Search results for: panel data analysis
41743 Bank Competition: On the Relationship with Revenue Diversification and Funding Strategy from Selected ASEAN Countries
Authors: Oktofa Y. Sudrajad, Didier V. Caillie
Abstract:
Association of Southeast Asian Countries Nations (ASEAN) is moving forward to the next level of regional integration by the initiation of ASEAN Economic Community (AEC) which is already started in 2015, 8 years after its declaration for the creation of AEC in 2007. This commitment imposes financial integration in the region is one of the main agenda which will be achieved until 2025. Therefore, the commitment to financial integration including banking integration will bring new landscape in the competition and business model in this region. This study investigates the effect of competition on bank business model using a sample of 324 banks from seven members of Association of Southeast Asian Nations (ASEAN) countries (Cambodia, Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam). We use market power approach and Boone indicator as competition measures, while income diversification and bank funding strategies are employed as bank business model representation. Moreover, we also evaluate bank business model based by grouping the banks based on the main banking characteristics. We use unbalanced bank-specific annual panel data over the period of 2003 – 2015. Our empirical analysis shows that the banking industries in ASEAN countries adapt their business model by increasing non-interest income proportion due to the level of competition increase in the sector.Keywords: bank business model, banking competition, Boone indicator, market power
Procedia PDF Downloads 22641742 Disaster Resilience Analysis of Atlanta Interstate Highway System within the Perimeter
Authors: Mengmeng Liu, J. David Frost
Abstract:
Interstate highway system within the Atlanta Perimeter plays an important role in residents’ daily life. The serious influence of Atlanta I-85 Collapses implies that transportation system in the region lacks a cohesive and comprehensive transportation plan. Therefore, disaster resilience analysis of the transportation system is necessary. Resilience is the system’s capability to persist or to maintain transportation services when exposed to changes or shocks. This paper analyzed the resilience of the whole transportation system within the Perimeter and see how removing interstates within the Perimeter will affect the resilience of the transportation system. The data used in the paper are Atlanta transportation networks and LEHD Origin-Destination Employment Statistics data. First, we calculate the traffic flow on each road section based on LEHD data assuming each trip travel along the shortest travel time paths. Second, we calculate the measure of resilience, which is flow-based connectivity and centrality of the transportation network, and see how they will change if we remove each section of interstates from the current transportation system. Finally, we get the resilience function curve of the interstates and identify the most resilient interstates section. The resilience analysis results show that the framework of calculation resilience is effective and can provide some useful information for the transportation planning and sustainability analysis of the transportation infrastructures.Keywords: connectivity, interstate highway system, network analysis, resilience analysis
Procedia PDF Downloads 26041741 Estimation of Desktop E-Wastes in Delhi Using Multivariate Flow Analysis
Authors: Sumay Bhojwani, Ashutosh Chandra, Mamita Devaburman, Akriti Bhogal
Abstract:
This article uses the Material flow analysis for estimating e-wastes in the Delhi/NCR region. The Material flow analysis is based on sales data obtained from various sources. Much of the data available for the sales is unreliable because of the existence of a huge informal sector. The informal sector in India accounts for more than 90%. Therefore, the scope of this study is only limited to the formal one. Also, for projection of the sales data till 2030, we have used regression (linear) to avoid complexity. The actual sales in the years following 2015 may vary non-linearly but we have assumed a basic linear relation. The purpose of this study was to know an approximate quantity of desktop e-wastes that we will have by the year 2030 so that we start preparing ourselves for the ineluctable investment in the treatment of these ever-rising e-wastes. The results of this study can be used to install a treatment plant for e-wastes in Delhi.Keywords: e-wastes, Delhi, desktops, estimation
Procedia PDF Downloads 25841740 Geospatial Network Analysis Using Particle Swarm Optimization
Authors: Varun Singh, Mainak Bandyopadhyay, Maharana Pratap Singh
Abstract:
The shortest path (SP) problem concerns with finding the shortest path from a specific origin to a specified destination in a given network while minimizing the total cost associated with the path. This problem has widespread applications. Important applications of the SP problem include vehicle routing in transportation systems particularly in the field of in-vehicle Route Guidance System (RGS) and traffic assignment problem (in transportation planning). Well known applications of evolutionary methods like Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm Optimization (PSO) have come up to solve complex optimization problems to overcome the shortcomings of existing shortest path analysis methods. It has been reported by various researchers that PSO performs better than other evolutionary optimization algorithms in terms of success rate and solution quality. Further Geographic Information Systems (GIS) have emerged as key information systems for geospatial data analysis and visualization. This research paper is focused towards the application of PSO for solving the shortest path problem between multiple points of interest (POI) based on spatial data of Allahabad City and traffic speed data collected using GPS. Geovisualization of results of analysis is carried out in GIS.Keywords: particle swarm optimization, GIS, traffic data, outliers
Procedia PDF Downloads 48341739 An Analysis of the Relation between Need for Psychological Help and Psychological Symptoms
Authors: İsmail Ay
Abstract:
In this study, it was aimed to determine the relations between need for psychological help and psychological symptoms. The sample of the study consists of 530 university students getting educated in University of Atatürk in 2015-2016 academic years. Need for Psychological Help Scale and Brief Symptom Inventory were used to collect data in the study. In data analysis, correlation analysis and structural equation model with latent variables were used. Normality and homogeneity analyses were used to analyze the basic conditions of parametric tests. The findings obtained from the study show that as the psychological symptoms increase, need for psychological help also increases. The findings obtained through the study were approached according to the literature.Keywords: psychological symptoms, need for psychological help, structural equation model, correlation
Procedia PDF Downloads 36841738 The Comparison of Joint Simulation and Estimation Methods for the Geometallurgical Modeling
Authors: Farzaneh Khorram
Abstract:
This paper endeavors to construct a block model to assess grinding energy consumption (CCE) and pinpoint blocks with the highest potential for energy usage during the grinding process within a specified region. Leveraging geostatistical techniques, particularly joint estimation, or simulation, based on geometallurgical data from various mineral processing stages, our objective is to forecast CCE across the study area. The dataset encompasses variables obtained from 2754 drill samples and a block model comprising 4680 blocks. The initial analysis encompassed exploratory data examination, variography, multivariate analysis, and the delineation of geological and structural units. Subsequent analysis involved the assessment of contacts between these units and the estimation of CCE via cokriging, considering its correlation with SPI. The selection of blocks exhibiting maximum CCE holds paramount importance for cost estimation, production planning, and risk mitigation. The study conducted exploratory data analysis on lithology, rock type, and failure variables, revealing seamless boundaries between geometallurgical units. Simulation methods, such as Plurigaussian and Turning band, demonstrated more realistic outcomes compared to cokriging, owing to the inherent characteristics of geometallurgical data and the limitations of kriging methods.Keywords: geometallurgy, multivariate analysis, plurigaussian, turning band method, cokriging
Procedia PDF Downloads 7041737 Leveraging Unannotated Data to Improve Question Answering for French Contract Analysis
Authors: Touila Ahmed, Elie Louis, Hamza Gharbi
Abstract:
State of the art question answering models have recently shown impressive performance especially in a zero-shot setting. This approach is particularly useful when confronted with a highly diverse domain such as the legal field, in which it is increasingly difficult to have a dataset covering every notion and concept. In this work, we propose a flexible generative question answering approach to contract analysis as well as a weakly supervised procedure to leverage unannotated data and boost our models’ performance in general, and their zero-shot performance in particular.Keywords: question answering, contract analysis, zero-shot, natural language processing, generative models, self-supervision
Procedia PDF Downloads 19441736 The Maximum Throughput Analysis of UAV Datalink 802.11b Protocol
Authors: Inkyu Kim, SangMan Moon
Abstract:
This IEEE 802.11b protocol provides up to 11Mbps data rate, whereas aerospace industry wants to seek higher data rate COTS data link system in the UAV. The Total Maximum Throughput (TMT) and delay time are studied on many researchers in the past years This paper provides theoretical data throughput performance of UAV formation flight data link using the existing 802.11b performance theory. We operate the UAV formation flight with more than 30 quad copters with 802.11b protocol. We may be predicting that UAV formation flight numbers have to bound data link protocol performance limitations.Keywords: UAV datalink, UAV formation flight datalink, UAV WLAN datalink application, UAV IEEE 802.11b datalink application
Procedia PDF Downloads 39241735 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling
Authors: Sushma Ghogale
Abstract:
With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis
Procedia PDF Downloads 9741734 Assessment of Social Vulnerability of Urban Population to Floods – a Case Study of Mumbai
Authors: Sherly M. A., Varsha Vijaykumar, Subhankar Karmakar, Terence Chan, Christian Rau
Abstract:
This study aims at proposing an indicator-based framework for assessing social vulnerability of any coastal megacity to floods. The final set of indicators of social vulnerability are chosen from a set of feasible and available indicators which are prepared using a Geographic Information System (GIS) framework on a smaller scale considering 1-km grid cell to provide an insight into the spatial variability of vulnerability. The optimal weight for each individual indicator is assigned using data envelopment analysis (DEA) as it avoids subjective weights and improves the confidence on the results obtained. In order to de-correlate and reduce the dimension of multivariate data, principal component analysis (PCA) has been applied. The proposed methodology is demonstrated on twenty four wards of Mumbai under the jurisdiction of Municipal Corporation of Greater Mumbai (MCGM). This framework of vulnerability assessment is not limited to the present study area, and may be applied to other urban damage centers.Keywords: urban floods, vulnerability, data envelopment analysis, principal component analysis
Procedia PDF Downloads 36141733 A Study of the Adaptive Reuse for School Land Use Strategy: An Application of the Analytic Network Process and Big Data
Authors: Wann-Ming Wey
Abstract:
In today's popularity and progress of information technology, the big data set and its analysis are no longer a major conundrum. Now, we could not only use the relevant big data to analysis and emulate the possible status of urban development in the near future, but also provide more comprehensive and reasonable policy implementation basis for government units or decision-makers via the analysis and emulation results as mentioned above. In this research, we set Taipei City as the research scope, and use the relevant big data variables (e.g., population, facility utilization and related social policy ratings) and Analytic Network Process (ANP) approach to implement in-depth research and discussion for the possible reduction of land use in primary and secondary schools of Taipei City. In addition to enhance the prosperous urban activities for the urban public facility utilization, the final results of this research could help improve the efficiency of urban land use in the future. Furthermore, the assessment model and research framework established in this research also provide a good reference for schools or other public facilities land use and adaptive reuse strategies in the future.Keywords: adaptive reuse, analytic network process, big data, land use strategy
Procedia PDF Downloads 20341732 Social Media Mining with R. Twitter Analyses
Authors: Diana Codat
Abstract:
Tweets' analysis is part of text mining. Each document is a written text. It's possible to apply the usual text search techniques, in particular by switching to the bag-of-words representation. But the tweets induce peculiarities. Some may enrich the analysis. Thus, their length is calibrated (at least as far as public messages are concerned), special characters make it possible to identify authors (@) and themes (#), the tweet and retweet mechanisms make it possible to follow the diffusion of the information. Conversely, other characteristics may disrupt the analyzes. Because space is limited, authors often use abbreviations, emoticons to express feelings, and they do not pay much attention to spelling. All this creates noise that can complicate the task. The tweets carry a lot of potentially interesting information. Their exploitation is one of the main axes of the analysis of the social networks. We show how to access Twitter-related messages. We will initiate a study of the properties of the tweets, and we will follow up on the exploitation of the content of the messages. We will work under R with the package 'twitteR'. The study of tweets is a strong focus of analysis of social networks because Twitter has become an important vector of communication. This example shows that it is easy to initiate an analysis from data extracted directly online. The data preparation phase is of great importance.Keywords: data mining, language R, social networks, Twitter
Procedia PDF Downloads 18441731 Lipidomic Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer
Authors: Patricia O. Carvalho, Marcia C. F. Messias, Salvador Sanchez Vinces, Caroline F. A. Gatinoni, Vitor P. Iordanu, Carlos A. R. Martinez
Abstract:
Lipidomics methods are widely used in the identification and validation of disease-specific biomarkers and therapy response evaluation. The present study aimed to identify a panel of potential lipid biomarkers to evaluate response to neoadjuvant chemoradiotherapy in rectal adenocarcinoma (RAC). Liquid chromatography–mass spectrometry (LC-MS)-based untargeted lipidomic was used to profile human serum samples from patients with clinical stage T2 or T3 resectable RAC, after and before chemoradiotherapy treatment. A total of 28 blood plasma samples were collected from 14 patients with RAC who recruited at the São Francisco University Hospital (HUSF/USF). The study was approved by the ethics committee (CAAE 14958819.8.0000.5514). Univariate and multivariate statistical analyses were applied to explore dysregulated metabolic pathways using untargeted lipidic profiling and data mining approaches. A total of 36 statistically significant altered lipids were identified and the subsequent partial least-squares discriminant analysis model was both cross validated (R2, Q2) and permutated. Lisophosphatidyl-choline (LPC) plasmalogens containing palmitoleic and oleic acids, with high variable importance in projection score, showed a tendency to be lower after completion of chemoradiotherapy. Chemoradiotherapy seems to change plasmanyl-phospholipids levels, indicating that these lipids play an important role in the RAC pathogenesis.Keywords: lipidomics, neoadjuvant chemoradiotherapy, plasmalogens, rectal adenocarcinoma
Procedia PDF Downloads 13141730 A Dynamic Panel Model to Evaluate the Impact of Debt Relief on Poverty
Authors: Loujaina Abdelwahed
Abstract:
Debt relief granted to low-and middle-income countries effectively provides additional funds for governments that can be used to increase public investment on poverty-reducing services to alleviate poverty and boost economic growth. However, little is known about the extent to which the poor benefit from the increased public investment. This study aims to assess the impact of debt relief granted through multiple initiatives during the 1990s on poverty reduction. In particular, it assesses the impact on the level, depth and severity of poverty in 76 low-and middle income countries over the period 1990-2011. Debt relief is found to have a significant impact on reducing the level, the depth and the severity of poverty. Analysis of the different types of debt relief reveals that debt service relief reduces poverty, whereas debt principle relief does not have a significant impact.Keywords: debt relief, developing countries, HIPC, poverty, system GMM estimator
Procedia PDF Downloads 39841729 Integration Process and Analytic Interface of different Environmental Open Data Sets with Java/Oracle and R
Authors: Pavel H. Llamocca, Victoria Lopez
Abstract:
The main objective of our work is the comparative analysis of environmental data from Open Data bases, belonging to different governments. This means that you have to integrate data from various different sources. Nowadays, many governments have the intention of publishing thousands of data sets for people and organizations to use them. In this way, the quantity of applications based on Open Data is increasing. However each government has its own procedures to publish its data, and it causes a variety of formats of data sets because there are no international standards to specify the formats of the data sets from Open Data bases. Due to this variety of formats, we must build a data integration process that is able to put together all kind of formats. There are some software tools developed in order to give support to the integration process, e.g. Data Tamer, Data Wrangler. The problem with these tools is that they need data scientist interaction to take part in the integration process as a final step. In our case we don’t want to depend on a data scientist, because environmental data are usually similar and these processes can be automated by programming. The main idea of our tool is to build Hadoop procedures adapted to data sources per each government in order to achieve an automated integration. Our work focus in environment data like temperature, energy consumption, air quality, solar radiation, speeds of wind, etc. Since 2 years, the government of Madrid is publishing its Open Data bases relative to environment indicators in real time. In the same way, other governments have published Open Data sets relative to the environment (like Andalucia or Bilbao). But all of those data sets have different formats and our solution is able to integrate all of them, furthermore it allows the user to make and visualize some analysis over the real-time data. Once the integration task is done, all the data from any government has the same format and the analysis process can be initiated in a computational better way. So the tool presented in this work has two goals: 1. Integration process; and 2. Graphic and analytic interface. As a first approach, the integration process was developed using Java and Oracle and the graphic and analytic interface with Java (jsp). However, in order to open our software tool, as second approach, we also developed an implementation with R language as mature open source technology. R is a really powerful open source programming language that allows us to process and analyze a huge amount of data with high performance. There are also some R libraries for the building of a graphic interface like shiny. A performance comparison between both implementations was made and no significant differences were found. In addition, our work provides with an Official Real-Time Integrated Data Set about Environment Data in Spain to any developer in order that they can build their own applications.Keywords: open data, R language, data integration, environmental data
Procedia PDF Downloads 31541728 Using Risk Management Indicators in Decision Tree Analysis
Authors: Adel Ali Elshaibani
Abstract:
Risk management indicators augment the reporting infrastructure, particularly for the board and senior management, to identify, monitor, and manage risks. This enhancement facilitates improved decision-making throughout the banking organization. Decision tree analysis is a tool that visually outlines potential outcomes, costs, and consequences of complex decisions. It is particularly beneficial for analyzing quantitative data and making decisions based on numerical values. By calculating the expected value of each outcome, decision tree analysis can help assess the best course of action. In the context of banking, decision tree analysis can assist lenders in evaluating a customer’s creditworthiness, thereby preventing losses. However, applying these tools in developing countries may face several limitations, such as data availability, lack of technological infrastructure and resources, lack of skilled professionals, cultural factors, and cost. Moreover, decision trees can create overly complex models that do not generalize well to new data, known as overfitting. They can also be sensitive to small changes in the data, which can result in different tree structures and can become computationally expensive when dealing with large datasets. In conclusion, while risk management indicators and decision tree analysis are beneficial for decision-making in banks, their effectiveness is contingent upon how they are implemented and utilized by the board of directors, especially in the context of developing countries. It’s important to consider these limitations when planning to implement these tools in developing countries.Keywords: risk management indicators, decision tree analysis, developing countries, board of directors, bank performance, risk management strategy, banking institutions
Procedia PDF Downloads 6041727 Stability of the Wellhead in the Seabed in One of the Marine Reservoirs of Iran
Authors: Mahdi Aghaei, Saeid Jamshidi, Mastaneh Hajipour
Abstract:
Effective factors on the mechanical wellbore stability are divided in to two categories: 1) Controllable factors, 2) Uncontrollable factors. The purpose of geo-mechanical modeling of wells is to determine the limit of controlled parameters change based on the stress regime at each point and by solving the governing equations the pore-elastic environment around the well. In this research, the mechanical analysis of wellbore stability was carried out for Soroush oilfield. For this purpose, the geo-mechanical model of the field is made using available data. This model provides the necessary parameters for obtaining the distribution of stress around the wellbore. Initially, a basic model was designed to perform various analysis, based on obtained data, using Abaqus software. All of the subsequent sensitivity analysis such as sensitivity analysis on porosity, permeability, etc. was done on the same basic model. The results obtained from these analysis gives various result such as: with the constant geomechanical parameters, and sensitivity analysis on porosity permeability is ineffective. After the most important parameters affecting the wellbore stability and instability are geo-mechanical parameters.Keywords: wellbore stability, movement, stress, instability
Procedia PDF Downloads 20341726 Various Advanced Statistical Analyses of Index Values Extracted from Outdoor Agricultural Workers Motion Data
Authors: Shinji Kawakura, Ryosuke Shibasaki
Abstract:
We have been grouping and developing various kinds of practical, promising sensing applied systems concerning agricultural advancement and technical tradition (guidance). These include advanced devices to secure real-time data related to worker motion, and we analyze by methods of various advanced statistics and human dynamics (e.g. primary component analysis, Ward system based cluster analysis, and mapping). What is more, we have been considering worker daily health and safety issues. Targeted fields are mainly common farms, meadows, and gardens. After then, we observed and discussed time-line style, changing data. And, we made some suggestions. The entire plan makes it possible to improve both the aforementioned applied systems and farms.Keywords: advanced statistical analysis, wearable sensing system, tradition of skill, supporting for workers, detecting crisis
Procedia PDF Downloads 39441725 Mutation Profiling of Paediatric Solid Tumours in a Cohort of South African Patients
Authors: L. Lamola, E. Manolas, A. Krause
Abstract:
Background: The incidence of childhood cancer incidence is increasing gradually in low-middle income countries, such as South Africa. Globally, there is an extensive range of familial- and hereditary-cancer syndromes, where underlying germline variants increase the likelihood of developing cancer in childhood. Next-Generation Sequencing (NGS) technologies have been key in determining the occurrence and genetic contribution of germline variants to paediatric cancer development. We aimed to design and evaluate a candidate gene panel specific to inherited cancer-predisposing genes to provide a comprehensive insight into the contribution of germline variants to childhood cancer. Methods: 32 paediatric patients (aged 0-18 years) diagnosed with a malignant tumour were recruited, and biological samples were obtained. After quality control, DNA was sequenced using an ion Ampliseq 50 candidate gene panel design and Ion Torrent S5 technologies. Sequencing variants were called using Ion Torrent Suite software and were subsequently annotated using Ion Reporter and Ensembl's VEP. High priority variants were manually analysed using tools such as MutationTaster, SIFT-INDEL and VarSome. Putative identified candidates were validated via Sanger Sequencing. Results: The patients studied had a variety of cancers, the most common being nephroblastoma (13), followed by osteosarcoma (4) and astrocytoma (3). We identified 10 pathogenic / likely pathogenic variants in 10 patients, most of which were novel. Conclusions: According to the literature, we expected ~10% of our patient population to harbour pathogenic or likely pathogenic germline variants, however, we reported about 3 times (~30%) more than we expected. Majority of the identified variants are novel; this may be because this is the first study of its kind in an understudied South African population.Keywords: Africa, genetics, germline-variants, paediatric-cancer
Procedia PDF Downloads 13941724 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining
Authors: Hina Kausher, Sangita Srivastava
Abstract:
In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which covers the variety of figure proportions in both height and girth. 3,000 data has been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from some states of India to produce the sizing system suitable for clothing manufacture and retailing. This data is used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from a large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.Keywords: anthropometric data, data mining, decision tree, garments manufacturing, sizing systems, ready-made garments
Procedia PDF Downloads 13341723 Monoallelic and Biallelic Deletions of 13q14 in a Group of 36 CLL Patients Investigated by CGH Haematological Cancer and SNP Array (8x60K)
Authors: B. Grygalewicz, R. Woroniecka, J. Rygier, K. Borkowska, A. Labak, B. Nowakowska, B. Pienkowska-Grela
Abstract:
Introduction: Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia in the Western world. Hemizygous and or homozygous loss at 13q14 occur in more than half of cases and constitute the most frequent chromosomal abnormality in CLL. It is believed that deletions 13q14 play a role in CLL pathogenesis. Two microRNA genes miR-15a and miR- 16-1 are targets of 13q14 deletions and plays a tumor suppressor role by targeting antiapoptotic BCL2 gene. Deletion size, as a single change detected in FISH analysis, has haprognostic significance. Patients with small deletions, without RB1 gene involvement, have the best prognosis and the longest overall survival time (OS 133 months). In patients with bigger deletion region, containing RB1 gene, prognosis drops to intermediate, like in patients with normal karyotype and without changes in FISH with overall survival 111 months. Aim: Precise delineation of 13q14 deletions regions in two groups of CLL patients, with mono- and biallelic deletions and qualifications of their prognostic significance. Methods: Detection of 13q14 deletions was performed by FISH analysis with CLL probe panel (D13S319, LAMP1, TP53, ATM, CEP-12). Accurate deletion size detection was performed by CGH Haematological Cancer and SNP array (8x60K). Results: Our investigated group of CLL patients with the 13q14 deletion, detected by FISH analysis, comprised two groups: 18 patients with monoallelic deletions and 18 patients with biallelic deletions. In FISH analysis, in the monoallelic group the range of cells with deletion, was 43% to 97%, while in biallelic group deletion was detected in 11% to 94% of cells. Microarray analysis revealed precise deletion regions. In the monoallelic group, the range of size was 348,12 Kb to 34,82 Mb, with median deletion size 7,93 Mb. In biallelic group discrepancy of total deletions, size was 135,27 Kb to 33,33 Mb, with median deletion size 2,52 Mb. The median size of smaller deletion regions on one copy chromosome 13 was 1,08 Mb while the average region of bigger deletion on the second chromosome 13 was 4,04 Mb. In the monoallelic group, in 8/18 deletion region covered RB1 gene. In the biallelic group, in 4/18 cases, revealed deletion on one copy of biallelic deletion and in 2/18 showed deletion of RB1 gene on both deleted 13q14 regions. All minimal deleted regions included miR-15a and miR-16-1 genes. Genetic results will be correlated with clinical data. Conclusions: Application of CGH microarrays technique in CLL allows accurately delineate the size of 13q14 deletion regions, what have a prognostic value. All deleted regions included miR15a and miR-16-1, what confirms the essential role of these genes in CLL pathogenesis. In our investigated groups of CLL patients with mono- and biallelic 13q14 deletions, patients with biallelic deletion presented smaller deletion sizes (2,52 Mb vs 7,93 Mb), what is connected with better prognosis.Keywords: CLL, deletion 13q14, CGH microarrays, SNP array
Procedia PDF Downloads 25541722 Time Series Analysis on the Production of Fruit Juice: A Case Study of National Horticultural Research Institute (Nihort) Ibadan, Oyo State
Authors: Abiodun Ayodele Sanyaolu
Abstract:
The research was carried out to investigate the time series analysis on quarterly production of fruit juice at the National Horticultural Research Institute Ibadan from 2010 to 2018. Documentary method of data collection was used, and the method of least square and moving average were used in the analysis. From the calculation and the graph, it was glaring that there was increase, decrease, and uniform movements in both the graph of the original data and the tabulated quarter values of the original data. Time series analysis was used to detect the trend in the highest number of fruit juice and it appears to be good over a period of time and the methods used to forecast are additive and multiplicative models. Since it was observed that the production of fruit juice is usually high in January of every year, it is strongly advised that National Horticultural Research Institute should make more provision for fruit juice storage outside this period of the year.Keywords: fruit juice, least square, multiplicative models, time series
Procedia PDF Downloads 14241721 Mining Multicity Urban Data for Sustainable Population Relocation
Authors: Xu Du, Aparna S. Varde
Abstract:
In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. Experiments so far reveal that data mining methods discover useful knowledge from the multicity urban data. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.Keywords: data mining, environmental modeling, sustainability, urban planning
Procedia PDF Downloads 30841720 Scientific Linux Cluster for BIG-DATA Analysis (SLBD): A Case of Fayoum University
Authors: Hassan S. Hussein, Rania A. Abul Seoud, Amr M. Refaat
Abstract:
Scientific researchers face in the analysis of very large data sets that is increasing noticeable rate in today’s and tomorrow’s technologies. Hadoop and Spark are types of software that developed frameworks. Hadoop framework is suitable for many Different hardware platforms. In this research, a scientific Linux cluster for Big Data analysis (SLBD) is presented. SLBD runs open source software with large computational capacity and high performance cluster infrastructure. SLBD composed of one cluster contains identical, commodity-grade computers interconnected via a small LAN. SLBD consists of a fast switch and Gigabit-Ethernet card which connect four (nodes). Cloudera Manager is used to configure and manage an Apache Hadoop stack. Hadoop is a framework allows storing and processing big data across the cluster by using MapReduce algorithm. MapReduce algorithm divides the task into smaller tasks which to be assigned to the network nodes. Algorithm then collects the results and form the final result dataset. SLBD clustering system allows fast and efficient processing of large amount of data resulting from different applications. SLBD also provides high performance, high throughput, high availability, expandability and cluster scalability.Keywords: big data platforms, cloudera manager, Hadoop, MapReduce
Procedia PDF Downloads 35841719 Microfinance for the Marginalised: The Impact of the Rojiroti Approach in India
Authors: Gil Yaron, Rebecca Gordon, John Best, Sunil Choudhary
Abstract:
There have been a number of studies examining the impact of microfinance; however, the magnitude of impact varies across regions, and there has been mixed evidence due to the differences in the nature of interventions, context and the way in which microfinance is implemented. The Rojiroti approach to microfinance involves the creation of women's self-help groups (SHGs), rotated loans from savings and subsequent credit from a Bihar-based NGO. Rojiroti serves customers who are significantly poorer and more marginalised than those typically served by microfinance in India. In the data analysed, more than 90 percent of members are from scheduled caste and tribes (62 percent) or other disadvantaged castes. This paper analyses the impact of Rojiroti microfinance using panel data on 740 new SHG members and 340 women in matched control sites at baseline and after 18 months. We consider changes in assets, children's education, women's mobility and domestic violence among other indicators. These results show significant gains for Rojiroti borrowers relative to control sites for important, but not all, variables. Comparison with more longstanding SHGs (at least 36 months) helps to explain how the borrowing patterns of poor and marginalised SHG members evolve. The context of this intervention is also important; in this case, innovative microfinance is provided too much poorer and marginalised women than is typically the case, and so the results seen are in contrast to numerous studies that show little or no effect of microfinance on the lives of their clients.Keywords: microfinance, gender, impact, pro-poor
Procedia PDF Downloads 15741718 Simulation of Maximum Power Point Tracking in a Photovoltaic System: A Circumstance Using Pulse Width Modulation Analysis
Authors: Asowata Osamede
Abstract:
Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers in general does not promote development to the public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0o north, with a corresponding tilt angle of 36 o, 26o and 16o. The load employed in this set-up are three Lead Acid Batteries (LAB). The percentage fully charged, charging and not charging conditions are observed for all three batteries. The results obtained in this research is used to draw the conclusion that would provide a benchmark for researchers and scientist worldwide. This is done so as to have an idea of the best tilt and orientation angles for maximum power point in a basic off-grid PV system. A quantitative analysis would be employed in this research. Quantitative research tends to focus on measurement and proof. Inferential statistics are frequently used to generalize what is found about the study sample to the population as a whole. This would involve: selecting and defining the research question, deciding on a study type, deciding on the data collection tools, selecting the sample and its size, analyzing, interpreting and validating findings Preliminary results which include regression analysis (normal probability plot and residual plot using polynomial 6) showed the maximum power point in the system. The best tilt angle for maximum power point tracking proves that the 36o tilt angle provided the best average on time which in turns put the system into a pulse width modulation stage.Keywords: power-conversion, meteonorm, PV panels, DC-DC converters
Procedia PDF Downloads 14741717 Solar Radiation Studies and Performance of Solar Panels for Three Cities of Sindh, Pakistan
Authors: M. A. Ahmed, Sidra A. Shaikh, M. W. Akhtar
Abstract:
Solar radiation on horizontal surface over three southern cities of Sindh, namely Karachi, Hyderabad and Nawabshah has been investigated to asses the feasibility of solar energy application for power generation. In the present work, measured data of bright sunshine hour of the region have been used to estimate the global and diffuse solar radiation. The regression coefficient 'a' and 'b' have been calculated using first order Angstrom type co-relation. The result obtained shows that the contribution of direct solar radiation is low and diffuse radiation is high during the monsoon months July and August for Karachi and Hyderabad. The sky remains clear from September to June, whereas for Nawabshah the global radiation remains high throughout the year. The potential of grid quality solar photovoltaic power in Karachi is estimated for 10 square meter area of solar panel.Keywords: solar potential over Sindh, global and diffuse solar radiation, radiation over three cities of Sindh, solar panels
Procedia PDF Downloads 44641716 Stock Market Integration of Emerging Markets around the Global Financial Crisis: Trends and Explanatory Factors
Authors: Najlae Bendou, Jean-Jacques Lilti, Khalid Elbadraoui
Abstract:
In this paper, we examine stock market integration of emerging markets around the global financial turmoil of 2007-2008. Following Pukthuanthong and Roll (2009), we measure the integration of 46 emerging countries using the adjusted R-square from the regression of each country's daily index returns on global factors extracted from the covariance matrix computed using dollar-denominated daily index returns of 17 developed countries. Our sample surrounds the global financial crisis and ranges between 2000 and 2018. We analyze results using four cohorts of emerging countries: East Asia & Pacific and South Asia, Europe & Central Asia, Latin America & Caribbean, Middle East & Africa. We find that the level of integration of emerging countries increases at the commencement of the crisis and during the booming phase of the business cycles. It reaches a maximum point in the middle of the crisis and then tends to revert to its pre-crisis level. This pattern tends to be common among the four geographic zones investigated in this study. Finally, we investigate the determinants of stock market integration of emerging countries in our sample using panel regressions. Our results suggest that the degree of stock market integration of these countries should be put into perspective by some macro-economic factors, such as the size of the equity market, school enrollment rate, international liquidity level, stocks traded volume, tax revenue level, imports and exports volumes.Keywords: correlations, determinants of integration, diversification, emerging markets, financial crisis, integration, markets co-movement, panel regressions, r-square, stock markets
Procedia PDF Downloads 18341715 Imputation of Urban Movement Patterns Using Big Data
Authors: Eusebio Odiari, Mark Birkin, Susan Grant-Muller, Nicolas Malleson
Abstract:
Big data typically refers to consumer datasets revealing some detailed heterogeneity in human behavior, which if harnessed appropriately, could potentially revolutionize our understanding of the collective phenomena of the physical world. Inadvertent missing values skew these datasets and compromise the validity of the thesis. Here we discuss a conceptually consistent strategy for identifying other relevant datasets to combine with available big data, to plug the gaps and to create a rich requisite comprehensive dataset for subsequent analysis. Specifically, emphasis is on how these methodologies can for the first time enable the construction of more detailed pictures of passenger demand and drivers of mobility on the railways. These methodologies can predict the influence of changes within the network (like a change in time-table or impact of a new station), explain local phenomena outside the network (like rail-heading) and the other impacts of urban morphology. Our analysis also reveals that our new imputation data model provides for more equitable revenue sharing amongst network operators who manage different parts of the integrated UK railways.Keywords: big-data, micro-simulation, mobility, ticketing-data, commuters, transport, synthetic, population
Procedia PDF Downloads 23141714 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply
Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan
Abstract:
Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.Keywords: ZigBee, Li-ion battery, solar panel, CC2530
Procedia PDF Downloads 374