

Authors: Ana Paola Echavarria, Mariuxi Medina, Haydelba D'Armas, Carmita Jaramillo, Diana San Martin

Abstract:

The use of medicinal plants is one of the oldest and most extended medical therapies that goes back to prehistoric times, and nowadays, they are also used in the preparation of phytopharmaceuticals with options to cure diseases. The test for the determination of fungi was carried out in the Pharmacy Pilot Plant (treatment of the leaves of the plant species) and the Microbiology Laboratory (determination of fungi of the plant species, using growth medium called Sabouraud agar plus the vegetal sample), of the Academic Unit of Chemical Sciences and Health, of the Universidad Tecnica de Machala. Subsequently, colony counting was performed, both macroscopic, which is determined in the growth medium of the seeding, and microscopic, to identify the germinative forms using blue lactophenol. The procedure was repeated in duplicate to replicate the results data. The determination of the total fungal content of the following plant species was evaluated: Cymbopogon citratus (lemon verbena), Melissa officinalis (lemon balm), Taraxacum officinale (dandelion), Artemisia absinthium (absinthe), Piper carpunya (guaviduca), Moringa oleifera (moringa), Coriandrum sativum (coriander), Momordica charantia (achochilla), Borago officinalis (borage), Aloysia citriodora (cedron), Ambrosia artemisifolia (altamisa) and Ageratum conyzoides (mastrante). The results obtained showed that all the samples of the twelve plant species studied developed filamentous fungi, with great variability of them, within the permissible limits and contemplated by the Ecuadorian Institute of Normalization (INEN), being suitable as raw material for its use in the preparation of nutraceuticals and medicinal products or phytodrugs; with the exception of A. conyzoides (mastranto) which is the only species that exceeds the regulation in the average of dilutions.

Keywords: colonies, fungi, medicinal plants, microbiological quality, Sabouraud agar

Procedia PDF Downloads 148
5420 Usage of Biosorbent Material for the Removal of Nitrate from Wastewater

Authors: M. Abouleish, R. Umer, Z. Sara

Abstract:

Nitrate can cause serious environmental and human health problems. Effluent from different industries and excessive use of fertilizers have increased the level of nitrate in ground and surface water. Nitrate can convert to nitrite in the body, and as a result, can lead to Methemoglobinemia and cancer. Therefore, different organizations have set standard limits for nitrate and nitrite. The United States Environmental Protection Agency (USEPA) has set a Maximum Contaminant Level Goal (MCLG) of 10 mg N/L for nitrate and 1 mg N/L for nitrite. The removal of nitrate from water and wastewater is very important to ensure the availability of clean water. Different plant materials such as banana peel, rice hull, coconut and bamboo shells, have been studied as biosorbents for the removal of nitrates from water. The use of abundantly existing plant material as an adsorbent material and the lack of energy requirement for the adsorption process makes biosorption a sustainable approach. Therefore, in this research, the fruit of the plant was investigated for its ability to act as a biosorbent to remove the nitrate from wastewater. The effect of pH on nitrate removal was studied using both the raw and chemically activated fruit (adsorbent). Results demonstrated that the adsorbent needs to be chemically activated before usage to remove the nitrate from wastewater. pH did not have a significant effect on the adsorption process, with maximum adsorption of nitrate occurring at pH 4. SEM/EDX results demonstrated that there is no change in the surface of the adsorbent as a result of the chemical activation. Chemical activation of the adsorbent using NaOH increased the removal of nitrate by 6%; therefore, various methods of activation of the adsorbent will be investigated to increase the removal of nitrate.

Keywords: biosorption, nitrates, plant material, water, and wastewater treatment

Procedia PDF Downloads 147
5419 Review of Existing Pumped Storage Technologies and their Application in the Case of Bistrica Pump Storage Plant

Authors: Dušan Bojović, Wei Huang, Zdravko Stojanović, Jovan Ilić

Abstract:

In an era of ever-growing electricity generation from renewable energy sources, namely wind and solar, a need for reliable energy storage and intensive balancing of the electric power system gains significance. For decades, pump storage hydroelectric power plants have proven to be an important asset regarding the storage of generated electricity. However, with the increasing overall share of wind and solar in electric systems at large, the importance of electric grid stability keeps growing. A large pump storage project, the Bistrica Pump Storage Plant (PSP), is currently under development in Serbia. The Bistrica PSP will be designed as a 600+ MW power plant, which is envisaged as a significant contributor to the Serbian power grid stability as more and more renewable energy sources are implemented over time. PSP Bistrica is seen as a strategically important project on the green agenda path of the Electric Power Industry of Serbia as a necessary pre-condition for the safe implementation of other renewable energy sources. The importance of such a plant would also play an important role in reducing the electricity production from coal, i.e., thermoelectric power plants. During the project’s development, various techniques and technologies are evaluated for the purpose of determining the optimum (the most profitable) solution. Over the course of this paper, these technologies – such as frequency-regulated pump turbines and ternary sets will be presented, with a detailed explanation of their possible application within the Bistrica PSP project and their relative advantages/disadvantages in this particular case.

Keywords: hydraulic turbines, pumped storage, renewable energy, competing technologies

Procedia PDF Downloads 87
5418 Changes in Heavy Metals Bioavailability in Manure-Derived Digestates and Subsequent Hydrochars to Be Used as Soil Amendments

Authors: Hellen L. De Castro e Silva, Ana A. Robles Aguilar, Erik Meers

Abstract:

Digestates are residual by-products, rich in nutrients and trace elements, which can be used as organic fertilisers on soils. However, due to the non-digestibility of these elements and reduced dry matter during the anaerobic digestion process, metal concentrations are higher in digestates than in feedstocks, which might hamper their use as fertilisers according to the threshold values of some country policies. Furthermore, there is uncertainty regarding the required assimilated amount of these elements by some crops, which might result in their bioaccumulation. Therefore, further processing of the digestate to obtain safe fertilizing products has been recommended. This research aims to analyze the effect of applying the hydrothermal carbonization process to manure-derived digestates as a thermal treatment to reduce the bioavailability of heavy metals in mono and co-digestates derived from pig manure and maize from contaminated land in France. This study examined pig manure collected from a novel stable system (VeDoWs, province of East Flanders, Belgium) that separates the collection of pig urine and feces, resulting in a solid fraction of manure with high up-concentration of heavy metals and nutrients. Mono-digestion and co-digestion processes were conducted in semi-continuous reactors for 45 days at mesophilic conditions, in which the digestates were dried at 105 °C for 24 hours. Then, hydrothermal carbonization was applied to a 1:10 solid/water ratio to guarantee controlled experimental conditions in different temperatures (180, 200, and 220 °C) and residence times (2 h and 4 h). During the process, the pressure was generated autogenously, and the reactor was cooled down after completing the treatments. The solid and liquid phases were separated through vacuum filtration, in which the solid phase of each treatment -hydrochar- was dried and ground for chemical characterization. Different fractions (exchangeable / adsorbed fraction - F1, carbonates-bound fraction - F2, organic matter-bound fraction - F3, and residual fraction – F4) of some heavy metals (Cd, Cr, Ni, and Cr) have been determined in digestates and derived hydrochars using the modified Community Bureau of Reference (BCR) sequential extraction procedure. The main results indicated a difference in the heavy metals fractionation between digestates and their derived hydrochars; however, the hydrothermal carbonization operating conditions didn’t have remarkable effects on heavy metals partitioning between the hydrochars of the proposed treatments. Based on the estimated potential ecological risk assessment, there was one level decrease (considerate to moderate) when comparing the HMs partitioning in digestates and derived hydrochars.

Keywords: heavy metals, bioavailability, hydrothermal treatment, bio-based fertilisers, agriculture

Procedia PDF Downloads 97
5417 Microorganism and Laurus nobilis from Mascara - Algeria

Authors: Karima Oldyerou, B. Meddah, A. Tirtouil

Abstract:

Laurusnobilis is an aromatic plant, common in Algeria and widely used by local people as a source of spice and for medicinal purposes. The essential oil of this plant is the subject of this work in a physicochemical and microbiological study. The extraction of the essential oil was carried by steam distillation and the highest yield (1.5%) was determined in May. The organoleptic and physico-chemical characters are consistent with those obtained in the literature with some differences that can be attributed to certain factors. Evaluation of antibacterial activity showed a sensitivity of Salmonella spp. with an MIC of 2,5 mg.ml-1, and other bacteria of the intestinal flora of Wistar rats: E. coli and Lactobacillus sp. have a high potential for resistance with MICs respectively equal to 10 and 20 mg.ml-1.

Keywords: laurus nobilis, essential oil, physicochemical character, MIC, intestinal flora, antibacterial activity

Procedia PDF Downloads 332
5416 Reintroduction and in vitro Propagation of Declapeis arayalpathra: A Critically Endangered Plant of Western Ghats, India

Authors: Zishan Ahmad, Anwar Shahzad

Abstract:

The present studies describe a protocol for high frequency in vitro propagation through nodal segments and shoot tips in D. arayalpathra, a critically endangered medicinal liana of the Western Ghats, India. Nodal segments were more responsive than shoot tips in terms of shoot multiplication. Murashige and Skoog’s (MS) basal medium supplemented with 2.5 µM 6-benzyladenine (BA) was optimum for shoot induction through both the explants. Among different combinations of plant growth regulator (PGRs) and growth additive screened, MS medium supplemented with BA (2.5 µM) + indole-3-acetic acid (IAA) (0.25 µM) + adenine sulphate (ADS) (10.0 µM) induced a maximum of 9.0 shoots per nodal segment and 3.9 shoots per shoot tip with mean shoot length of 8.5 and 3.9 cm respectively. Half-strength MS medium supplemented with Naphthaleneacetic acid (NAA) (2.5 µM) was the best for in vitro root induction. After successful acclimatization in SoilriteTM, 92 % plantlets were survived in field conditions. Acclimatized plantlets were studied for chlorophyll and carotenoid content, net photosynthetic rate (PN) and related attributes such as stomatal conductance (Gs) and transpiration rate during subsequent days of acclimatization. The rise and fall of different biochemical enzymes (SOD, CAT, APX and GR) were also studies during successful days of acclimatization. Moreover, the effect of acclimatization on the synthesis of 2-hydroxy-4-methoxy benzaldehyde (2H4MB) was also studied in relation to the biomass production. Maximum fresh weight (2.8 gm/plant), dry weight (0.35 gm/plant) of roots and 2H4MB content (8.5 µg/ ml of root extract) were recorded after 8 weeks of acclimatization. The screening of in vitro raised plantlet root was also carried out by using GC-MS analysis which witnessed more than 25 compounds. The regenerated plantlets were also screened for homogeneity by using RAPD and ISSR. The proposed protocol surely can be used for the conservation and commercial production of the plant.

Keywords: 6-benzyladenine, PGRs, RAPD, 2H4MB

Procedia PDF Downloads 191
5415 M-Number of Aortic Cannulas Applied During Hypothermic Cardiopulmonary Bypass

Authors: Won-Gon Kim

Abstract:

A standardized system to describe the pressure-flow characteristics of a given cannula has recently been proposed and has been termed ‘the M-number’. Using three different sizes of aortic cannulas in 50 pediatric cardiac patients on hypothermic cardiopulmonary bypass, we analyzed the correlation between experimentally and clinically derived M-numbers, and found this was positive. Clinical M-numbers were typically 0.35 to 0.55 greater than experimental M-numbers, and correlated inversely with a patient's temperature change; this was most probably due to increased blood viscosity, arising from hypothermia. This inverse relationship was more marked in higher M-number cannulas. The clinical data obtained in this study suggest that experimentally derived M-numbers correlate strongly with clinical performance of the cannula, and that the influence of temperature is significant.

Keywords: cardiopulmonary bypass, M-number, aortic cannula, pressure-flow characteristics

Procedia PDF Downloads 239
5414 Development of Biosurfactant-Based Adjuvant for Enhancing Biocontrol Efficiency

Authors: Kanyarat Sikhao, Nichakorn Khondee

Abstract:

Adjuvant is commonly mixed with agricultural spray solution during foliar application to improve the performance of microbial-based biological control, including better spreading, absorption, and penetration on a plant leaf. This research aims to replace chemical surfactants in adjuvant by biosurfactants for reducing a negative impact on antagonistic microorganisms and crops. Biosurfactant was produced from Brevibacterium casei NK8 and used as a cell-free broth solution containing a biosurfactant concentration of 3.7 g/L. The studies of microemulsion formation and phase behavior were applied to obtain the suitable composition of biosurfactant-based adjuvant, consisting of cell-free broth (70-80%), coconut oil-based fatty alcohol C12-14 (3) ethoxylate (1-7%), and sodium chloride (8-30%). The suitable formula, achieving Winsor Type III microemulsion (bicontinuous), was 80% of cell-free broth, 7% of fatty alcohol C12-14 (3) ethoxylate, and 8% sodium chloride. This formula reduced the contact angle of water on parafilm from 70 to 31 degrees. The non-phytotoxicity against plant seed of Oryza sativa and Brassica rapa subsp. pekinensis were obtained from biosurfactant-based adjuvant (germination index equal and above 80%), while sodium dodecyl sulfate and tween80 showed phytotoxic effects to these plant seeds. The survival of Bacillus subtilis in biosurfactant-based adjuvant was higher than sodium dodecyl sulfate and tween80. The mixing of biosurfactant and plant-based surfactant could be considered as a viable, safer, and acceptable alternative to chemical adjuvant for sustainable organic farming.

Keywords: biosurfactant, microemulsion, bio-adjuvant, antagonistic microorganisms

Procedia PDF Downloads 136
5413 Development of a Test Plant for Parabolic Trough Solar Collectors Characterization

Authors: Nelson Ponce Jr., Jonas R. Gazoli, Alessandro Sete, Roberto M. G. Velásquez, Valério L. Borges, Moacir A. S. de Andrade

Abstract:

The search for increased efficiency in generation systems has been of great importance in recent years to reduce the impact of greenhouse gas emissions and global warming. For clean energy sources, such as the generation systems that use concentrated solar power technology, this efficiency improvement impacts a lower investment per kW, improving the project’s viability. For the specific case of parabolic trough solar concentrators, their performance is strongly linked to their geometric precision of assembly and the individual efficiencies of their main components, such as parabolic mirrors and receiver tubes. Thus, for accurate efficiency analysis, it should be conducted empirically, looking for mounting and operating conditions like those observed in the field. The Brazilian power generation and distribution company Eletrobras Furnas, through the R&D program of the National Agency of Electrical Energy, has developed a plant for testing parabolic trough concentrators located in Aparecida de Goiânia, in the state of Goiás, Brazil. The main objective of this test plant is the characterization of the prototype concentrator that is being developed by the company itself in partnership with Eudora Energia, seeking to optimize it to obtain the same or better efficiency than the concentrators of this type already known commercially. This test plant is a closed pipe system where a pump circulates a heat transfer fluid, also calledHTF, in the concentrator that is being characterized. A flow meter and two temperature transmitters, installed at the inlet and outlet of the concentrator, record the parameters necessary to know the power absorbed by the system and then calculate its efficiency based on the direct solar irradiation available during the test period. After the HTF gains heat in the concentrator, it flows through heat exchangers that allow the acquired energy to be dissipated into the ambient. The goal is to keep the concentrator inlet temperature constant throughout the desired test period. The developed plant performs the tests in an autonomous way, where the operator must enter the HTF flow rate in the control system, the desired concentrator inlet temperature, and the test time. This paper presents the methodology employed for design and operation, as well as the instrumentation needed for the development of a parabolic trough test plant, being a guideline for standardization facilities.

Keywords: parabolic trough, concentrated solar power, CSP, solar power, test plant, energy efficiency, performance characterization, renewable energy

Procedia PDF Downloads 113
5412 Assessment of Analytical Equations for the Derivation of Young’s Modulus of Bonded Rubber Materials

Authors: Z. N. Haji, S. O. Oyadiji, H. Samami, O. Farrell

Abstract:

The prediction of the vibration response of rubber products by analytical or numerical method depends mainly on the predefined intrinsic material properties such as Young’s modulus, damping factor and Poisson’s ratio. Such intrinsic properties are determined experimentally by subjecting a bonded rubber sample to compression tests. The compression tests on such a sample yield an apparent Young’s modulus which is greater in magnitude than the intrinsic Young’s modulus of the rubber. As a result, many analytical equations have been developed to determine Young’s modulus from an apparent Young’s modulus of bonded rubber materials. In this work, the applicability of some of these analytical equations is assessed via experimental testing. The assessment is based on testing of vulcanized nitrile butadiene rubber (NBR70) samples using tensile test and compression test methods. The analytical equations are used to determine the intrinsic Young’s modulus from the apparent modulus that is derived from the compression test data of the bonded rubber samples. Then, these Young’s moduli are compared with the actual Young’s modulus that is derived from the tensile test data. The results show significant discrepancy between the Young’s modulus derived using the analytical equations and the actual Young’s modulus.

Keywords: bonded rubber, quasi-static test, shape factor, apparent Young’s modulus

Procedia PDF Downloads 166
5411 A Plant-Insect Association for Enhancing Survival of an Ecosystem Engineer Termite Species in a Semi-Arid Savanna

Authors: G. Nampa, M. Ndlovu

Abstract:

Mutualistic relationships amongst organisms drive diversity in terrestrial ecosystems. Yet, few mutual associations have been documented in the semi-arid savannas of Africa. The levels and benefits of association between Carissa bispinosa, a medium-sized evergreen thorny shrub, and Trinervitermes trinervoides, an ecosystem engineer termite species, were studied at a semi-arid savanna setting in Nylsvley nature reserve, South Africa. It was hypothesized that there would be a close plant-insect association since termite mounds provide nutrients for plant growth and, in return, the thorny shrubs protect mounds from predation and also provide a temperature buffer. Comparative plant and mounds measurements were taken from associated and isolated occurrences seasonally. Soil particle size, macro- and micronutrients were also evaluated from mounds and the adjacent topsoil matrix General Additive Mixed Models were used to assess internal mound temperatures in relation to prevailing ambient and plant shade temperatures. Findings revealed that plants growing on mounds were significantly taller with a wider canopy and remained greener in the dry season with more fruits. On the other hand, termite mounds under plants were less prone to be damaged by aardvarks and pangolins and had a significantly wider diameter than exposed mounds. All soil macronutrients except for calcium and phosphorous were enriched in mounds relative to the matrix. Only Manganese was enriched in mounds while the other micronutrients (Cu, Fe, Zn and B) were not. Termite mounds under plants maintained a better constant and higher mean internal temperature during winter compared to exposed mounds. To our best knowledge, the study has revealed a previously undocumented survival mechanism that termites use to escape extreme temperatures and predation in semi-arid savannas.

Keywords: mound, mutualism, soil nutrients, termites, thermoregulation

Procedia PDF Downloads 120
5410 Recycling, Reuse and Reintegration of Steel Plant Fines

Authors: R. K. Agrawal, Shiv Agrawal

Abstract:

Fines and micro create fundamental problems of respiration. From mines to mills steel plants generate lot of pollutants. Legislation & Government laws are stricter day by day & each plant has to think of recycling, reuse &reintegration of pollutants generated during the process of steel making. This paper deals with experiments conducted in Bhilai Steel Plant and Real Ispat and Power Limited for reuse, recycle & reintegrate some of the steel making process fines. Iron ore fines with binders have been agglomerated to be used as a part of the charge for small furnaces. This will improve yield at nominal cost. Rolling mill fines have been recycled to increase the yield of sinter making. This will solve the problems of fine disposal. Huge saving on account of recycling will be achieved. Lime fines after briquetting is used along with prime lime. Lime fines have also been used as a binding material during production of fly ash bricks. These fines serve as low-cost binder. Experiments have been conducted along with coke breeze & gas cleaning plant sludge. As a result, the anti-sloping compound has been developed for converter vessels. Dolo char and Char during Sponge Iron production have been successfully used in power generation and brick making. Pellets have been made with ventilation dust & flue dust. These samples have been tried as a coolant in the converter. Pellets have been made with Sinter Plant electrostatic precipitator micro fines with liquid binder. Trials have been conducted to reuse these pellets in sinter making. Coke breeze from coke-ovens fines and mill scale along with binders were agglomerated. This was used in furnace after attaining required screening and reactivity index. These actions will definitely bring social, economic and environment-friendly universe.

Keywords: briquette, dolo char, electrostatic precipitator, pellet, sinter

Procedia PDF Downloads 386
5409 Magnesium Foliar Application and Phosphorien Soil Inoculation Positively Affect Pisum sativum L. Plants Grown on Sandy Calcareous Soil

Authors: Saad M. Howladar, Ashraf Sh. Osman, Mostafa M. Rady, Hassan S. Al-Zahrani

Abstract:

The effects of soil inoculation with phosphorien-containing Phosphate-Dissolving Bacteria (PDB) and/or magnesium (Mg) foliar application at the rates of 0, 0.5 and 1mM on growth, green pod and seed yields, and chemical constituents of Pisum sativum L. grown on a sandy calcareous soil were investigated. Results indicated that PDB and/or Mg significantly increased shoot length, number of branches plant–1, total leaf area plant–1 and canopy dry weight plant–1, leaf contents of pigments, soluble sugars, free proline, nitrogen, phosphorus, potassium, magnesium, and calcium, and Ca/Na ratio, while leaf Na content was reduced. PDB and/or Mg also increased green pod and seed yields. We concluded that PDB and Mg have pronounced positive effects on Pisum sativum L. plants grown on sandy calcareous soil. PDB and Mg, therefore, have the potential to be applied for various crops to overcome the adverse effects of the newly-reclaimed sandy calcareous soils.

Keywords: bio-p-fertilizer, mg foliar application, newly-reclaimed soils, Pisum sativum L.

Procedia PDF Downloads 358
5408 Valorization, Conservation and Sustainable Production of Medicinal Plants in Morocco

Authors: Elachouri Mostafa, Fakchich Jamila, Lazaar Jamila, Elmadmad Mohammed, Marhom Mostafa

Abstract:

Of course, there has been a great growth in scientific information about medicinal plants in recent decades, but in many ways this has proved poor compensation, because such information is accessible, in practice, only to a very few people and anyway, rather little of it is relevant to problems of management and utilization, as encountered in the field. Active compounds are used in most traditional medicines and play an important role in advancing sustainable rural livelihoods through their conservation, cultivation, propagation, marketing and commercialization. Medicinal herbs are great resources for various pharmaceutical compounds and urgent measures are required to protect these plant species from their natural destruction and disappearance. Indeed, there is a real danger of indigenous Arab medicinal practices and knowledge disappearing altogether, further weakening traditional Arab culture and creating more insecurity, as well as forsaking a resource of inestimable economic and health care importance. As scientific approach, the ethnopharmacological investigation remains the principal way to improve, evaluate, and increase the odds of finding of biologically active compounds derived from medicinal plants. As developing country, belonging to the Mediterranean basin, Morocco country is endowed with resources of medicinal and aromatic plants. These plants have been used over the millennia for human welfare, even today. Besides, Morocco has a large plant biodiversity, in fact, its medicinal flora account more than 4200 species growing on various bioclimatic zones from subhumide to arid and Saharan. Nevertheless, the human and animal pressure resulting from the increase of rural population needs has led to degradation of this patrimony. In this paper, we focus our attention on ethnopharmacological studies carried out in Morocco. The goal of this work is to clarify the importance of herbs as platform for drugs discovery and further development, to highlight the importance of ethnopharmacological study as approach on discovery of natural products in the health care field, and to discuss the limit of ethnopharmacological investigation of drug discovery in Morocco.

Keywords: Morocco, medicinal plants, ethnopharmacology, natural products, drug-discovery

Procedia PDF Downloads 310
5407 Using HABIT to Establish the Chemicals Analysis Methodology for Maanshan Nuclear Power Plant

Authors: J. R. Wang, S. W. Chen, Y. Chiang, W. S. Hsu, J. H. Yang, Y. S. Tseng, C. Shih

Abstract:

In this research, the HABIT analysis methodology was established for Maanshan nuclear power plant (NPP). The Final Safety Analysis Report (FSAR), reports, and other data were used in this study. To evaluate the control room habitability under the CO2 storage burst, the HABIT methodology was used to perform this analysis. The HABIT result was below the R.G. 1.78 failure criteria. This indicates that Maanshan NPP habitability can be maintained. Additionally, the sensitivity study of the parameters (wind speed, atmospheric stability classification, air temperature, and control room intake flow rate) was also performed in this research.

Keywords: PWR, HABIT, Habitability, Maanshan

Procedia PDF Downloads 439
5406 Using HABIT to Estimate the Concentration of CO2 and H2SO4 for Kuosheng Nuclear Power Plant

Authors: Y. Chiang, W. Y. Li, J. R. Wang, S. W. Chen, W. S. Hsu, J. H. Yang, Y. S. Tseng, C. Shih

Abstract:

In this research, the HABIT code was used to estimate the concentration under the CO2 and H2SO4 storage burst conditions for Kuosheng nuclear power plant (NPP). The Final Safety Analysis Report (FSAR) and reports were used in this research. In addition, to evaluate the control room habitability for these cases, the HABIT analysis results were compared with the R.G. 1.78 failure criteria. The comparison results show that the HABIT results are below the criteria. Additionally, some sensitivity studies (stability classification, wind speed and control room intake rate) were performed in this study.

Keywords: BWR, HABIT, habitability, Kuosheng

Procedia PDF Downloads 485
5405 Phytoextraction of Copper and Zinc by Willow Varieties in a Pot Experiment

Authors: Muhammad Mohsin, Mir Md Abdus Salam, Pertti Pulkkinen, Ari Pappinen

Abstract:

Soil and water contamination by heavy metals is a major challenging issue for the environment. Phytoextraction is an emerging, environmentally friendly and cost-efficient technology in which plants are used to eliminate pollutants from the soil and water. We aimed to assess the copper (Cu) and zinc (Zn) removal efficiency by two willow varieties such as Klara (S. viminalis x S. schwerinii x S. dasyclados) and Karin ((S.schwerinii x S. viminalis) x (S. viminalis x S.burjatica)) under different soil treatments (control/unpolluted, polluted, lime with polluted, wood ash with polluted). In 180 days of pot experiment, these willow varieties were grown in a highly polluted soil collected from Pyhasalmi mining area in Finland. The lime and wood ash were added to the polluted soil to improve the soil pH and observe their effects on metals accumulation in plant biomass. The Inductively Coupled Plasma Optical Emission Spectrometer (ELAN 6000 ICP-EOS, Perkin-Elmer Corporation) was used in this study to assess the heavy metals concentration in the plant biomass. The result shows that both varieties of willow have the capability to accumulate the considerable amount of Cu and Zn varying from 36.95 to 314.80 mg kg⁻¹ and 260.66 to 858.70 mg kg⁻¹, respectively. The application of lime and wood ash substantially affected the stimulation of the plant height, dry biomass and deposition of Cu and Zn into total plant biomass. Besides, the lime application appeared to upsurge Cu and Zn concentrations in the shoots and leaves in both willow varieties when planted in polluted soil. However, wood ash application was found more efficient to mobilize the metals in the roots of both varieties. The study recommends willow plantations to rehabilitate the Cu and Zn polluted soils.

Keywords: heavy metals, lime, phytoextraction, wood ash, willow

Procedia PDF Downloads 235