Search results for: manual
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 716

Search results for: manual

86 Biosensor: An Approach towards Sustainable Environment

Authors: Purnima Dhall, Rita Kumar

Abstract:

Introduction: River Yamuna, in the national capital territory (NCT), and also the primary source of drinking water for the city. Delhi discharges about 3,684 MLD of sewage through its 18 drains in to the Yamuna. Water quality monitoring is an important aspect of water management concerning to the pollution control. Public concern and legislation are now a day’s demanding better environmental control. Conventional method for estimating BOD5 has various drawbacks as they are expensive, time-consuming, and require the use of highly trained personnel. Stringent forthcoming regulations on the wastewater have necessitated the urge to develop analytical system, which contribute to greater process efficiency. Biosensors offer the possibility of real time analysis. Methodology: In the present study, a novel rapid method for the determination of biochemical oxygen demand (BOD) has been developed. Using the developed method, the BOD of a sample can be determined within 2 hours as compared to 3-5 days with the standard BOD3-5day assay. Moreover, the test is based on specified consortia instead of undefined seeding material therefore it minimizes the variability among the results. The device is coupled to software which automatically calculates the dilution required, so, the prior dilution of the sample is not required before BOD estimation. The developed BOD-Biosensor makes use of immobilized microorganisms to sense the biochemical oxygen demand of industrial wastewaters having low–moderate–high biodegradability. The method is quick, robust, online and less time consuming. Findings: The results of extensive testing of the developed biosensor on drains demonstrate that the BOD values obtained by the device correlated with conventional BOD values the observed R2 value was 0.995. The reproducibility of the measurements with the BOD biosensor was within a percentage deviation of ±10%. Advantages of developed BOD biosensor • Determines the water pollution quickly in 2 hours of time; • Determines the water pollution of all types of waste water; • Has prolonged shelf life of more than 400 days; • Enhanced repeatability and reproducibility values; • Elimination of COD estimation. Distinctiveness of Technology: • Bio-component: can determine BOD load of all types of waste water; • Immobilization: increased shelf life > 400 days, extended stability and viability; • Software: Reduces manual errors, reduction in estimation time. Conclusion: BiosensorBOD can be used to measure the BOD value of the real wastewater samples. The BOD biosensor showed good reproducibility in the results. This technology is useful in deciding treatment strategies well ahead and so facilitating discharge of properly treated water to common water bodies. The developed technology has been transferred to M/s Forbes Marshall Pvt Ltd, Pune.

Keywords: biosensor, biochemical oxygen demand, immobilized, monitoring, Yamuna

Procedia PDF Downloads 278
85 Skull Extraction for Quantification of Brain Volume in Magnetic Resonance Imaging of Multiple Sclerosis Patients

Authors: Marcela De Oliveira, Marina P. Da Silva, Fernando C. G. Da Rocha, Jorge M. Santos, Jaime S. Cardoso, Paulo N. Lisboa-Filho

Abstract:

Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by neurodegeneration, inflammation, demyelination, and axonal loss. Magnetic resonance imaging (MRI), due to the richness in the information details provided, is the gold standard exam for diagnosis and follow-up of neurodegenerative diseases, such as MS. Brain atrophy, the gradual loss of brain volume, is quite extensive in multiple sclerosis, nearly 0.5-1.35% per year, far off the limits of normal aging. Thus, the brain volume quantification becomes an essential task for future analysis of the occurrence atrophy. The analysis of MRI has become a tedious and complex task for clinicians, who have to manually extract important information. This manual analysis is prone to errors and is time consuming due to various intra- and inter-operator variability. Nowadays, computerized methods for MRI segmentation have been extensively used to assist doctors in quantitative analyzes for disease diagnosis and monitoring. Thus, the purpose of this work was to evaluate the brain volume in MRI of MS patients. We used MRI scans with 30 slices of the five patients diagnosed with multiple sclerosis according to the McDonald criteria. The computational methods for the analysis of images were carried out in two steps: segmentation of the brain and brain volume quantification. The first image processing step was to perform brain extraction by skull stripping from the original image. In the skull stripper for MRI images of the brain, the algorithm registers a grayscale atlas image to the grayscale patient image. The associated brain mask is propagated using the registration transformation. Then this mask is eroded and used for a refined brain extraction based on level-sets (edge of the brain-skull border with dedicated expansion, curvature, and advection terms). In the second step, the brain volume quantification was performed by counting the voxels belonging to the segmentation mask and converted in cc. We observed an average brain volume of 1469.5 cc. We concluded that the automatic method applied in this work can be used for the brain extraction process and brain volume quantification in MRI. The development and use of computer programs can contribute to assist health professionals in the diagnosis and monitoring of patients with neurodegenerative diseases. In future works, we expect to implement more automated methods for the assessment of cerebral atrophy and brain lesions quantification, including machine-learning approaches. Acknowledgements: This work was supported by a grant from Brazilian agency Fundação de Amparo à Pesquisa do Estado de São Paulo (number 2019/16362-5).

Keywords: brain volume, magnetic resonance imaging, multiple sclerosis, skull stripper

Procedia PDF Downloads 146
84 Training Manual of Organic Agriculture Farming for the Farmers: A Case Study from Kunjpura and Surrounding Villages

Authors: Rishi Pal Singh

Abstract:

In Indian Scenario, Organic agriculture is growing by the conscious efforts of inspired people who are able to create the best promising relationship between the earth and men. Nowadays, the major challenge is its entry into the policy-making framework, its entry into the global market and weak sensitization among the farmers. But, during the last two decades, the contamination in environment and food which is linked with the bad agricultural potential/techniques has diverted the mind set of farmers towards the organic farming. In the view of above concept, a small-scale project has been installed to promote the 20 farmers from the Kunjura and surrounding villages for organic farming. This project is working since from the last 3 crops (starting from October, 2016) and found that it can meet both demands and complete development of rural areas. Farmers of this concept are working on the principles such that the nature never demands unreasonable quantities of water, mining and to destroy the microbes and other organisms. As per details of Organic Monitor estimates, global sales reached in billion in the present analysis. In this initiative, firstly, wheat and rice were considered for farming and observed that the production of crop has grown almost 10-15% per year from the last crop production. This is not linked only with the profit or loss but also emphasized on the concept of health, ecology, fairness and care of soil enrichment. Several techniques were used like use of biological fertilizers instead of chemicals, multiple cropping, temperature management, rain water harvesting, development of own seed, vermicompost and integration of animals. In the first year, to increase the fertility of the land, legumes (moong, cow pea and red gram) were grown in strips for the 60, 90 and 120 days. Simultaneously, the mixture of compost and vermicompost in the proportion of 2:1 was applied at the rate of 2.0 ton per acre which was enriched with 5 kg Azotobacter and 5 kg Rhizobium biofertilizer. To complete the amount of phosphorus, 250 kg rock phosphate was used. After the one month, jivamrut can be used with the irrigation water or during the rainy days. In next season, compost-vermicompost mixture @ 2.5 ton/ha was used for all type of crops. After the completion of this treatment, now the soil is ready for high value ordinary/horticultural crops. The amount of above stated biofertilizers, compost-vermicompost and rock phosphate may be increased for the high alternative fertilizers. The significance of the projects is that now the farmers believe in cultural alternative (use of disease-free their own seed, organic pest management), maintenance of biodiversity, crop rotation practices and health benefits of organic farming. This type of organic farming projects should be installed at the level of gram/block/district administration.

Keywords: organic farming, Kunjpura, compost, bio-fertilizers

Procedia PDF Downloads 195
83 Self-Supervised Learning for Hate-Speech Identification

Authors: Shrabani Ghosh

Abstract:

Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.

Keywords: attention learning, language model, offensive language detection, self-supervised learning

Procedia PDF Downloads 105
82 Persistent Ribosomal In-Frame Mis-Translation of Stop Codons as Amino Acids in Multiple Open Reading Frames of a Human Long Non-Coding RNA

Authors: Leonard Lipovich, Pattaraporn Thepsuwan, Anton-Scott Goustin, Juan Cai, Donghong Ju, James B. Brown

Abstract:

Two-thirds of human genes do not encode any known proteins. Aside from long non-coding RNA (lncRNA) genes with recently-discovered functions, the ~40,000 non-protein-coding human genes remain poorly understood, and a role for their transcripts as de-facto unconventional messenger RNAs has not been formally excluded. Ribosome profiling (Riboseq) predicts translational potential, but without independent evidence of proteins from lncRNA open reading frames (ORFs), ribosome binding of lncRNAs does not prove translation. Previously, we mass-spectrometrically documented translation of specific lncRNAs in human K562 and GM12878 cells. We now examined lncRNA translation in human MCF7 cells, integrating strand-specific Illumina RNAseq, Riboseq, and deep mass spectrometry in biological quadruplicates performed at two core facilities (BGI, China; City of Hope, USA). We excluded known-protein matches. UCSC Genome Browser-assisted manual annotation of imperfect (tryptic-digest-peptides)-to-(lncRNA-three-frame-translations) alignments revealed three peptides hypothetically explicable by 'stop-to-nonstop' in-frame replacement of stop codons by amino acids in two ORFs of the lncRNA MMP24-AS1. To search for this phenomenon genomewide, we designed and implemented a novel pipeline, matching tryptic-digest spectra to wildcard-instead-of-stop versions of repeat-masked, six-frame, whole-genome translations. Along with singleton putative stop-to-nonstop events affecting four other lncRNAs, we identified 24 additional peptides with stop-to-nonstop in-frame substitutions from multiple positive-strand MMP24-AS1 ORFs. Only UAG and UGA, never UAA, stop codons were impacted. All MMP24-AS1-matching spectra met the same significance thresholds as high-confidence known-protein signatures. Targeted resequencing of MMP24-AS1 genomic DNA and cDNA from the same samples did not reveal any mutations, polymorphisms, or sequencing-detectable RNA editing. This unprecedented apparent gene-specific violation of the genetic code highlights the importance of matching peptides to whole-genome, not known-genes-only, ORFs in mass-spectrometry workflows, and suggests a new mechanism enhancing the combinatorial complexity of the proteome. Funding: NIH Director’s New Innovator Award 1DP2-CA196375 to LL.

Keywords: genetic code, lncRNA, long non-coding RNA, mass spectrometry, proteogenomics, ribo-seq, ribosome, RNAseq

Procedia PDF Downloads 235
81 Construction and Analysis of Tamazight (Berber) Text Corpus

Authors: Zayd Khayi

Abstract:

This paper deals with the construction and analysis of the Tamazight text corpus. The grammatical structure of the Tamazight remains poorly understood, and a lack of comparative grammar leads to linguistic issues. In order to fill this gap, even though it is small, by constructed the diachronic corpus of the Tamazight language, and elaborated the program tool. In addition, this work is devoted to constructing that tool to analyze the different aspects of the Tamazight, with its different dialects used in the north of Africa, specifically in Morocco. It also focused on three Moroccan dialects: Tamazight, Tarifiyt, and Tachlhit. The Latin version was good choice because of the many sources it has. The corpus is based on the grammatical parameters and features of that language. The text collection contains more than 500 texts that cover a long historical period. It is free, and it will be useful for further investigations. The texts were transformed into an XML-format standardization goal. The corpus counts more than 200,000 words. Based on the linguistic rules and statistical methods, the original user interface and software prototype were developed by combining the technologies of web design and Python. The corpus presents more details and features about how this corpus provides users with the ability to distinguish easily between feminine/masculine nouns and verbs. The interface used has three languages: TMZ, FR, and EN. Selected texts were not initially categorized. This work was done in a manual way. Within corpus linguistics, there is currently no commonly accepted approach to the classification of texts. Texts are distinguished into ten categories. To describe and represent the texts in the corpus, we elaborated the XML structure according to the TEI recommendations. Using the search function may provide us with the types of words we would search for, like feminine/masculine nouns and verbs. Nouns are divided into two parts. The gender in the corpus has two forms. The neutral form of the word corresponds to masculine, while feminine is indicated by a double t-t affix (the prefix t- and the suffix -t), ex: Tarbat (girl), Tamtut (woman), Taxamt (tent), and Tislit (bride). However, there are some words whose feminine form contains only the prefix t- and the suffix –a, ex: Tasa (liver), tawja (family), and tarwa (progenitors). Generally, Tamazight masculine words have prefixes that distinguish them from other words. For instance, 'a', 'u', 'i', ex: Asklu (tree), udi (cheese), ighef (head). Verbs in the corpus are for the first person singular and plural that have suffixes 'agh','ex', 'egh', ex: 'ghrex' (I study), 'fegh' (I go out), 'nadagh' (I call). The program tool permits the following characteristics of this corpus: list of all tokens; list of unique words; lexical diversity; realize different grammatical requests. To conclude, this corpus has only focused on a small group of parts of speech in Tamazight language verbs, nouns. Work is still on the adjectives, prounouns, adverbs and others.

Keywords: Tamazight (Berber) language, corpus linguistic, grammar rules, statistical methods

Procedia PDF Downloads 64
80 Furniko Flour: An Emblematic Traditional Food of Greek Pontic Cuisine

Authors: A. Keramaris, T. Sawidis, E. Kasapidou, P. Mitlianga

Abstract:

Although the gastronomy of the Greeks of Pontus is highly prominent, it has not received the same level of scientific analysis as another local cuisine of Greece, that of Crete. As a result, we intended to focus our research on Greek Pontic cuisine to shed light on its unique recipes, food products, and, ultimately, its features. The Greeks of Pontus, who lived for a long time in the northern part (Black Sea Region) of contemporary Turkey and now widely inhabit northern Greece, have one of Greece's most distinguished local cuisines. Despite their gastronomy being simple, it features several inspiring delicacies. It's been a century since they immigrated to Greece, yet their gastronomic culture remains a critical component of their collective identity. As a first step toward comprehending Greek Pontic cuisine, it was attempted to investigate the production of one of its most renowned traditional products, furniko flour. In this project, we targeted residents of Western Macedonia, a province in northern Greece with a large population of descendants of Greeks of Pontus who are primarily engaged in agricultural activities. In this quest, we approached a descendant of the Greeks of Pontus who is involved in the production of furniko flour and who consented to show us the entire process of its production as we participated in it. The furniko flour is made from non-hybrid heirloom corn. It is harvested by hand when the moisture content of the seeds is low enough to make them suitable for roasting. Manual harvesting entails removing the cob from the plant and detaching the husks. The harvested cobs are then roasted for 24 hours in a traditional wood oven. The roasted cobs are then collected and stored in sacks. The next step is to extract the seeds, which is accomplished by rubbing the cobs. The seeds should ideally be ground in a traditional stone hand mill. We end up with aromatic and dark golden furniko flour, which is used to cook havitz. Accompanied by the preparation of the furnikoflour, we also recorded the cooking process of the havitz (a porridge-like cornflour dish). A savory delicacy that is simple to prepare and one of the most delightful dishes in Greek Pontic cuisine. According to the research participant, havitzis a highly nutritious dish due to the ingredients of furniko flour. In addition, he argues that preparing havitz is a great way to bring families together, share stories, and revisit fond memories. In conclusion, this study illustrates the traditional preparation of furnikoflour and its use in various traditional recipes as an initial effort to highlight the elements of Pontic Greek cuisine. As a continuation of the current study, it could be the analysis of the chemical components of the furniko flour to evaluate its nutritional content.

Keywords: furniko flour, greek pontic cuisine, havitz, traditional foods

Procedia PDF Downloads 136
79 Monitoring and Evaluation of Web-Services Quality and Medium-Term Impact on E-Government Agencies' Efficiency

Authors: A. F. Huseynov, N. T. Mardanov, J. Y. Nakhchivanski

Abstract:

This practical research is aimed to improve the management quality and efficiency of public administration agencies providing e-services. The monitoring system developed will provide continuous review of the websites compliance with the selected indicators, their evaluation based on the selected indicators and ranking of services according to the quality criteria. The responsible departments in the government agencies were surveyed; the questionnaire includes issues of management and feedback, e-services provided, and the application of information systems. By analyzing the main affecting factors and barriers, the recommendations will be given that lead to the relevant decisions to strengthen the state agencies competencies for the management and the provision of their services. Component 1. E-services monitoring system. Three separate monitoring activities are proposed to be executed in parallel: Continuous tracing of e-government sites using built-in web-monitoring program; this program generates several quantitative values which are basically related to the technical characteristics and the performance of websites. The expert assessment of e-government sites in accordance with the two general criteria. Criterion 1. Technical quality of the site. Criterion 2. Usability/accessibility (load, see, use). Each high-level criterion is in turn subdivided into several sub-criteria, such as: the fonts and the color of the background (Is it readable?), W3C coding standards, availability of the Robots.txt and the site map, the search engine, the feedback/contact and the security mechanisms. The on-line survey of the users/citizens – a small group of questions embedded in the e-service websites. The questionnaires comprise of the information concerning navigation, users’ experience with the website (whether it was positive or negative), etc. Automated monitoring of web-sites by its own could not capture the whole evaluation process, and should therefore be seen as a complement to expert’s manual web evaluations. All of the separate results were integrated to provide the complete evaluation picture. Component 2. Assessment of the agencies/departments efficiency in providing e-government services. - the relevant indicators to evaluate the efficiency and the effectiveness of e-services were identified; - the survey was conducted in all the governmental organizations (ministries, committees and agencies) that provide electronic services for the citizens or the businesses; - the quantitative and qualitative measures are covering the following sections of activities: e-governance, e-services, the feedback from the users, the information systems at the agencies’ disposal. Main results: 1. The software program and the set of indicators for internet sites evaluation has been developed and the results of pilot monitoring have been presented. 2. The evaluation of the (internal) efficiency of the e-government agencies based on the survey results with the practical recommendations related to the human potential, the information systems used and e-services provided.

Keywords: e-government, web-sites monitoring, survey, internal efficiency

Procedia PDF Downloads 304
78 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology

Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester

Abstract:

Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.

Keywords: composite material, fiber-metal-laminate, lightweight construction, prepreg-press-technology, large-series production

Procedia PDF Downloads 240
77 Effect of Silica Nanoparticles on Three-Point Flexural Properties of Isogrid E-Glass Fiber/Epoxy Composite Structures

Authors: Hamed Khosravi, Reza Eslami-Farsani

Abstract:

Increased interest in lightweight and efficient structural components has created the need for selecting materials with improved mechanical properties. To do so, composite materials are being widely used in many applications, due to durability, high strength and modulus, and low weight. Among the various composite structures, grid-stiffened structures are extensively considered in various aerospace and aircraft applications, because of higher specific strength and stiffness, higher impact resistance, superior load-bearing capacity, easy to repair, and excellent energy absorption capability. Although there are a good number of publications on the design aspects and fabrication of grid structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Therefore, the aim of this research is to study the reinforcing effect of silica nanoparticles on the flexural properties of epoxy/E-glass isogrid panels under three-point bending test. Samples containing 0, 1, 3, and 5 wt.% of the silica nanoparticles, with 44 and 48 vol.% of the glass fibers in the ribs and skin components respectively, were fabricated by using a manual filament winding method. Ultrasonic and mechanical routes were employed to disperse the nanoparticles within the epoxy resin. To fabricate the ribs, the unidirectional fiber rovings were impregnated with the matrix mixture (epoxy + nanoparticles) and then laid up into the grooves of a silicone mold layer-by-layer. At once, four plies of woven fabrics, after impregnating into the same matrix mixture, were layered on the top of the ribs to produce the skin part. In order to conduct the ultimate curing and to achieve the maximum strength, the samples were tested after 7 days of holding at room temperature. According to load-displacement graphs, the bellow trend was observed for all of the samples when loaded from the skin side; following an initial linear region and reaching a load peak, the curve was abruptly dropped and then showed a typical absorbed energy region. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. The results showed that the flexural properties of the nanocomposite samples were always higher than those of the nanoparticle-free sample. The maximum enhancement in flexural maximum load and energy absorption was found to be for the incorporation of 3 wt.% of the nanoparticles. Furthermore, the flexural stiffness was continually increased by increasing the silica loading. In conclusion, this study suggested that the addition of nanoparticles is a promising method to improve the flexural properties of grid-stiffened fibrous composite structures.

Keywords: grid-stiffened composite structures, nanocomposite, three point flexural test , energy absorption

Procedia PDF Downloads 341
76 A Machine Learning Approach for Assessment of Tremor: A Neurological Movement Disorder

Authors: Rajesh Ranjan, Marimuthu Palaniswami, A. A. Hashmi

Abstract:

With the changing lifestyle and environment around us, the prevalence of the critical and incurable disease has proliferated. One such condition is the neurological disorder which is rampant among the old age population and is increasing at an unstoppable rate. Most of the neurological disorder patients suffer from some movement disorder affecting the movement of their body parts. Tremor is the most common movement disorder which is prevalent in such patients that infect the upper or lower limbs or both extremities. The tremor symptoms are commonly visible in Parkinson’s disease patient, and it can also be a pure tremor (essential tremor). The patients suffering from tremor face enormous trouble in performing the daily activity, and they always need a caretaker for assistance. In the clinics, the assessment of tremor is done through a manual clinical rating task such as Unified Parkinson’s disease rating scale which is time taking and cumbersome. Neurologists have also affirmed a challenge in differentiating a Parkinsonian tremor with the pure tremor which is essential in providing an accurate diagnosis. Therefore, there is a need to develop a monitoring and assistive tool for the tremor patient that keep on checking their health condition by coordinating them with the clinicians and caretakers for early diagnosis and assistance in performing the daily activity. In our research, we focus on developing a system for automatic classification of tremor which can accurately differentiate the pure tremor from the Parkinsonian tremor using a wearable accelerometer-based device, so that adequate diagnosis can be provided to the correct patient. In this research, a study was conducted in the neuro-clinic to assess the upper wrist movement of the patient suffering from Pure (Essential) tremor and Parkinsonian tremor using a wearable accelerometer-based device. Four tasks were designed in accordance with Unified Parkinson’s disease motor rating scale which is used to assess the rest, postural, intentional and action tremor in such patient. Various features such as time-frequency domain, wavelet-based and fast-Fourier transform based cross-correlation were extracted from the tri-axial signal which was used as input feature vector space for the different supervised and unsupervised learning tools for quantification of severity of tremor. A minimum covariance maximum correlation energy comparison index was also developed which was used as the input feature for various classification tools for distinguishing the PT and ET tremor types. An automatic system for efficient classification of tremor was developed using feature extraction methods, and superior performance was achieved using K-nearest neighbors and Support Vector Machine classifiers respectively.

Keywords: machine learning approach for neurological disorder assessment, automatic classification of tremor types, feature extraction method for tremor classification, neurological movement disorder, parkinsonian tremor, essential tremor

Procedia PDF Downloads 154
75 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores

Abstract:

This work introduces the use of EMGs (electromyography) from muscle sensors to develop an Artificial Neural Network (ANN) for pattern recognition to control a small unmanned aerial vehicle. The objective of this endeavor exhibits interfacing drone applications beyond manual control directly. MyoWare Muscle sensor contains three EMG electrodes (dual and single type) used to collect signals from the posterior (extensor) and anterior (flexor) forearm and the bicep. Collection of raw voltages from each sensor were connected to an Arduino Uno and a data processing algorithm was developed with the purpose of interpreting the voltage signals given when performing flexing, resting, and motion of the arm. Each sensor collected eight values over a two-second period for the duration of one minute, per assessment. During each two-second interval, the movements were alternating between a resting reference class and an active motion class, resulting in controlling the motion of the drone with left and right movements. This paper further investigated adding up to three sensors to differentiate between hand gestures to control the principal motions of the drone (left, right, up, and land). The hand gestures chosen to execute these movements were: a resting position, a thumbs up, a hand swipe right motion, and a flexing position. The MATLAB software was utilized to collect, process, and analyze the signals from the sensors. The protocol (machine learning tool) was used to classify the hand gestures. To generate the input vector to the ANN, the mean, root means squared, and standard deviation was processed for every two-second interval of the hand gestures. The neuromuscular information was then trained using an artificial neural network with one hidden layer of 10 neurons to categorize the four targets, one for each hand gesture. Once the machine learning training was completed, the resulting network interpreted the processed inputs and returned the probabilities of each class. Based on the resultant probability of the application process, once an output was greater or equal to 80% of matching a specific target class, the drone would perform the motion expected. Afterward, each movement was sent from the computer to the drone through a Wi-Fi network connection. These procedures have been successfully tested and integrated into trial flights, where the drone has responded successfully in real-time to predefined command inputs with the machine learning algorithm through the MyoWare sensor interface. The full paper will describe in detail the database of the hand gestures, the details of the ANN architecture, and confusion matrices results.

Keywords: artificial neural network, biosensors, electromyography, machine learning, MyoWare muscle sensors, Arduino

Procedia PDF Downloads 174
74 Using Real Truck Tours Feedback for Address Geocoding Correction

Authors: Dalicia Bouallouche, Jean-Baptiste Vioix, Stéphane Millot, Eric Busvelle

Abstract:

When researchers or logistics software developers deal with vehicle routing optimization, they mainly focus on minimizing the total travelled distance or the total time spent in the tours by the trucks, and maximizing the number of visited customers. They assume that the upstream real data given to carry the optimization of a transporter tours is free from errors, like customers’ real constraints, customers’ addresses and their GPS-coordinates. However, in real transporter situations, upstream data is often of bad quality because of address geocoding errors and the irrelevance of received addresses from the EDI (Electronic Data Interchange). In fact, geocoders are not exempt from errors and could give impertinent GPS-coordinates. Also, even with a good geocoding, an inaccurate address can lead to a bad geocoding. For instance, when the geocoder has trouble with geocoding an address, it returns those of the center of the city. As well, an obvious geocoding issue is that the mappings used by the geocoders are not regularly updated. Thus, new buildings could not exist on maps until the next update. Even so, trying to optimize tours with impertinent customers GPS-coordinates, which are the most important and basic input data to take into account for solving a vehicle routing problem, is not really useful and will lead to a bad and incoherent solution tours because the locations of the customers used for the optimization are very different from their real positions. Our work is supported by a logistics software editor Tedies and a transport company Upsilon. We work with Upsilon's truck routes data to carry our experiments. In fact, these trucks are equipped with TOMTOM GPSs that continuously save their tours data (positions, speeds, tachograph-information, etc.). We, then, retrieve these data to extract the real truck routes to work with. The aim of this work is to use the experience of the driver and the feedback of the real truck tours to validate GPS-coordinates of well geocoded addresses, and bring a correction to the badly geocoded addresses. Thereby, when a vehicle makes its tour, for each visited customer, the vehicle might have trouble with finding this customer’s address at most once. In other words, the vehicle would be wrong at most once for each customer’s address. Our method significantly improves the quality of the geocoding. Hence, we achieve to automatically correct an average of 70% of GPS-coordinates of a tour addresses. The rest of the GPS-coordinates are corrected in a manual way by giving the user indications to help him to correct them. This study shows the importance of taking into account the feedback of the trucks to gradually correct address geocoding errors. Indeed, the accuracy of customer’s address and its GPS-coordinates play a major role in tours optimization. Unfortunately, address writing errors are very frequent. This feedback is naturally and usually taken into account by transporters (by asking drivers, calling customers…), to learn about their tours and bring corrections to the upcoming tours. Hence, we develop a method to do a big part of that automatically.

Keywords: driver experience feedback, geocoding correction, real truck tours

Procedia PDF Downloads 674
73 Multi-Label Approach to Facilitate Test Automation Based on Historical Data

Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally

Abstract:

The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.

Keywords: machine learning, multi-class, multi-label, supervised learning, test automation

Procedia PDF Downloads 132
72 The Effects of Heavy Metal and Aromatic Hydrocarbon Pollution on Bees

Authors: Katarzyna Zięba, Hajnalka Szentgyörgyi, Paweł Miśkowiec, Agnieszka Moos-Matysik

Abstract:

Bees are effective pollinators of plants using by humans. However, there is a concern about the fate different species due to their recently decline. Pollution of the environment is described in the literature as one of the causes of this phenomenon. Due to human activities, heavy metals and aromatic hydrocarbons can occur in bee organisms in high concentrations. The presented study aims to provide information on how pollution affects bee quality, taking into account, also the biological differences between various groups of bees. Understanding the consequences of environmental pollution on bees can help to create and promote bee friendly habitats and actions. The analyses were carried out using two contamination gradients with 5 sites on each. The first, mainly heavy metal polluted gradient is stretching approx. 30km from the Bukowno Zinc smelter near Olkusz in the Lesser Poland Voivodship, to the north. The second cuts through the agglomeration of Kraków up to the southern borders of the Ojców National Park. The gradient near Olkusz is a well-described pollution gradient contaminated mainly by zinc, lead, and cadmium. The second gradient cut through the agglomeration of Kraków and end below the Ojców National Park. On each gradient, two bee species were installed: red mason bees (Osmia bicornis) and honey bees (Apis mellifera). Red mason bee is a polylectic, solitary bee species, widely distributed in Poland. Honey bees are a highly social species of bees, with clearly defined casts and roles in the colony. Before installing the bees in the field, samples of imagos of red mason bees and samples of pollen and imagos from each honey bee colony were analysed for zinc, lead cadmium, polycyclic and monocyclic hydrocarbons levels. After collecting the bees from the field, samples of bees and pollen samples for each site were prepared for heavy metal, monocyclic hydrocarbon, and polycyclic hydrocarbon analysis. Analyses of aromatic hydrocarbons were performed with gas chromatography coupled with a headspace sampler (HP 7694E) and mass spectrometer (MS) as detector. Monocyclic compounds were injected into column with headspace sampler while polycyclic ones with manual injector (after solid-liquid extraction with hexane). The heavy metal content (zinc, lead and cadmium) was assessed with flame atomic absorption spectroscopy (FAAS AAnalyst 300 Perkin Elmer spectrometer) according to the methods for honey and bee products described in the literature. Pollution levels found in bee bodies and imago body masses in both species, and proportion of sex in case of red mason bees were correlated with pollution levels found in pollen for each site and colony or trap nest. An attempt to pinpoint the most important form of contamination regarding bee health was also be undertaken based on the achieved results.

Keywords: heavy metals, aromatic hydrocarbons, bees, pollution

Procedia PDF Downloads 508
71 Quantitative, Preservative Methodology for Review of Interview Transcripts Using Natural Language Processing

Authors: Rowan P. Martnishn

Abstract:

During the execution of a National Endowment of the Arts grant, approximately 55 interviews were collected from professionals across various fields. These interviews were used to create deliverables – historical connections for creations that began as art and evolved entirely into computing technology. With dozens of hours’ worth of transcripts to be analyzed by qualitative coders, a quantitative methodology was created to sift through the documents. The initial step was to both clean and format all the data. First, a basic spelling and grammar check was applied, as well as a Python script for normalized formatting which used an open-source grammatical formatter to make the data as coherent as possible. 10 documents were randomly selected to manually review, where words often incorrectly translated during the transcription were recorded and replaced throughout all other documents. Then, to remove all banter and side comments, the transcripts were spliced into paragraphs (separated by change in speaker) and all paragraphs with less than 300 characters were removed. Secondly, a keyword extractor, a form of natural language processing where significant words in a document are selected, was run on each paragraph for all interviews. Every proper noun was put into a data structure corresponding to that respective interview. From there, a Bidirectional and Auto-Regressive Transformer (B.A.R.T.) summary model was then applied to each paragraph that included any of the proper nouns selected from the interview. At this stage the information to review had been sent from about 60 hours’ worth of data to 20. The data was further processed through light, manual observation – any summaries which proved to fit the criteria of the proposed deliverable were selected, as well their locations within the document. This narrowed that data down to about 5 hours’ worth of processing. The qualitative researchers were then able to find 8 more connections in addition to our previous 4, exceeding our minimum quota of 3 to satisfy the grant. Major findings of the study and subsequent curation of this methodology raised a conceptual finding crucial to working with qualitative data of this magnitude. In the use of artificial intelligence there is a general trade off in a model between breadth of knowledge and specificity. If the model has too much knowledge, the user risks leaving out important data (too general). If the tool is too specific, it has not seen enough data to be useful. Thus, this methodology proposes a solution to this tradeoff. The data is never altered outside of grammatical and spelling checks. Instead, the important information is marked, creating an indicator of where the significant data is without compromising the purity of it. Secondly, the data is chunked into smaller paragraphs, giving specificity, and then cross-referenced with the keywords (allowing generalization over the whole document). This way, no data is harmed, and qualitative experts can go over the raw data instead of using highly manipulated results. Given the success in deliverable creation as well as the circumvention of this tradeoff, this methodology should stand as a model for synthesizing qualitative data while maintaining its original form.

Keywords: B.A.R.T.model, keyword extractor, natural language processing, qualitative coding

Procedia PDF Downloads 28
70 Paramedic Strength and Flexibility: Findings of a 6-Month Workplace Exercise Randomised Controlled Trial

Authors: Jayden R. Hunter, Alexander J. MacQuarrie, Samantha C. Sheridan, Richard High, Carolyn Waite

Abstract:

Workplace exercise programs have been recommended to improve the musculoskeletal fitness of paramedics with the aim of reducing injury rates, and while they have shown efficacy in other occupations, they have not been delivered and evaluated in Australian paramedics to our best knowledge. This study investigated the effectiveness of a 6-month workplace exercise program (MedicFit; MF) to improve paramedic fitness with or without health coach (HC) support. A group of regional Australian paramedics (n=76; 43 male; mean ± SD 36.5 ± 9.1 years; BMI 28.0 ± 5.4 kg/m²) were randomised at the station level to either exercise with remote health coach support (MFHC; n=30), exercise without health coach support (MF; n=23), or no-exercise control (CON; n=23) groups. MFHC and MF participants received a 6-month, low-moderate intensity resistance and flexibility exercise program to be performed ƒ on station without direct supervision. Available exercise equipment included dumbbells, resistance bands, Swiss balls, medicine balls, kettlebells, BOSU balls, yoga mats, and foam rollers. MFHC and MF participants were also provided with a comprehensive exercise manual including sample exercise sessions aimed at improving musculoskeletal strength and flexibility which included exercise prescription (i.e. sets, reps, duration, load). Changes to upper-body (push-ups), lower-body (wall squat) and core (plank hold) strength and flexibility (back scratch and sit-reach tests) after the 6-month intervention were analysed using repeated measures ANOVA to compare changes between groups and over time. Upper-body (+20.6%; p < 0.01; partial eta squared = 0.34 [large effect]) and lower-body (+40.8%; p < 0.05; partial eta squared = 0.08 (moderate effect)) strength increased significantly with no interaction or group effects. Changes to core strength (+1.4%; p=0.17) and both upper-body (+19.5%; p=0.56) and lower-body (+3.3%; p=0.15) flexibility were non-significant with no interaction or group effects observed. While upper- and lower-body strength improved over the course of the intervention, providing a 6-month workplace exercise program with or without health coach support did not confer any greater strength or flexibility benefits than exercise testing alone (CON). Although exercise adherence was not measured, it is possible that participants require additional methods of support such as face-to-face exercise instruction and guidance and individually-tailored exercise programs to achieve adequate participation and improvements in musculoskeletal fitness. This presents challenges for more remote paramedic stations without regular face-to-face access to suitably qualified exercise professionals, and future research should investigate the effectiveness of other forms of exercise delivery and guidance for these paramedic officers such as remotely-facilitated digital exercise prescription and monitoring.

Keywords: workplace exercise, paramedic health, strength training, flexibility training

Procedia PDF Downloads 139
69 Assessment of the Living Conditions of Female Inmates in Correctional Service Centres in South West Nigeria

Authors: Ayoola Adekunle Dada, Tolulope Omolola Fateropa

Abstract:

There is no gain saying the fact that the Nigerian correctional services lack rehabilitation reformation. Owing to this, some so many inmates, including the female, become more emotionally bruised and hardened instead of coming out of the prison reformed. Although female inmates constitute only a small percentage worldwide, the challenges resulting from women falling under the provision of the penal system have prompted ficial and humanitarian bodies to consider female inmateas as vulnerable persons who need particular social work measures that meet their specific needs. Female inmates’condition may become worseinprisondue to the absence of the standard living condition. A survey of 100 female inmates will be used to determine the assessment of the living condition of the female inmates within the contexts in which they occur. Employing field methods from Medical Sociology and Law, the study seeks to make use of the collaboration of both disciplines for a comprehensive understanding of the scenario. Its specific objectives encompassed: (1) To examine access and use of health facilities among the female inmates;(2) To examine the effect of officers/warders attitude towards female inmates;(3)To investigate the perception of the female inmates towards the housing facilities in the centre and; (4) To investigate the feeding habit of the female inmates. Due to the exploratory nature of the study, the researchers will make use of mixed-method, such qualitative methods as interviews will be undertaken to complement survey research (quantitative). By adopting the above-explained inter-method triangulation, the study will not only ensure that the advantages of both methods are exploited but will also fulfil the basic purposes of research. The sampling for this study will be purposive. The study aims at sampling two correctional centres (Ado Ekiti and Akure) in order to generate representative data for the female inmates in South West Nigeria. In all, the total number of respondents will be 100. A cross-section of female inmates will be selected as respondents using a multi-stage sampling technique. 100 questionnaires will be administered. A semi structured (in-depth) interviews will be conducted among workers in the two selected correctional centres, respectively, to gain further insight on the living conditions of female inmates, which the survey may not readily elicit. These participants will be selected purposively in respect to their status in the organisation. Ethical issues in research on human subjects will be given due consideration. Such issues rest on principles of beneficence, non-maleficence, autonomy/justice and confidentiality. In the final analysis, qualitative data will be analyzed using manual content analysis. Both the descriptive and inferential statistics will be used for analytical purposes. Frequency, simple percentage, pie chart, bar chart, curve and cross-tabulations will form part of the descriptive analysis.

Keywords: assessment, health facilities, inmates, perception, living conditions

Procedia PDF Downloads 96
68 A Practical Construction Technique to Enhance the Performance of Rock Bolts in Tunnels

Authors: Ojas Chaudhari, Ali Nejad Ghafar, Giedrius Zirgulis, Marjan Mousavi, Tommy Ellison, Sandra Pousette, Patrick Fontana

Abstract:

In Swedish tunnel construction, a critical issue that has been repeatedly acknowledged is corrosion and, consequently, failure of the rock bolts in rock support systems. The defective installation of rock bolts results in the formation of cavities in the cement mortar that is regularly used to fill the area under the dome plates. These voids allow for water-ingress to the rock bolt assembly, which results in corrosion of rock bolt components and eventually failure. In addition, the current installation technique consists of several manual steps with intense labor works that are usually done in uncomfortable and exhausting conditions, e.g., under the roof of the tunnels. Such intense tasks also lead to a considerable waste of materials and execution errors. Moreover, adequate quality control of the execution is hardly possible with the current technique. To overcome these issues, a non-shrinking/expansive cement-based mortar filled in the paper packaging has been developed in this study which properly fills the area under the dome plates without or with the least remaining cavities, ultimately that diminishes the potential of corrosion. This article summarizes the development process and the experimental evaluation of this technique for the installation of rock bolts. In the development process, the cementitious mortar was first developed using specific cement and shrinkage reducing/expansive additives. The mechanical and flow properties of the mortar were then evaluated using compressive strength, density, and slump flow measurement methods. In addition, isothermal calorimetry and shrinkage/expansion measurements were used to elucidate the hydration and durability attributes of the mortar. After obtaining the desired properties in both fresh and hardened conditions, the developed dry mortar was filled in specific permeable paper packaging and then submerged in water bath for specific intervals before the installation. The tests were enhanced progressively by optimizing different parameters such as shape and size of the packaging, characteristics of the paper used, immersion time in water and even some minor characteristics of the mortar. Finally, the developed prototype was tested in a lab-scale rock bolt assembly with various angles to analyze the efficiency of the method in real life scenario. The results showed that the new technique improves the performance of the rock bolts by reducing the material wastage, improving environmental performance, facilitating and accelerating the labor works, and finally enhancing the durability of the whole system. Accordingly, this approach provides an efficient alternative for the traditional way of tunnel bolt installation with considerable advantages for the Swedish tunneling industry.

Keywords: corrosion, durability, mortar, rock bolt

Procedia PDF Downloads 112
67 The Role of People in Continuing Airworthiness: A Case Study Based on the Royal Thai Air Force

Authors: B. Ratchaneepun, N.S. Bardell

Abstract:

It is recognized that people are the main drivers in almost all the processes that affect airworthiness assurance. This is especially true in the area of aircraft maintenance, which is an essential part of continuing airworthiness. This work investigates what impact English language proficiency, the intersection of the military and Thai cultures, and the lack of initial and continuing human factors training have on the work performance of maintenance personnel in the Royal Thai Air Force (RTAF). A quantitative research method based on a cross-sectional survey was used to gather data about these three key aspects of “people” in a military airworthiness environment. 30 questions were developed addressing the crucial topics of English language proficiency, impact of culture, and human factors training. The officers and the non-commissioned officers (NCOs) who work for the Aeronautical Engineering Divisions in the RTAF comprised the survey participants. The survey data were analysed to support various hypotheses by using a t-test method. English competency in the RTAF is very important since all of the service manuals for Thai military aircraft are written in English. Without such competency, it is difficult for maintenance staff to perform tasks and correctly interpret the relevant maintenance manual instructions; any misunderstandings could lead to potential accidents. The survey results showed that the officers appreciated the importance of this more than the NCOs, who are the people actually doing the hands-on maintenance work. Military culture focuses on the success of a given mission, and leverages the power distance between the lower and higher ranks. In Thai society, a power distance also exists between younger and older citizens. In the RTAF, such a combination tends to inhibit a just reporting culture and hence hinders safety. The survey results confirmed this, showing that the older people and higher ranks involved with RTAF aircraft maintenance believe that the workplace has a positive safety culture and climate, whereas the younger people and lower ranks think the opposite. The final area of consideration concerned human factors training and non-technical skills training. The survey revealed that those participants who had previously attended such courses appreciated its value and were aware of its benefits in daily life. However, currently there is no regulation in the RTAF to mandate recurrent training to maintain such knowledge and skills. The findings from this work suggest that the people involved in assuring the continuing airworthiness of the RTAF would benefit from: (i) more rigorous requirements and standards in the recruitment, initial training and continuation training regarding English competence; (ii) the development of a strong safety culture that exploits the uniqueness of both the military culture and the Thai culture; and (iii) providing more initial and recurrent training in human factors and non-technical skills.

Keywords: aircraft maintenance, continuing airworthiness, military culture, people, Royal Thai Air Force

Procedia PDF Downloads 130
66 Music Genre Classification Based on Non-Negative Matrix Factorization Features

Authors: Soyon Kim, Edward Kim

Abstract:

In order to retrieve information from the massive stream of songs in the music industry, music search by title, lyrics, artist, mood, and genre has become more important. Despite the subjectivity and controversy over the definition of music genres across different nations and cultures, automatic genre classification systems that facilitate the process of music categorization have been developed. Manual genre selection by music producers is being provided as statistical data for designing automatic genre classification systems. In this paper, an automatic music genre classification system utilizing non-negative matrix factorization (NMF) is proposed. Short-term characteristics of the music signal can be captured based on the timbre features such as mel-frequency cepstral coefficient (MFCC), decorrelated filter bank (DFB), octave-based spectral contrast (OSC), and octave band sum (OBS). Long-term time-varying characteristics of the music signal can be summarized with (1) the statistical features such as mean, variance, minimum, and maximum of the timbre features and (2) the modulation spectrum features such as spectral flatness measure, spectral crest measure, spectral peak, spectral valley, and spectral contrast of the timbre features. Not only these conventional basic long-term feature vectors, but also NMF based feature vectors are proposed to be used together for genre classification. In the training stage, NMF basis vectors were extracted for each genre class. The NMF features were calculated in the log spectral magnitude domain (NMF-LSM) as well as in the basic feature vector domain (NMF-BFV). For NMF-LSM, an entire full band spectrum was used. However, for NMF-BFV, only low band spectrum was used since high frequency modulation spectrum of the basic feature vectors did not contain important information for genre classification. In the test stage, using the set of pre-trained NMF basis vectors, the genre classification system extracted the NMF weighting values of each genre as the NMF feature vectors. A support vector machine (SVM) was used as a classifier. The GTZAN multi-genre music database was used for training and testing. It is composed of 10 genres and 100 songs for each genre. To increase the reliability of the experiments, 10-fold cross validation was used. For a given input song, an extracted NMF-LSM feature vector was composed of 10 weighting values that corresponded to the classification probabilities for 10 genres. An NMF-BFV feature vector also had a dimensionality of 10. Combined with the basic long-term features such as statistical features and modulation spectrum features, the NMF features provided the increased accuracy with a slight increase in feature dimensionality. The conventional basic features by themselves yielded 84.0% accuracy, but the basic features with NMF-LSM and NMF-BFV provided 85.1% and 84.2% accuracy, respectively. The basic features required dimensionality of 460, but NMF-LSM and NMF-BFV required dimensionalities of 10 and 10, respectively. Combining the basic features, NMF-LSM and NMF-BFV together with the SVM with a radial basis function (RBF) kernel produced the significantly higher classification accuracy of 88.3% with a feature dimensionality of 480.

Keywords: mel-frequency cepstral coefficient (MFCC), music genre classification, non-negative matrix factorization (NMF), support vector machine (SVM)

Procedia PDF Downloads 303
65 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System

Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii

Abstract:

Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.

Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression

Procedia PDF Downloads 157
64 The Relationship between Wasting and Stunting in Young Children: A Systematic Review

Authors: Susan Thurstans, Natalie Sessions, Carmel Dolan, Kate Sadler, Bernardette Cichon, Shelia Isanaka, Dominique Roberfroid, Heather Stobagh, Patrick Webb, Tanya Khara

Abstract:

For many years, wasting and stunting have been viewed as separate conditions without clear evidence supporting this distinction. In 2014, the Emergency Nutrition Network (ENN) examined the relationship between wasting and stunting and published a report highlighting the evidence for linkages between the two forms of undernutrition. This systematic review aimed to update the evidence generated since this 2014 report to better understand the implications for improving child nutrition, health and survival. Following PRISMA guidelines, this review was conducted using search terms to describe the relationship between wasting and stunting. Studies related to children under five from low- and middle-income countries that assessed both ponderal growth/wasting and linear growth/stunting, as well as the association between the two, were included. Risk of bias was assessed in all included studies using SIGN checklists. 45 studies met the inclusion criteria- 39 peer reviewed studies, 1 manual chapter, 3 pre-print publications and 2 published reports. The review found that there is a strong association between the two conditions whereby episodes of wasting contribute to stunting and, to a lesser extent, stunting leads to wasting. Possible interconnected physiological processes and common risk factors drive an accumulation of vulnerabilities. Peak incidence of both wasting and stunting was found to be between birth and three months. A significant proportion of children experience concurrent wasting and stunting- Country level data suggests that up to 8% of children under 5 may be both wasted and stunted at the same time, global estimates translate to around 16 million children. Children with concurrent wasting and stunting have an elevated risk of mortality when compared to children with one deficit alone. These children should therefore be considered a high-risk group in the targeting of treatment. Wasting, stunting and concurrent wasting and stunting appear to be more prevalent in boys than girls and it appears that concurrent wasting and stunting peaks between 12- 30 months of age with younger children being the most affected. Seasonal patterns in prevalence of both wasting and stunting are seen in longitudinal and cross sectional data and in particular season of birth has been shown to have an impact on a child’s subsequent experience of wasting and stunting. Evidence suggests that the use of mid-upper-arm circumference combined with weight-for-age Z-score might effectively identify children most at risk of near-term mortality, including those concurrently wasted and stunted. Wasting and stunting frequently occur in the same child, either simultaneously or at different moments through their life course. Evidence suggests there is a process of accumulation of nutritional deficits and therefore risk over the life course of a child demonstrates the need for a more integrated approach to prevention and treatment strategies to interrupt this process. To achieve this, undernutrition policies, programmes, financing and research must become more unified.

Keywords: Concurrent wasting and stunting, Review, Risk factors, Undernutrition

Procedia PDF Downloads 127
63 Construction of a Dynamic Migration Model of Extracellular Fluid in Brain for Future Integrated Control of Brain State

Authors: Tomohiko Utsuki, Kyoka Sato

Abstract:

In emergency medicine, it is recognized that brain resuscitation is very important for the reduction of mortality rate and neurological sequelae. Especially, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) are most required for stabilizing brain’s physiological state in the treatment for such as brain injury, stroke, and encephalopathy. However, the manual control of BT, ICP, and CBF frequently requires the decision and operation of medical staff, relevant to medication and the setting of therapeutic apparatus. Thus, the integration and the automation of the control of those is very effective for not only improving therapeutic effect but also reducing staff burden and medical cost. For realizing such integration and automation, a mathematical model of brain physiological state is necessary as the controlled object in simulations, because the performance test of a prototype of the control system using patients is not ethically allowed. A model of cerebral blood circulation has already been constructed, which is the most basic part of brain physiological state. Also, a migration model of extracellular fluid in brain has been constructed, however the condition that the total volume of intracranial cavity is almost changeless due to the hardness of cranial bone has not been considered in that model. Therefore, in this research, the dynamic migration model of extracellular fluid in brain was constructed on the consideration of the changelessness of intracranial cavity’s total volume. This model is connectable to the cerebral blood circulation model. The constructed model consists of fourteen compartments, twelve of which corresponds to perfused area of bilateral anterior, middle and posterior cerebral arteries, the others corresponds to cerebral ventricles and subarachnoid space. This model enable to calculate the migration of tissue fluid from capillaries to gray matter and white matter, the flow of tissue fluid between compartments, the production and absorption of cerebrospinal fluid at choroid plexus and arachnoid granulation, and the production of metabolic water. Further, the volume, the colloid concentration, and the tissue pressure of/in each compartment are also calculable by solving 40-dimensional non-linear simultaneous differential equations. In this research, the obtained model was analyzed for its validation under the four condition of a normal adult, an adult with higher cerebral capillary pressure, an adult with lower cerebral capillary pressure, and an adult with lower colloid concentration in cerebral capillary. In the result, calculated fluid flow, tissue volume, colloid concentration, and tissue pressure were all converged to suitable value for the set condition within 60 minutes at a maximum. Also, because these results were not conflict with prior knowledge, it is certain that the model can enough represent physiological state of brain under such limited conditions at least. One of next challenges is to integrate this model and the already constructed cerebral blood circulation model. This modification enable to simulate CBF and ICP more precisely due to calculating the effect of blood pressure change to extracellular fluid migration and that of ICP change to CBF.

Keywords: dynamic model, cerebral extracellular migration, brain resuscitation, automatic control

Procedia PDF Downloads 156
62 Comparative Study of Active Release Technique and Myofascial Release Technique in Patients with Upper Trapezius Spasm

Authors: Harihara Prakash Ramanathan, Daksha Mishra, Ankita Dhaduk

Abstract:

Relevance: This qualitative study will educate the clinician in putting into practice the advanced method of movement science in restoring the function. Purpose: The purpose of this study is to compare the effectiveness of Active Release Technique and myofascial release technique on range of motion, neck function and pain in patients with upper trapezius spasm. Methods/Analysis: The study was approved by the institutional Human Research and Ethics committee. This study included sixty patients of age group between 20 to 55 years with upper trapezius spasm. Patients were randomly divided into two groups receiving Active Release Technique (Group A) and Myofascial Release Technique (Group B). The patients were treated for 1 week and three outcome measures ROM, pain and functional level were measured using Goniometer, Visual analog scale(VAS), Neck disability Index Questionnaire(NDI) respectively. Paired Sample 't' test was used to compare the differences of pre and post intervention values of Cervical Range of motion, Neck disability Index, Visual analog scale of Group A and Group B. Independent't' test was used to compare the differences between two groups in terms of improvement in cervical range of motion, decrease in visual analogue scale(VAS), decrease in Neck disability index score. Results: Both the groups showed statistically significant improvements in cervical ROM, reduction in pain and in NDI scores. However, mean change in Cervical flexion, cervical extension, right side flexion, left side flexion, right side rotation, left side rotation, pain, neck disability level showed statistically significant improvement (P < 0. 05)) in the patients who received Active Release Technique as compared to Myofascial release technique. Discussion and conclusions: In present study, the average improvement immediately post intervention is significantly greater as compared to before treatment but there is even more improvement after seven sessions as compared to single session. Hence, this proves that several sessions of Manual techniques are necessary to produce clinically relevant results. Active release technique help to reduce the pain threshold by removing adhesion and promote normal tissue extensibility. The act of tensioning and compressing the affected tissue both with digital contact and through the active movement performed by the patient can be a plausible mechanism for tissue healing in this study. This study concluded that both Active Release Technique (ART) and Myofascial release technique (MFR) are equally effective in managing upper trapezius muscle spasm, but more improvement can be achieved by Active Release Technique (ART). Impact and Implications: Active Release Technique can be adopted as mainstay of treatment approach in treating trapezius spasm for faster relief and improving the functional status.

Keywords: trapezius spasm, myofascial release, active release technique, pain

Procedia PDF Downloads 273
61 Data Calibration of the Actual versus the Theoretical Micro Electro Mechanical Systems (MEMS) Based Accelerometer Reading through Remote Monitoring of Padre Jacinto Zamora Flyover

Authors: John Mark Payawal, Francis Aldrine Uy, John Paul Carreon

Abstract:

This paper shows the application of Structural Health Monitoring, SHM into bridges. Bridges are structures built to provide passage over a physical obstruction such as rivers, chasms or roads. The Philippines has a total of 8,166 national bridges as published on the 2015 atlas of the Department of Public Works and Highways (DPWH) and only 2,924 or 35.81% of these bridges are in good condition. As a result, PHP 30.464 billion of the 2016 budget of DPWH is allocated on roads and/or bridges maintenance alone. Intensive spending is owed to the present practice of outdated manual inspection and assessment, and poor structural health monitoring of Philippine infrastructures. As the School of Civil, Environmental, & Geological Engineering of Mapua Institute of Technology (MIT) continuous its well driven passion in research based projects, a partnership with the Department of Science and Technology (DOST) and the DPWH launched the application of Structural Health Monitoring, (SHM) in Padre Jacinto Zamora Flyover. The flyover is located along Nagtahan Boulevard in Sta. Mesa, Manila that connects Brgy. 411 and Brgy. 635. It gives service to vehicles going from Lacson Avenue to Mabini Bridge passing over Legarda Flyover. The flyover is chosen among the many located bridges in Metro Manila as the focus of the pilot testing due to its site accessibility, and complete structural built plans and specifications necessary for SHM as provided by the Bureau of Design, BOD department of DPWH. This paper focuses on providing a method to calibrate theoretical readings from STAAD Vi8 Pro and sync the data to actual MEMS accelerometer readings. It is observed that while the design standards used in constructing the flyover was reflected on the model, actual readings of MEMS accelerometer display a large difference compared to the theoretical data ran and taken from STAAD Vi8 Pro. In achieving a true seismic response of the modeled bridge or hence syncing the theoretical data to the actual sensor reading also called as the independent variable of this paper, analysis using single degree of freedom (SDOF) of the flyover under free vibration without damping using STAAD Vi8 Pro is done. The earthquake excitation and bridge responses are subjected to earthquake ground motion in the form of ground acceleration or Peak Ground Acceleration, PGA. Translational acceleration load is used to simulate the ground motion of the time history analysis acceleration record in STAAD Vi8 Pro.

Keywords: accelerometer, analysis using single degree of freedom, micro electro mechanical system, peak ground acceleration, structural health monitoring

Procedia PDF Downloads 319
60 Automated System: Managing the Production and Distribution of Radiopharmaceuticals

Authors: Shayma Mohammed, Adel Trabelsi

Abstract:

Radiopharmacy is the art of preparing high-quality, radioactive, medicinal products for use in diagnosis and therapy. Radiopharmaceuticals unlike normal medicines, this dual aspect (radioactive, medical) makes their management highly critical. One of the most convincing applications of modern technologies is the ability to delegate the execution of repetitive tasks to programming scripts. Automation has found its way to the most skilled jobs, to improve the company's overall performance by allowing human workers to focus on more important tasks than document filling. This project aims to contribute to implement a comprehensive system to insure rigorous management of radiopharmaceuticals through the use of a platform that links the Nuclear Medicine Service Management System to the Nuclear Radio-pharmacy Management System in accordance with the recommendations of World Health Organization (WHO) and International Atomic Energy Agency (IAEA). In this project we attempt to build a web application that targets radiopharmacies, the platform is built atop the inherently compatible web stack which allows it to work in virtually any environment. Different technologies are used in this project (PHP, Symfony, MySQL Workbench, Bootstrap, Angular 7, Visual Studio Code and TypeScript). The operating principle of the platform is mainly based on two parts: Radiopharmaceutical Backoffice for the Radiopharmacian, who is responsible for the realization of radiopharmaceutical preparations and their delivery and Medical Backoffice for the Doctor, who holds the authorization for the possession and use of radionuclides and he/she is responsible for ordering radioactive products. The application consists of sven modules: Production, Quality Control/Quality Assurance, Release, General Management, References, Transport and Stock Management. It allows 8 classes of users: The Production Manager (PM), Quality Control Manager (QCM), Stock Manager (SM), General Manager (GM), Client (Doctor), Parking and Transport Manager (PTM), Qualified Person (QP) and Technical and Production Staff. Digital platform bringing together all players involved in the use of radiopharmaceuticals and integrating the stages of preparation, production and distribution, Web technologies, in particular, promise to offer all the benefits of automation while requiring no more than a web browser to act as a user client, which is a strength because the web stack is by nature multi-platform. This platform will provide a traceability system for radiopharmaceuticals products to ensure the safety and radioprotection of actors and of patients. The new integrated platform is an alternative to write all the boilerplate paperwork manually, which is a tedious and error-prone task. It would minimize manual human manipulation, which has proven to be the main source of error in nuclear medicine. A codified electronic transfer of information from radiopharmaceutical preparation to delivery will further reduce the risk of maladministration.

Keywords: automated system, management, radiopharmacy, technical papers

Procedia PDF Downloads 156
59 Revolutionizing Accounting: Unleashing the Power of Artificial Intelligence

Authors: Sogand Barghi

Abstract:

The integration of artificial intelligence (AI) in accounting practices is reshaping the landscape of financial management. This paper explores the innovative applications of AI in the realm of accounting, emphasizing its transformative impact on efficiency, accuracy, decision-making, and financial insights. By harnessing AI's capabilities in data analysis, pattern recognition, and automation, accounting professionals can redefine their roles, elevate strategic decision-making, and unlock unparalleled value for businesses. This paper delves into AI-driven solutions such as automated data entry, fraud detection, predictive analytics, and intelligent financial reporting, highlighting their potential to revolutionize the accounting profession. Artificial intelligence has swiftly emerged as a game-changer across industries, and accounting is no exception. This paper seeks to illuminate the profound ways in which AI is reshaping accounting practices, transcending conventional boundaries, and propelling the profession toward a new era of efficiency and insight-driven decision-making. One of the most impactful applications of AI in accounting is automation. Tasks that were once labor-intensive and time-consuming, such as data entry and reconciliation, can now be streamlined through AI-driven algorithms. This not only reduces the risk of errors but also allows accountants to allocate their valuable time to more strategic and analytical tasks. AI's ability to analyze vast amounts of data in real time enables it to detect irregularities and anomalies that might go unnoticed by traditional methods. Fraud detection algorithms can continuously monitor financial transactions, flagging any suspicious patterns and thereby bolstering financial security. AI-driven predictive analytics can forecast future financial trends based on historical data and market variables. This empowers organizations to make informed decisions, optimize resource allocation, and develop proactive strategies that enhance profitability and sustainability. Traditional financial reporting often involves extensive manual effort and data manipulation. With AI, reporting becomes more intelligent and intuitive. Automated report generation not only saves time but also ensures accuracy and consistency in financial statements. While the potential benefits of AI in accounting are undeniable, there are challenges to address. Data privacy and security concerns, the need for continuous learning to keep up with evolving AI technologies, and potential biases within algorithms demand careful attention. The convergence of AI and accounting marks a pivotal juncture in the evolution of financial management. By harnessing the capabilities of AI, accounting professionals can transcend routine tasks, becoming strategic advisors and data-driven decision-makers. The applications discussed in this paper underline the transformative power of AI, setting the stage for an accounting landscape that is smarter, more efficient, and more insightful than ever before. The future of accounting is here, and it's driven by artificial intelligence.

Keywords: artificial intelligence, accounting, automation, predictive analytics, financial reporting

Procedia PDF Downloads 71
58 Psycho-Social Associates of Deliberate Self-Harm in Rural Sri Lanka

Authors: P. H. G. J. Pushpakumara, A. M. P. Adikari, S. U. B. Tennakoon, Ranil Abeysinghe, Andrew Dawson

Abstract:

Introduction: Deliberate Self-harm (DSH) is a global public health problem. Since 1950, suicide rates in Sri Lanka are among the highest national rates in the world. It has become an increasingly common response to emotional distress in young adults. However, it remains unclear the reason for this occurrence. Objectives: The descriptive component of this study was conducted to identify of epidemiological pattern of DSH and suicide in Kurunegala District (KD). Assessment of association between DSH socio-cultural, economical and psychological factors were the objectives of the case control component. Methods: Prospective data collection of DSH and suicide was conducted at all (46) hospitals and all (28) police stations in the KD for thirty six months, from 1st January 2011, as the descriptive component. Case control component was conducted at T.H. Kurunegala (THK) for eighteen months duration, from 1st July 2011. Cases (n=439) were randomly selected from a block of 7 consecutively admitted consenting DSP patients using a computer program. Age, sex and residential divisional secretariat division one to one matched, individuals were randomly selected as controls from patients presented to Out Patient Department. Structured Clinical Interview for DSM-IV-TR Axis I and II Disorders was used to diagnose psychiatric disorders. Validated tools were used to measure other constructs. Results: Suicide incidences in KD were, 21.6, 20.7 and 24.3 per 100,000 population in 2011- 2013 (Male:female ratio 5.7, 4.4 and 6.4). 60% of suicides were due to poisoning. DSP incidences were 205.4, 248.3 and 202.5 per 100,000 population in 2011- 2013. Highest age standardized male DSP incidence reported in 20-24 years (769.6/100,000) and female in 15-19 years (1304.0/100,000). Bing married (age >25 years), monthly family income less than Rs.30,000, not achieving G.C.E (O/L) qualifications, a school drop-out, not in a permanent position in occupation, being a manual and an own account worker, were significantly associated with DSP. Perceiving the quality of relationship as bad or very bad with parents, spouse/ girlfriend/ boyfriend and sibling as associated with 8, 40 and 10.5 times higher risk respectively. Feeling and experiences of neglect, other emotional abuses, feeling of insecurity with the family, in child hood, and having a contact history carried an excess risk for DSP. Cases were less likely to seek help. Further, they had significantly lower scores for life skills and life skills application ability. 25.6% DSH patients had DSM TR axis-I and/or TR axis-II disorder. The presence of psychiatric disorder carried 7.7 (95% CI 4.3 – 13.8) times higher risk for DSP. Conclusion: In general, pattern of DSH and suicide is, unique, different from developed, upper and middle income and lower and middle income countries. It is a learned way of expressing emotions in difficult situations of vulnerable people.

Keywords: deliberate self-harm, help-seeking, life-skills, mental- health, psychological, social, suicide

Procedia PDF Downloads 226
57 Inputs and Outputs of Innovation Processes in the Colombian Services Sector

Authors: Álvaro Turriago-Hoyos

Abstract:

Most research tends to see innovation as an explanatory factor in achieving high levels of competitiveness and productivity. More recent studies have begun to analyze the determinants of innovation in the services sector as opposed to the much-discussed industrial sector of a country’s economy. This research paper focuses on the services sector in Colombia, one of Latin America’s fastest growing and biggest economies. Over the past decade, much of Colombia’s economic expansion has relied on commodity exports (mainly oil and coffee) whilst the industrial sector has performed relatively poorly. Such developments highlight the potential of the innovative role played by the services sector of the Colombian economy and its future growth prospects. This research paper analyzes the relationship between inputs, which at the same time are internal sources of innovation (such as R&D activities), and external sources that are improved by technology acquisition. The outputs are basically the four kinds of innovation that the OECD Oslo Manual recognizes: product, process, marketing and organizational innovations. The instrument used to measure this input-output relationship is based on Knowledge Production Function approaches. We run Probit models in order to identify the existing relationships between the above inputs and outputs, but also to identify spill-overs derived from interactions of the components of the value chain of the services firms analyzed: customers, suppliers, competitors, and complementary firms. Data are obtained from the Colombian National Administrative Department of Statistics for the period 2008 to 2013 published in the II and III Colombian National Innovation Survey. A short summary of the results obtained lead to conclude that firm size and a firm’s level of technological development turn out to be important discriminating factors for the description of the innovative process at the firm level. The model’s outcomes show a positive impact on the probability of introducing any kind of innovation both on R&D and Technology Acquisition investment. Also, cooperation agreements with customers, research institutes, competitors, and the suppliers are significant. Belonging to a particular industrial group is an important determinant but only to product and organizational innovation. It is possible to establish that Health Services, Education, Computer, Wholesale trade, and Financial Intermediation are the ISIC sectors, which report the highest number of frequencies of the considered set of firms. Those five sectors of the sixteen considered, in all cases, explained more than half of the total of all kinds of innovations. Product Innovation, which is followed by Marketing Innovation, gets the highest results. Displaying the same set of firms distinguishing by size, and belonging to high and low tech services sector shows that the larger the firms the larger a number of innovations, but also that always high-tech firms show a better innovation performance.

Keywords: Colombia, determinants of innovation, innovation, services sector

Procedia PDF Downloads 267