Search results for: fused deep representations
2019 An Adaptive Conversational AI Approach for Self-Learning
Authors: Airy Huang, Fuji Foo, Aries Prasetya Wibowo
Abstract:
In recent years, the focus of Natural Language Processing (NLP) development has been gradually shifting from the semantics-based approach to deep learning one, which performs faster with fewer resources. Although it performs well in many applications, the deep learning approach, due to the lack of semantics understanding, has difficulties in noticing and expressing a novel business case with a pre-defined scope. In order to meet the requirements of specific robotic services, deep learning approach is very labor-intensive and time consuming. It is very difficult to improve the capabilities of conversational AI in a short time, and it is even more difficult to self-learn from experiences to deliver the same service in a better way. In this paper, we present an adaptive conversational AI algorithm that combines both semantic knowledge and deep learning to address this issue by learning new business cases through conversations. After self-learning from experience, the robot adapts to the business cases originally out of scope. The idea is to build new or extended robotic services in a systematic and fast-training manner with self-configured programs and constructed dialog flows. For every cycle in which a chat bot (conversational AI) delivers a given set of business cases, it is trapped to self-measure its performance and rethink every unknown dialog flows to improve the service by retraining with those new business cases. If the training process reaches a bottleneck and incurs some difficulties, human personnel will be informed of further instructions. He or she may retrain the chat bot with newly configured programs, or new dialog flows for new services. One approach employs semantics analysis to learn the dialogues for new business cases and then establish the necessary ontology for the new service. With the newly learned programs, it completes the understanding of the reaction behavior and finally uses dialog flows to connect all the understanding results and programs, achieving the goal of self-learning process. We have developed a chat bot service mounted on a kiosk, with a camera for facial recognition and a directional microphone array for voice capture. The chat bot serves as a concierge with polite conversation for visitors. As a proof of concept. We have demonstrated to complete 90% of reception services with limited self-learning capability.Keywords: conversational AI, chatbot, dialog management, semantic analysis
Procedia PDF Downloads 1362018 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: classification, CNN, deep learning, prediction, SNR
Procedia PDF Downloads 1332017 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines
Authors: Alexander Guzman Urbina, Atsushi Aoyama
Abstract:
The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.Keywords: deep learning, risk assessment, neuro fuzzy, pipelines
Procedia PDF Downloads 2922016 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach
Authors: Gong Zhilin, Jing Yang, Jian Yin
Abstract:
The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).Keywords: credit card, data mining, fraud detection, money transactions
Procedia PDF Downloads 1312015 Mechanical Properties of D2 Tool Steel Cryogenically Treated Using Controllable Cooling
Authors: A. Rabin, G. Mazor, I. Ladizhenski, R. Shneck, Z.
Abstract:
The hardness and hardenability of AISI D2 cold work tool steel with conventional quenching (CQ), deep cryogenic quenching (DCQ) and rapid deep cryogenic quenching heat treatments caused by temporary porous coating based on magnesium sulfate was investigated. Each of the cooling processes was examined from the perspective of the full process efficiency, heat flux in the austenite-martensite transformation range followed by characterization of the temporary porous layer made of magnesium sulfate using confocal laser scanning microscopy (CLSM), surface and core hardness and hardenability using Vickr’s hardness technique. The results show that the cooling rate (CR) at the austenite-martensite transformation range have a high influence on the hardness of the studied steel.Keywords: AISI D2, controllable cooling, magnesium sulfate coating, rapid cryogenic heat treatment, temporary porous layer
Procedia PDF Downloads 1372014 Some Results on Generalized Janowski Type Functions
Authors: Fuad Al Sarari
Abstract:
The purpose of the present paper is to study subclasses of analytic functions which generalize the classes of Janowski functions introduced by Polatoglu. We study certain convolution conditions. This leads to a study of the sufficient condition and the neighborhood results related to the functions in the class S (T; H; F ): and a study of new subclasses of analytic functions that are defined using notions of the generalized Janowski classes and -symmetrical functions. In the quotient of analytical representations of starlikeness and convexity with respect to symmetric points, certain inherent properties are pointed out.Keywords: convolution conditions, subordination, Janowski functions, starlike functions, convex functions
Procedia PDF Downloads 672013 Exploring Pre-Trained Automatic Speech Recognition Model HuBERT for Early Alzheimer’s Disease and Mild Cognitive Impairment Detection in Speech
Authors: Monica Gonzalez Machorro
Abstract:
Dementia is hard to diagnose because of the lack of early physical symptoms. Early dementia recognition is key to improving the living condition of patients. Speech technology is considered a valuable biomarker for this challenge. Recent works have utilized conventional acoustic features and machine learning methods to detect dementia in speech. BERT-like classifiers have reported the most promising performance. One constraint, nonetheless, is that these studies are either based on human transcripts or on transcripts produced by automatic speech recognition (ASR) systems. This research contribution is to explore a method that does not require transcriptions to detect early Alzheimer’s disease (AD) and mild cognitive impairment (MCI). This is achieved by fine-tuning a pre-trained ASR model for the downstream early AD and MCI tasks. To do so, a subset of the thoroughly studied Pitt Corpus is customized. The subset is balanced for class, age, and gender. Data processing also involves cropping the samples into 10-second segments. For comparison purposes, a baseline model is defined by training and testing a Random Forest with 20 extracted acoustic features using the librosa library implemented in Python. These are: zero-crossing rate, MFCCs, spectral bandwidth, spectral centroid, root mean square, and short-time Fourier transform. The baseline model achieved a 58% accuracy. To fine-tune HuBERT as a classifier, an average pooling strategy is employed to merge the 3D representations from audio into 2D representations, and a linear layer is added. The pre-trained model used is ‘hubert-large-ls960-ft’. Empirically, the number of epochs selected is 5, and the batch size defined is 1. Experiments show that our proposed method reaches a 69% balanced accuracy. This suggests that the linguistic and speech information encoded in the self-supervised ASR-based model is able to learn acoustic cues of AD and MCI.Keywords: automatic speech recognition, early Alzheimer’s recognition, mild cognitive impairment, speech impairment
Procedia PDF Downloads 1272012 Learning Physics Concepts through Language Syntagmatic Paradigmatic Relations
Authors: C. E. Laburu, M. A. Barros, A. F. Zompero, O. H. M. Silva
Abstract:
The work presents a teaching strategy that employs syntagmatic and paradigmatic linguistic relations in order to monitor the understanding of physics students’ concepts. Syntagmatic and paradigmatic relations are theoretical elements of semiotics studies and our research circumstances and justified them within the research program of multi-modal representations. Among the multi-modal representations to learning scientific knowledge, the scope of action of syntagmatic and paradigmatic relations belongs to the discursive writing form. The use of such relations has the purpose to seek innovate didactic work with discourse representation in the write form before translate to another different representational form. The research was conducted with a sample of first year high school students. The students were asked to produce syntagmatic and paradigmatic of Newton’ first law statement. This statement was delivered in paper for each student that should individually write the relations. The student’s records were collected for analysis. It was possible observed in one student used here as example that their monemes replaced and rearrangements produced by, respectively, syntagmatic and paradigmatic relations, kept the original meaning of the law. In paradigmatic production he specified relevant significant units of the linguistic signs, the monemas, which constitute the first articulation and each word substituted kept equivalence to the original meaning of original monema. Also, it was noted a number of diverse and many monemas were chosen, with balanced combination of grammatical (grammatical monema is what changes the meaning of a word, in certain positions of the syntagma, along with a relatively small number of other monemes. It is the smallest linguistic unit that has grammatical meaning) and lexical (lexical monema is what belongs to unlimited inventories; is the monema endowed with lexical meaning) monemas. In syntagmatic production, monemas ordinations were syntactically coherent, being linked with semantic conservation and preserved number. In general, the results showed that the written representation mode based on linguistic relations paradigmatic and syntagmatic qualifies itself to be used in the classroom as a potential identifier and accompanist of meanings acquired from students in the process of scientific inquiry.Keywords: semiotics, language, high school, physics teaching
Procedia PDF Downloads 1312011 Lower Limb Oedema in Beckwith-Wiedemann Syndrome
Authors: Mihai-Ionut Firescu, Mark A. P. Carson
Abstract:
We present a case of inferior vena cava agenesis (IVCA) associated with bilateral deep venous thrombosis (DVT) in a patient with Beckwith-Wiedemann syndrome (BWS). In adult patients with BWS presenting with bilateral lower limb oedema, specific aetiological factors should be considered. These include cardiomyopathy and intraabdominal tumours. Congenital malformations of the IVC, through causing relative venous stasis, can lead to lower limb oedema either directly or indirectly by favouring lower limb venous thromboembolism; however, they are yet to be reported as an associated feature of BWS. Given its life-threatening potential, the prompt initiation of treatment for bilateral DVT is paramount. In BWS patients, however, this can prove more complicated. Due to overgrowth, the above-average birth weight can continue throughout childhood. In this case, the patient’s weight reached 170 kg, impacting on anticoagulation choice, as direct oral anticoagulants have a limited evidence base in patients with a body mass above 120 kg. Furthermore, the presence of IVCA leads to a long-term increased venous thrombosis risk. Therefore, patients with IVCA and bilateral DVT warrant specialist consideration and may benefit from multidisciplinary team management, with hematology and vascular surgery input. Conclusion: Here, we showcased a rare cause for bilateral lower limb oedema, respectively bilateral deep venous thrombosis complicating IVCA in a patient with Beckwith-Wiedemann syndrome. The importance of this case lies in its novelty, as the association between IVC agenesis and BWS has not yet been described. Furthermore, the treatment of DVT in such situations requires special consideration, taking into account the patient’s weight and the presence of a significant, predisposing vascular abnormality.Keywords: Beckwith-Wiedemann syndrome, bilateral deep venous thrombosis, inferior vena cava agenesis, venous thromboembolism
Procedia PDF Downloads 2352010 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models
Authors: Ethan James
Abstract:
Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina
Procedia PDF Downloads 1812009 When Pain Becomes Love For God: The Non-Object Self
Authors: Roni Naor-Hofri
Abstract:
This paper shows how self-inflicted pain enabled the expression of love for God among Christian monastic ascetics in medieval central Europe. As scholars have shown, being in a state of pain leads to a change in or destruction of language, an essential feature of the self. The author argues that this transformation allows the self to transcend its boundaries as an object, even if only temporarily and in part. The epistemic achievement of love for God, a non-object, would not otherwise have been possible. To substantiate her argument, the author shows that the self’s transformation into a non-object enables the imitation of God: not solely in the sense of imitatio Christi, of physical and visual representations of God incarnate in the flesh of His son Christ, but also in the sense of the self’s experience of being a non-object, just like God, the target of the self’s love.Keywords: love for God , pain, philosophy, religion
Procedia PDF Downloads 2432008 Effect of Surface Quality of 3D Printed Impeller on the Performance of a Centrifugal Compressor
Authors: Nader Zirak, Mohammadali Shirinbayan, Abbas Tcharkhtchi
Abstract:
Additive manufacturing is referred to as a method for fabrication of parts with a mechanism of layer by layer. Suitable economic efficiency and the ability to fabrication complex parts have made this method the focus of studies and industry. In recent years many studies focused on the fabrication of impellers, which is referred to as a key component of turbomachinery, through this technique. This study considers the important effect of the final surface quality of the impeller on the performance of the system, investigates the fabricated printed rotors through the fused deposition modeling with different process parameters. In this regard, the surface of each impeller was analyzed through the 3D scanner. The results show the vital role of surface quality on the final performance of the centrifugal compressor.Keywords: additive manufacturing, impeller, centrifugal compressor, performance
Procedia PDF Downloads 1472007 The Presence of Carnism on Portuguese Television
Authors: Rui Pedro Fonseca
Abstract:
This paper presents the results of a research about carnism on Portuguese television. It begins by presenting a case study of MasterChef program (TVI) which conveys carnism in both practices and language, and from which some characteristics of their dominant representations are described. Subsequently, the paper presents the indicators of the presence of carnism in the Portuguese television programming, between 2013 and 2014, in the TVI, RTP1, and SICS channels. The data reveals that there is the hegemony of the carnist ideology in the main channels of the Portuguese television. Also, the samples collected and viewed show no mention of the impacts of carnism in its various dimensions (non-human animals, environment, human health and sustainability).Keywords: carnism, speciesism, television, Portugal
Procedia PDF Downloads 3622006 Highlighting Strategies Implemented by Migrant Parents to Support Their Child's Educational and Academic Success in the Host Society
Authors: Josee Charette
Abstract:
The academic and educational success of migrant students is a current issue in education, especially in western societies such in the province of Quebec, in Canada. For people who immigrate with school-age children, the success of the family’s migratory project is often measured by the benefits drawn by children from the educational institutions of their host society. In order to support the academic achievement of their children, migrant parents try to develop practices that derive from their representations of school and related challenges inspired by the socio-cultural context of their country of origin. These findings lead us to the following question: How does strategies implemented by migrant parents to manage the representational distance between school of their country of origin and school of their host society support or not the academic and educational success of their child? In the context of a qualitative exploratory approach, we have made interviews in the French , English and Spanish languages with 32 newly immigrated parents and 10 of their children. Parents were invited to complete a network of free associations about «School in Quebec» as a premise for the interview. The objective of this paper is to present strategies implemented by migrant parents to manage the distance between their representations of schools in their country of origin and in the host society, and to explore the influence of this management on their child’s academic and educational trajectories. Data analysis led us to develop various types of strategies, such as continuity, adaptation, resources mobilization, compensation and "return to basics" strategies. These strategies seem to be part of a continuum from oppositional-conflict scenario, in which parental strategies act as a risk factor, to conciliator-integrator scenario, in which parental strategies act as a protective factor for migrant students’ academic and educational success. In conclusion, we believe that our research helps in highlighting strategies implemented by migrant parents to support their child’s academic and educational success in the host society and also helps in providing a more efficient support to migrant parents and contributes to develop a wider portrait of migrant students’ academic achievement.Keywords: academic and educational achievement of immigrant students, family’s migratory project, immigrants parental strategies, representational distance between school of origin and school of host society
Procedia PDF Downloads 4452005 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents
Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty
Abstract:
A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.Keywords: abstractive summarization, deep learning, natural language Processing, patent document
Procedia PDF Downloads 1232004 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification
Authors: Bharatendra Rai
Abstract:
The sequence of words in text data has long-term dependencies and is known to suffer from vanishing gradient problems when developing deep learning models. Although recurrent networks such as long short-term memory networks help to overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine the advantages of long short-term memory networks and convolutional neural networks can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.Keywords: long short-term memory networks, convolutional recurrent networks, text classification, hyperparameter tuning, Tukey honest significant differences
Procedia PDF Downloads 1292003 Multidimensional Integral and Discrete Opial–Type Inequalities
Authors: Maja Andrić, Josip Pečarić
Abstract:
Over the last five decades, an enormous amount of work has been done on Opial’s integral inequality, dealing with new proofs, various generalizations, extensions and discrete analogs. The Opial inequality is recognized as a fundamental result in the analysis of qualitative properties of solution of differential equations. We use submultiplicative convex functions, appropriate representations of functions and inequalities involving means to obtain generalizations and extensions of certain known multidimensional integral and discrete Opial-type inequalities.Keywords: Opial's inequality, Jensen's inequality, integral inequality, discrete inequality
Procedia PDF Downloads 4392002 Colorectal Resection in Endometriosis: A Study on Conservative Vascular Approach
Authors: A. Zecchin, E. Vallicella, I. Alberi, A. Dalle Carbonare, A. Festi, F. Galeone, S. Garzon, R. Raffaelli, P. Pomini, M. Franchi
Abstract:
Introduction: Severe endometriosis is a multiorgan disease, that involves bowel in 31% of cases. Disabling symptoms and deep infiltration can lead to bowel obstruction: surgical bowel treatment may be needed. In these cases, colorectal segment resection is usually performed by inferior mesenteric artery ligature, as radically as for oncological surgery. This study was made on surgery based on intestinal vascular axis’ preservation. It was assessed postoperative complications risks (mainly rate of dehiscence of intestinal anastomoses), and results were compared with the ones found in literature about classical colorectal resection. Materials and methods: This was a retrospective study based on 62 patients with deep infiltrating endometriosis of the bowel, which undergo segmental resection with intestinal vascular axis preservation, between 2013 and 2016. It was assessed complications related to the intervention both during hospitalization and 30-60 days after resection. Particular attention was paid to the presence of anastomotic dehiscence. 52 patients were finally telephonically interviewed in order to investigate the presence or absence of intestinal constipation. Results and Conclusion: Segmental intestinal resection performed in this study ensured a more conservative vascular approach, with lower rate of anastomotic dehiscence (1.6%) compared to classical literature data (10.0% to 11.4% ). No complications were observed regarding spontaneous recovery of intestinal motility and bladder emptying. Constipation in some patients, even after years of intervention, is not assessable in the absence of a preoperative constipation state assessment.Keywords: anastomotic dehiscence, deep infiltrating endometriosis, colorectal resection, vascular axis preservation
Procedia PDF Downloads 2042001 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System
Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu
Abstract:
In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission
Procedia PDF Downloads 1432000 Correlation of SPT N-Value and Equipment Drilling Parameters in Deep Soil Mixing
Authors: John Eric C. Bargas, Maria Cecilia M. Marcos
Abstract:
One of the most common ground improvement techniques is Deep Soil Mixing (DSM). As the technique progresses, there is still lack in the development when it comes to depth control. This was the issue experienced during the installation of DSM in one of the National projects in the Philippines. This study assesses the feasibility of using equipment drilling parameters such as hydraulic pressure, drilling speed and rotational speed in determining the Standard Penetration Test N-value of a specific soil. Hydraulic pressure and drilling speed with a constant rotational speed of 30 rpm have a positive correlation with SPT N-value for cohesive soil and sand. A linear trend was observed for cohesive soil. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.5377 while the correlation of SPT N-value and drilling speed has a R²=0.6355. While the best fitted model for sand is polynomial trend. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.7088 while the correlation of SPT N-value and drilling speed has a R²=0.4354. The low correlation may be attributed to the behavior of sand when the auger penetrates. Sand tends to follow the rotation of the auger rather than resisting which was observed for very loose to medium dense sand. Specific Energy and the product of hydraulic pressure and drilling speed yielded same R² with a positive correlation. Linear trend was observed for cohesive soil while polynomial trend for sand. Cohesive soil yielded a R²=0.7320 which has a strong relationship. Sand also yielded a strong relationship having a coefficient of determination, R²=0.7203. It is feasible to use hydraulic pressure and drilling speed to estimate the SPT N-value of the soil. Also, the product of hydraulic pressure and drilling speed can be a substitute to specific energy when estimating the SPT N-value of a soil. However, additional considerations are necessary to account for other influencing factors like ground water and physical and mechanical properties of soil.Keywords: ground improvement, equipment drilling parameters, standard penetration test, deep soil mixing
Procedia PDF Downloads 471999 Introduction of PMMA-Tag to VHH for Improving Recovery and Immobilization Rate of VHHS
Authors: Bongmun Kang, Kagnari Yamakawa, Yoshihisa Hagihara, Yuji Ito, Michimasa Kishimoto, Yoichi Kumada
Abstract:
The PMMA-tag was genetically fused with the C-terminal region of VHH molecules. This antibody, VHH, is known as a single-chain domain, which is devoid of light chains. The PMMA-tag, which could affect the isoelectric point (pI) changeable with a charge of amino acid in VHHs were closely related to the solubility of VHH molecules during refolding. The genetic fusion of PMMA-tag to C-terminal region of VHHs significantly affects the recovery of their soluble protein during refolding by 50 mM TAPS at pH 8.5. It could be refolded with a recovery of more than 95% by dialysis at pH 8.5. A marked difference in the antigen-binding activities in the adsorption state was significantly high in VHH-PM compared to the wild type of VHH. There are approximately 8-fold differences in the antigen-binding activities in the adsorption state between VHH-PM and VHH.Keywords: VHH, PMMA-tag, isoelectric point, pH, Solubility, refolding, immobilization, ELISA
Procedia PDF Downloads 4191998 Extraction of Nutraceutical Bioactive Compounds from the Native Algae Using Solvents with a Deep Natural Eutectic Point and Ultrasonic-assisted Extraction
Authors: Seyedeh Bahar Hashemi, Alireza Rahimi, Mehdi Arjmand
Abstract:
Food is the source of energy and growth through the breakdown of its vital components and plays a vital role in human health and nutrition. Many natural compounds found in plant and animal materials play a special role in biological systems and the origin of many such compounds directly or indirectly is algae. Algae is an enormous source of polysaccharides and have gained much interest in human flourishing. In this study, algae biomass extraction is conducted using deep eutectic-based solvents (NADES) and Ultrasound-assisted extraction (UAE). The aim of this research is to extract bioactive compounds including total carotenoid, antioxidant activity, and polyphenolic contents. For this purpose, the influence of three important extraction parameters namely, biomass-to-solvent ratio, temperature, and time are studied with respect to their impact on the recovery of carotenoids, and phenolics, and on the extracts’ antioxidant activity. Here we employ the Response Surface Methodology for the process optimization. The influence of the independent parameters on each dependent is determined through Analysis of Variance. Our results show that Ultrasound-assisted extraction (UAE) for 50 min is the best extraction condition, and proline:lactic acid (1:1) and choline chloride:urea (1:2) extracts show the highest total phenolic contents (50.00 ± 0.70 mgGAE/gdw) and antioxidant activity [60.00 ± 1.70 mgTE/gdw, 70.00 ± 0.90 mgTE/gdw in 2.2-diphenyl-1-picrylhydrazyl (DPPH), and 2.2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)]. Our results confirm that the combination of UAE and NADES provides an excellent alternative to organic solvents for sustainable and green extraction and has huge potential for use in industrial applications involving the extraction of bioactive compounds from algae. This study is among the first attempts to optimize the effects of ultrasonic-assisted extraction, ultrasonic devices, and deep natural eutectic point and investigate their application in bioactive compounds extraction from algae. We also study the future perspective of ultrasound technology which helps to understand the complex mechanism of ultrasonic-assisted extraction and further guide its application in algae.Keywords: natural deep eutectic solvents, ultrasound-assisted extraction, algae, antioxidant activity, phenolic compounds, carotenoids
Procedia PDF Downloads 1791997 Evaluation of the Risk Factors on the Incidence of Adjacent Segment Degeneration After Anterior Neck Discectomy and Fusion
Authors: Sayyed Mostafa Ahmadi, Neda Raeesi
Abstract:
Background and Objectives: Cervical spondylosis is a common problem that affects the adult spine and is the most common cause of radiculopathy and myelopathy in older patients. Anterior discectomy and fusion is a well-known technique in degenerative cervical disc disease. However, one of the late undesirable complications is adjacent disc degeneration, which affects about 91% of patients in ten years. Many factors can be effective in causing this complication, but some are still debatable. Discovering these risk factors and eliminating them can improve the quality of life. Methods: This is a retrospective cohort study. All patients who underwent anterior discectomy and fusion surgery in the neurosurgery ward of Imam Khomeini Hospital between 2013 and 2016 were evaluated. Their demographic information was collected. All patients were visited and examined for radiculopathy, myelopathy, and muscular force. At the same visit, all patients were asked to have a facelift, and neck profile, as well as a neck MRI(General Tesla 3). Preoperative graphs were used to measure the diameter of the cervical canal(Pavlov ratio) and to evaluate sagittal alignment(Cobb Angle). Preoperative MRI of patients was reviewed for anterior and posterior longitudinal ligament calcification. Result: In this study, 57 patients were studied. The mean age of patients was 50.63 years, and 49.1% were male. Only 3.5% of patients had anterior and posterior longitudinal ligament calcification. Symptomatic ASD was observed in 26.6%. The X-rays and MRIs showed evidence of 80.7% radiological ASD. Among patients who underwent one-level surgery, 20% had symptomatic ASD, but among patients who underwent two-level surgery, the rate of ASD was 50%.In other words, the higher the number of surfaces that are operated and fused, the higher the probability of symptomatic ASD(P-value <0.05). The X-rays and MRIs showed 80.7% of radiological ASD. Among patients who underwent surgery at one level, 78% had radiological ASD, and this number was 92% among patients who underwent two-level surgery(P-value> 0.05). Demographic variables such as age, sex, height, weight, and BMI did not have a significant effect on the incidence of radiological ASD(P-value> 0.05), but sex and height were two influential factors on symptomatic ASD(P-value <0.05). Other related variables such as family history, smoking and exercise also have no significant effect(P-value> 0.05). Radiographic variables such as Pavlov ratio and sagittal alignment were also unaffected by the incidence of radiological and symptomatic ASD(P-value> 0.05). The number of surgical surfaces and the incidence of anterior and posterior longitudinal ligament calcification before surgery also had no statistically significant effect(P-value> 0.05). In the study of the ability of the neck to move in different directions, none of these variables are statistically significant in the two groups with radiological and symptomatic ASD and the non-affected group(P-value> 0.05). Conclusion: According to the findings of this study, this disease is considered to be a multifactorial disease. The incidence of radiological ASD is much higher than symptomatic ASD (80.7% vs. 26.3%) and sex, height and number of fused surfaces are the only factors influencing the incidence of symptomatic ASD and no variable influences radiological ASD.Keywords: risk factors, anterior neck disectomy and fusion, adjucent segment degeneration, complication
Procedia PDF Downloads 601996 Use of Generative Adversarial Networks (GANs) in Neuroimaging and Clinical Neuroscience Applications
Authors: Niloufar Yadgari
Abstract:
GANs are a potent form of deep learning models that have found success in various fields. They are part of the larger group of generative techniques, which aim to produce authentic data using a probabilistic model that learns distributions from actual samples. In clinical settings, GANs have demonstrated improved abilities in capturing spatially intricate, nonlinear, and possibly subtle disease impacts in contrast to conventional generative techniques. This review critically evaluates the current research on how GANs are being used in imaging studies of different neurological conditions like Alzheimer's disease, brain tumors, aging of the brain, and multiple sclerosis. We offer a clear explanation of different GAN techniques for each use case in neuroimaging and delve into the key hurdles, unanswered queries, and potential advancements in utilizing GANs in this field. Our goal is to connect advanced deep learning techniques with neurology studies, showcasing how GANs can assist in clinical decision-making and enhance our comprehension of the structural and functional aspects of brain disorders.Keywords: GAN, pathology, generative adversarial network, neuro imaging
Procedia PDF Downloads 321995 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents
Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei
Abstract:
With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.Keywords: document processing, framework, formal definition, machine learning
Procedia PDF Downloads 2141994 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification
Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine
Abstract:
Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.Keywords: convolution, feature extraction, image analysis, validation, precision agriculture
Procedia PDF Downloads 3151993 Color Image Enhancement Using Multiscale Retinex and Image Fusion Techniques
Authors: Chang-Hsing Lee, Cheng-Chang Lien, Chin-Chuan Han
Abstract:
In this paper, an edge-strength guided multiscale retinex (EGMSR) approach will be proposed for color image contrast enhancement. In EGMSR, the pixel-dependent weight associated with each pixel in the single scale retinex output image is computed according to the edge strength around this pixel in order to prevent from over-enhancing the noises contained in the smooth dark/bright regions. Further, by fusing together the enhanced results of EGMSR and adaptive multiscale retinex (AMSR), we can get a natural fused image having high contrast and proper tonal rendition. Experimental results on several low-contrast images have shown that our proposed approach can produce natural and appealing enhanced images.Keywords: image enhancement, multiscale retinex, image fusion, EGMSR
Procedia PDF Downloads 4581992 Rejuvenate: Face and Body Retouching Using Image Inpainting
Authors: Hossam Abdelrahman, Sama Rostom, Reem Yassein, Yara Mohamed, Salma Salah, Nour Awny
Abstract:
In today’s environment, people are becoming increasingly interested in their appearance. However, they are afraid of their unknown appearance after a plastic surgery or treatment. Accidents, burns and genetic problems such as bowing of body parts of people have a negative impact on their mental health with their appearance and this makes them feel uncomfortable and underestimated. The approach presents a revolutionary deep learning-based image inpainting method that analyses the various picture structures and corrects damaged images. In this study, A model is proposed based on the in-painting of medical images with Stable Diffusion Inpainting method. Reconstructing missing and damaged sections of an image is known as image inpainting is a key progress facilitated by deep neural networks. The system uses the input of the user of an image to indicate a problem, the system will then modify the image and output the fixed image, facilitating for the patient to see the final result.Keywords: generative adversarial network, large mask inpainting, stable diffusion inpainting, plastic surgery
Procedia PDF Downloads 741991 The Molecular Bases of Δβ T-Cell Mediated Antigen Recognition
Authors: Eric Chabrol, Sidonia B.G. Eckle, Renate de Boer, James McCluskey, Jamie Rossjohn, Mirjam H.M. Heemskerk, Stephanie Gras
Abstract:
αβ and γδ T-cells are disparate T-cell lineages that, via their use of either αβ or γδ T-cell antigen receptors (TCRs) respectively, can respond to distinct antigens. Here we characterise a new population of human T-cells, term δβ T-cells, that express TCRs comprising a TCR-δ variable gene fused to a Joining-α/Constant-α domain, paired with an array of TCR-β chains. We characterised the cellular, functional, biophysical and structural characteristic feature of this new T-cells population that reveal some new insight into TCR diversity. We provide molecular bases of how δβ T-cells can recognise viral peptide presented by Human Leukocyte Antigen (HLA) molecule. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer antigen specificity thus expanding our understanding of T-cell biology and TCR diversity.Keywords: new delta-beta TCR, HLA, viral peptide, structural immunology
Procedia PDF Downloads 4251990 Little Girls and Big Stories: A Thematic Analysis of Gender Representations in Selected Asian Room to Read Storybooks
Authors: Cheeno Marlo Sayuno
Abstract:
Room to Read is an international nonprofit organization aimed at empowering young readers through literature and literacy education. In particular, the organization is focused on girls’ education in schools and bettering their social status through crafting stories and making sure that these stories are accessible to them. In 2019, Room to Read visited the Philippines and partnered with Philippine children’s literature publishers Adarna House, Lampara Books, Anvil Publishing, and OMF-Hiyas with the goal of producing contextualized stories that Filipino children can read. The result is a set of 20 storybooks developed by Filipino writers and illustrators, the author of this paper included. The project led to narratives of experiences in storybook production from conceptualization to publication, towards translations and reimagining in online repository, storytelling, and audiobook formats. During the production process, we were particularly reminded of gender representations, child’s rights, and telling stories that can empower the children in vulnerable communities, who are the beneficiaries of the project. The storybooks, along with many others produced in Asia and the world, are available online through the literacycloud.org website of Room to Read. In this study, the goal is to survey the stories produced in Asia and look at how gender is represented in the storybooks. By analyzing both the texts and the illustrations of the storybooks produced across Asian countries, themes of portrayals of young boys and girls, their characteristics and narratives, and how they are empowered in the stories are identified, with the goal of mapping how Room to Read is able to address the problem of access to literacy among young girls and ensuring them that they can do anything, the way they are portrayed in the stories. The paper hopes to determine how gender is represented in Asian storybooks produced by the international nonprofit organization Room to Read. Thematic textual analysis was used as methodology, where the storybooks are analyzed qualitatively to identify arising themes of gender representation. This study will shed light on the importance of responsible portrayal of gender in storybooks and how it can impact and empower children. The results of the study can also aid writers and illustrators in developing gender-sensitive storybooks.Keywords: room to read, asian storybooks, young girls, thematic analysis, child empowerment, literacy, education
Procedia PDF Downloads 79