Search results for: digital transformation artificial intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6669

Search results for: digital transformation artificial intelligence

6039 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine

Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin

Abstract:

This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.

Keywords: CAM, multi-axis milling machining, transformation matrix, rotation angles

Procedia PDF Downloads 483
6038 A Comparative Study on Deep Learning Models for Pneumonia Detection

Authors: Hichem Sassi

Abstract:

Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.

Keywords: deep learning, computer vision, pneumonia, models, comparative study

Procedia PDF Downloads 65
6037 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions

Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams

Abstract:

The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.

Keywords: architecture, central pavilions, classicism, machine learning

Procedia PDF Downloads 141
6036 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria

Authors: Isaac Kayode Ogunlade

Abstract:

Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.

Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device

Procedia PDF Downloads 93
6035 Use of Artificial Intelligence Based Models to Estimate the Use of a Spectral Band in Cognitive Radio

Authors: Danilo López, Edwin Rivas, Fernando Pedraza

Abstract:

Currently, one of the major challenges in wireless networks is the optimal use of radio spectrum, which is managed inefficiently. One of the solutions to existing problem converges in the use of Cognitive Radio (CR), as an essential parameter so that the use of the available licensed spectrum is possible (by secondary users), well above the usage values that are currently detected; thus allowing the opportunistic use of the channel in the absence of primary users (PU). This article presents the results found when estimating or predicting the future use of a spectral transmission band (from the perspective of the PU) for a chaotic type channel arrival behavior. The time series prediction method (which the PU represents) used is ANFIS (Adaptive Neuro Fuzzy Inference System). The results obtained were compared to those delivered by the RNA (Artificial Neural Network) algorithm. The results show better performance in the characterization (modeling and prediction) with the ANFIS methodology.

Keywords: ANFIS, cognitive radio, prediction primary user, RNA

Procedia PDF Downloads 422
6034 Bridge Healthcare Access Gap with Artifical Intelligence

Authors: Moshmi Sangavarapu

Abstract:

The US healthcare industry has undergone tremendous digital transformation in recent years, but critical care access to lower-income ethnicities is still in its nascency. This population has historically showcased substantial hesitation to seek any medical assistance. While the lack of sufficient financial resources plays a critical role, the existing cultural and knowledge barriers also contribute significantly to widening the access gap. It is imperative to break these barriers to ensure timely access to therapeutic procedures that can save important lives! Based on ongoing research, healthcare access barriers can be best addressed by tapping the untapped potential of caregiver communities first. They play a critical role in patients’ diagnoses, building healthcare knowledge and instilling confidence in required therapeutic procedures. Recent technological advancements have opened many avenues by developing smart ways of reaching the large caregiver community. A digitized go-to-market strategy featuring connected media coupled with smart IoT devices and geo-location targeting can be collectively leveraged to reach this key audience group. AI/ML algorithms can be thoroughly trained to identify relevant data signals from users' location and browsing behavior and determine useful marketing touchpoints. The web behavior can be further assimilated with natural language processing to identify contextually relevant interest topics and decipher potential caregivers on digital avenues to serve that brand message. In conclusion, grasping the true health access journey of any lower-income ethnic group is important to design beneficial touchpoints that can alleviate patients’ concerns and allow them to break their own access barriers and opt for timely and quality healthcare.

Keywords: healthcare access, market access, diversity barriers, patient journey

Procedia PDF Downloads 56
6033 Integrated Free Space Optical Communication and Optical Sensor Network System with Artificial Intelligence Techniques

Authors: Yibeltal Chanie Manie, Zebider Asire Munyelet

Abstract:

5G and 6G technology offers enhanced quality of service with high data transmission rates, which necessitates the implementation of the Internet of Things (IoT) in 5G/6G architecture. In this paper, we proposed the integration of free space optical communication (FSO) with fiber sensor networks for IoT applications. Recently, free-space optical communications (FSO) are gaining popularity as an effective alternative technology to the limited availability of radio frequency (RF) spectrum. FSO is gaining popularity due to flexibility, high achievable optical bandwidth, and low power consumption in several applications of communications, such as disaster recovery, last-mile connectivity, drones, surveillance, backhaul, and satellite communications. Hence, high-speed FSO is an optimal choice for wireless networks to satisfy the full potential of 5G/6G technology, offering 100 Gbit/s or more speed in IoT applications. Moreover, machine learning must be integrated into the design, planning, and optimization of future optical wireless communication networks in order to actualize this vision of intelligent processing and operation. In addition, fiber sensors are important to achieve real-time, accurate, and smart monitoring in IoT applications. Moreover, we proposed deep learning techniques to estimate the strain changes and peak wavelength of multiple Fiber Bragg grating (FBG) sensors using only the spectrum of FBGs obtained from the real experiment.

Keywords: optical sensor, artificial Intelligence, Internet of Things, free-space optics

Procedia PDF Downloads 64
6032 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty

Authors: Ben Khayut, Lina Fabri, Maya Avikhana

Abstract:

The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.

Keywords: computational brain, mind, psycholinguistic, system, under uncertainty

Procedia PDF Downloads 179
6031 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique

Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: earthquake prediction, ANN, seismic bumps

Procedia PDF Downloads 128
6030 Examining the Relationship Between Traditional Property Rights and Online Intellectual Property Rights in the Digital Age

Authors: Luljeta Plakolli-Kasumi

Abstract:

In the digital age, the relationship between traditional property rights and online intellectual property rights is becoming increasingly complex. On the one hand, the internet and advancements in technology have allowed for the widespread distribution and use of digital content, making it easier for individuals and businesses to access and share information. On the other hand, the rise of digital piracy and illegal file-sharing has led to increased concerns about the protection of intellectual property rights. This paper aims to examine the relationship between traditional property rights and online intellectual property rights in the digital age by analyzing the current legal frameworks, key challenges and controversies that arise, and potential solutions for addressing these issues. The paper will look at how traditional property rights concepts such as ownership and possession are being applied in the online context and how they intersect with new and evolving forms of intellectual property such as digital downloads, streaming services, and online content creation. It will also discuss the tension between the need for strong intellectual property protection to encourage creativity and innovation and the public interest in promoting access to information and knowledge. Ultimately, the paper will explore how the legal system can adapt to better balance the interests of property owners, creators, and users in the digital age.

Keywords: intellectual property, traditional property, digital age, digital content

Procedia PDF Downloads 92
6029 Designing of Tooling Solution for Material Handling in Highly Automated Manufacturing System

Authors: Muhammad Umair, Yuri Nikolaev, Denis Artemov, Ighor Uzhinsky

Abstract:

A flexible manufacturing system is an integral part of a smart factory of industry 4.0 in which every machine is interconnected and works autonomously. Robots are in the process of replacing humans in every industrial sector. As the cyber-physical-system (CPS) and artificial intelligence (AI) are advancing, the manufacturing industry is getting more dependent on computers than human brains. This modernization has boosted the production with high quality and accuracy and shifted from classic production to smart manufacturing systems. However, material handling for such automated productions is a challenge and needs to be addressed with the best possible solution. Conventional clamping systems are designed for manual work and not suitable for highly automated production systems. Researchers and engineers are trying to find the most economical solution for loading/unloading and transportation workpieces from a warehouse to a machine shop for machining operations and back to the warehouse without human involvement. This work aims to propose an advanced multi-shape tooling solution for highly automated manufacturing systems. The currently obtained result shows that it could function well with automated guided vehicles (AGVs) and modern conveyor belts. The proposed solution is following requirements to be automation-friendly, universal for different part geometry and production operations. We used a bottom-up approach in this work, starting with studying different case scenarios and their limitations and finishing with the general solution.

Keywords: artificial intelligence, cyber physics system, Industry 4.0, material handling, smart factory, flexible manufacturing system

Procedia PDF Downloads 133
6028 SVID: Structured Vulnerability Intelligence for Building Deliberated Vulnerable Environment

Authors: Wenqing Fan, Yixuan Cheng, Wei Huang

Abstract:

The diversity and complexity of modern IT systems make it almost impossible for internal teams to find vulnerabilities in all software before the software is officially released. The emergence of threat intelligence and vulnerability reporting policy has greatly reduced the burden on software vendors and organizations to find vulnerabilities. However, to prove the existence of the reported vulnerability, it is necessary but difficult for security incident response team to build a deliberated vulnerable environment from the vulnerability report with limited and incomplete information. This paper presents a structured, standardized, machine-oriented vulnerability intelligence format, that can be used to automate the orchestration of Deliberated Vulnerable Environment (DVE). This paper highlights the important role of software configuration and proof of vulnerable specifications in vulnerability intelligence, and proposes a triad model, which is called DIR (Dependency Configuration, Installation Configuration, Runtime Configuration), to define software configuration. Finally, this paper has also implemented a prototype system to demonstrate that the orchestration of DVE can be automated with the intelligence.

Keywords: DIR triad model, DVE, vulnerability intelligence, vulnerability recurrence

Procedia PDF Downloads 121
6027 Testing Chat-GPT: An AI Application

Authors: Jana Ismail, Layla Fallatah, Maha Alshmaisi

Abstract:

ChatGPT, a cutting-edge language model built on the GPT-3.5 architecture, has garnered attention for its profound natural language processing capabilities, holding promise for transformative applications in customer service and content creation. This study delves into ChatGPT's architecture, aiming to comprehensively understand its strengths and potential limitations. Through systematic experiments across diverse domains, such as general knowledge and creative writing, we evaluated the model's coherence, context retention, and task-specific accuracy. While ChatGPT excels in generating human-like responses and demonstrates adaptability, occasional inaccuracies and sensitivity to input phrasing were observed. The study emphasizes the impact of prompt design on output quality, providing valuable insights for the nuanced deployment of ChatGPT in conversational AI and contributing to the ongoing discourse on the evolving landscape of natural language processing in artificial intelligence.

Keywords: artificial Inelegance, chatGPT, open AI, NLP

Procedia PDF Downloads 78
6026 Digital Literacy Skills for Geologist in Public Sector

Authors: Angsumalin Puntho

Abstract:

Disruptive technology has had a great influence on our everyday lives and the existence of an organization. Geologists in the public sector need to keep up with digital technology and be able to work and collaborate in a more effective manner. The result from SWOT and 7S McKinsey analyses suggest that there are inadequate IT personnel, no individual digital literacy development plan, and a misunderstanding of management policies. The Office of Civil Service Commission develops digital literacy skills that civil servants and government officers should possess in order to work effectively; it consists of nine dimensions, including computer skills, internet skills, cyber security awareness, word processing, spreadsheets, presentation programs, online collaboration, graphics editors and cyber security practices; and six steps of digital literacy development including self-assessment, individual development plan, self-learning, certified test, learning reflection, and practices. Geologists can use digital literacy as a learning tool to develop themselves for better career opportunities.

Keywords: disruptive technology, digital technology, digital literacy, computer skills

Procedia PDF Downloads 117
6025 Drivers of Digital Product Innovation in Firms: An Empirical Study of Technological, Organizational, and Environmental Factors

Authors: Anne Theresa Eidhoff, Sarah E. Stief, Markus Voeth, Sarah Gundlach

Abstract:

With digitalization increasingly changing the rules of competition, firms face the need to adapt and assimilate digital technologies in order to remain competitive. Firms can choose from various possibilities to integrate digital technologies including the option to embed digital technologies aiming to innovate products or to develop digital products. However, the question of which specific factors influence a firm’s decision to pursue digital product innovation remains unanswered in research. By adopting the Technology-Organization-Environment (TOE)-framework we have designed a qualitative exploratory study including eleven German practitioners to investigate relevant contingency factors. Our results indicate that the most critical factors for a company’s decision to pursue digital product innovation can be found in the technological and environmental dimensions, namely customers, competitive pressure, technological change, as well as digitalization fit. 

Keywords: digital innovation, digitalization, product innovation, TOE-framework

Procedia PDF Downloads 483
6024 Forensic Challenges in Source Device Identification for Digital Videos

Authors: Mustapha Aminu Bagiwa, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Idris, Suleman Khan

Abstract:

Video source device identification has become a problem of concern in numerous domains especially in multimedia security and digital investigation. This is because videos are now used as evidence in legal proceedings. Source device identification aim at identifying the source of digital devices using the content they produced. However, due to affordable processing tools and the influx in digital content generating devices, source device identification is still a major problem within the digital forensic community. In this paper, we discuss source device identification for digital videos by identifying techniques that were proposed in the literature for model or specific device identification. This is aimed at identifying salient open challenges for future research.

Keywords: video forgery, source camcorder, device identification, forgery detection

Procedia PDF Downloads 632
6023 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 107
6022 Emotional Intelligence in Educational Arena and Its Pragmatic Concerns

Authors: Mehar Fatima

Abstract:

This study intends to make analysis of Emotional Intelligence (EI) in the process of pedagogy and look into its repercussions in different educational institutions including school, college, and university in the capital state of India, Delhi in 2015. Field of education is a complex area with challenging issues in a modern society. Education is the breeding ground for nurturing human souls, and personalities. Since antiquity, man has been in search of truth, wisdom, contentment, peace. His efforts have brought him to acquire these through hardship, evidently through the process of teaching and learning. Computer aids and artificial intelligence have made life easy but complex. Efficient pedagogy involves direct human intervention despite the flux of technological advancements. Time and again, pedagogical practices demand sincere human efforts to understand and improve upon life’s many pragmatic concerns. Apart from the intense academic scientific approaches, EI in academia plays a vital role in the growth of education, positively achieving national progression; ‘pedagogy of pragmatic purpose.’ Use of literature is found to be one of the valuable pragmatic tools of Emotional Intelligence. This research examines the way literature provides useful influence in building better practices in teaching-learning process. The present project also scrutinizes various pieces of world literature and translation, incorporating efforts of intellectuals in promoting comprehensive amity. The importance of EI in educational arena with its pragmatic uses was established by the study of interviews, and questionnaire collected from teachers and students. In summary the analysis of obtained empirical data makes it possible to accomplish that the use Emotional Intelligence in academic scenario yields multisided positive pragmatic outcomes; positive attitude, constructive aptitude, value-added learning, enthusiastic participation, creative thinking, lower apprehension, diminished fear, leading to individual as well as collective advancement, progress, and growth of pedagogical agents.

Keywords: emotional intelligence, human efforts, pedagogy, pragmatic concerns

Procedia PDF Downloads 371
6021 Digital Maturity Framework: A Tool to Manage the Information Technologies and Develop Activities of Innovation in Companies

Authors: Paulina Solórzano Salgado, Luis Rodrigo Valencia Pérez, Alberto de Jesús Pastrana Palma

Abstract:

In this research, it is presented a digital maturity framework, which contributes to the development of small and medium-sized enterprises (SMEs) in the commercial sector. This proposal is based on three important concepts: Marketing activities in the enterprise, information and communication technologies ICT, as well as Innovation. Prior to the development of this framework, was formulated a quantitative assessment tool through a literature review, and was validated with a method used by experts, and which determines the relationship of digital marketing and innovation activities in companies. The instrument was applied to 64 Mexican companies from the Made in Mexico database, which allowed both descriptive results and correlation results. These contributed to the development of the methodology, and confirming that the management of digital marketing has a positive relation with innovation activities of companies. Also, that analytics in digital marketing is a source for its development. In this paper, the management stages and activities are presented to be developed by companies in order to generate knowledge, which will allow them to reach its digital maturity.

Keywords: digital marketing, digital maturity, innovation, SMEs

Procedia PDF Downloads 473
6020 The Protection of Artificial Intelligence (AI)-Generated Creative Works Through Authorship: A Comparative Analysis Between the UK and Nigerian Copyright Experience to Determine Lessons to Be Learnt from the UK

Authors: Esther Ekundayo

Abstract:

The nature of AI-generated works makes it difficult to identify an author. Although, some scholars have suggested that all the players involved in its creation should be allocated authorship according to their respective contribution. From the programmer who creates and designs the AI to the investor who finances the AI and to the user of the AI who most likely ends up creating the work in question. While others suggested that this issue may be resolved by the UK computer-generated works (CGW) provision under Section 9(3) of the Copyright Designs and Patents Act 1988. However, under the UK and Nigerian copyright law, only human-created works are recognised. This is usually assessed based on their originality. This simply means that the work must have been created as a result of its author’s creative and intellectual abilities and not copied. Such works are literary, dramatic, musical and artistic works and are those that have recently been a topic of discussion with regards to generative artificial intelligence (Generative AI). Unlike Nigeria, the UK CDPA recognises computer-generated works and vests its authorship with the human who made the necessary arrangement for its creation . However, making necessary arrangement in the case of Nova Productions Ltd v Mazooma Games Ltd was interpreted similarly to the traditional authorship principle, which requires the skills of the creator to prove originality. Although, some recommend that computer-generated works complicates this issue, and AI-generated works should enter the public domain as authorship cannot be allocated to AI itself. Additionally, the UKIPO recognising these issues in line with the growing AI trend in a public consultation launched in the year 2022, considered whether computer-generated works should be protected at all and why. If not, whether a new right with a different scope and term of protection should be introduced. However, it concluded that the issue of computer-generated works would be revisited as AI was still in its early stages. Conversely, due to the recent developments in this area with regards to Generative AI systems such as ChatGPT, Midjourney, DALL-E and AIVA, amongst others, which can produce human-like copyright creations, it is therefore important to examine the relevant issues which have the possibility of altering traditional copyright principles as we know it. Considering that the UK and Nigeria are both common law jurisdictions but with slightly differing approaches to this area, this research, therefore, seeks to answer the following questions by comparative analysis: 1)Who is the author of an AI-generated work? 2)Is the UK’s CGW provision worthy of emulation by the Nigerian law? 3) Would a sui generis law be capable of protecting AI-generated works and its author under both jurisdictions? This research further examines the possible barriers to the implementation of the new law in Nigeria, such as limited technical expertise and lack of awareness by the policymakers, amongst others.

Keywords: authorship, artificial intelligence (AI), generative ai, computer-generated works, copyright, technology

Procedia PDF Downloads 102
6019 Levels of Digital Health Literacy in Culturally and Linguistically Diverse Females in Regional Australia and its Association with Demographics

Authors: Usma Iftikhar, Khorshed Alam

Abstract:

Background: Digital health platforms and digital health interventions are gaining increasing importance with the shift to online health-seeking behaviour, especially post-Covid. Subsequently, the importance of digital health literacy is increasingly being recognized. With the surge in culturally and linguistically diverse populations in First World countries, especially females, the predictors of digital health access in this population remain elusive. Keeping in view the inadequate digital infrastructure in rural and remote Australia, with lack of specialist services, the determinants of digital access gain even more importance. Objectives: The objective of this research are to measure the digital health literacy levels in this population, including the predictors of digital health literacy like sociodemographics and the correlation between the predictors and digital health literacy levels. Methods: A population-based quantitative survey was carried out in Regional Queensland from Jan 2022- Dec 2023 on culturally and linguistically diverse adult females. Sociodemographics like age, literacy levels, socioeconomic status, access to digital devices were recorded after informed consent. Digital health literacy levels were measured by specially designed questionnaires. The relationship between sociodemographics and digital health literacy levels was estimated by Pearson correlation. Results: Mean DHL was 2.66 + 0.35. There was a negative significant relationship (p<0.005) between demographics like age and access to a digital device with digital health literacy levels. Also observed was a positive significant relationship between literacy levels and proficiency in English. Conclusion: Age, literacy levels and English proficiency are some of the highest predictors of digital health access. This is important because remote areas rely on digital health access due to less developed health infrastructure, including specialist services. Guide for Policy makers to focus on the populations most in need.

Keywords: digital health literacy, eHealth literacy, culturally and linguistically diverse, ethnic minorities, regional areas, rural and remote areas

Procedia PDF Downloads 72
6018 Digital Metroliteracies: Space, Diversity and Identity

Authors: Sender Dovchin, Alastair Pennycook

Abstract:

This paper looks at the relationship between online space, urban space and digital literacies. The everyday digital literacy practices of Facebook users (with a particular focus on young urban Mongolians) can be understood as ‘metrolingual’ because of the varied ways in which linguistic and cultural resources, spatial repertoires, and online activities are bound together to make meaning. Whereas the initial development of the term metrolingualism was dependent on a notion of physical urban space, we here argue that the digital practices of these Facebook users perform a range of social and cultural identities (sexual, ethnic, and class-based identities) that are both parts of but also adjacent to the metrolingual fabric.

Keywords: metrolingualism, digital literacy, Mongolia, Facebook

Procedia PDF Downloads 227
6017 The Evolution of Strike and Intelligence Functions in Special Operations Forces

Authors: John Hardy

Abstract:

The expansion of special operations forces (SOF) in the twenty-first century is often discussed in terms of the size and disposition of SOF units. Research regarding the number SOF personnel, the equipment SOF units procure, and the variety of roles and mission that SOF fulfill in contemporary conflicts paints a fascinating picture of changing expectations for the use of force. A strong indicator of the changing nature of SOF in contemporary conflicts is the fusion of strike and intelligence functions in the SOF in many countries. What were once more distinct roles on the kind of battlefield generally associated with the concept of conventional warfare have become intermingled in the era of persistent conflict which SOF face. This study presents a historical analysis of the co-evolution of the intelligence and direct action functions carried out by SOF in counterterrorism, counterinsurgency, and training and mentoring missions between 2004 and 2016. The study focuses primarily on innovation in the US military and the diffusion of key concepts to US allies first, and then more broadly afterward. The findings show that there were three key phases of evolution throughout the period of study, each coinciding with a process of innovation and doctrinal adaptation. The first phase was characterized by the fusion of intelligence at the tactical and operational levels. The second phase was characterized by the industrial counterterrorism campaigns used by US SOF against irregular enemies in Iraq and Afghanistan. The third phase was characterized by increasing forward collection of actionable intelligence by SOF force elements in the course of direct action raids. The evolution of strike and intelligence functions in SOF operations between 2004 and 2016 was significantly influenced by reciprocity. Intelligence fusion led to more effective targeting, which then increased intelligence collection. Strike and intelligence functions were then enhanced by greater emphasis on intelligence exploitation during operations, which further increased the effectiveness of both strike and intelligence operations.

Keywords: counterinsurgency, counterterrorism, intelligence, irregular warfare, military operations, special operations forces

Procedia PDF Downloads 273
6016 Digital Memory plus City Cultural Heritage: The Peking Memory Project Experience

Authors: Huiling Feng, Xiaoshuang Jia, Jihong Liang, Li Niu

Abstract:

Beijing, formerly romanized as Peking, is the capital of the People's Republic of China and the world's second most populous city proper and most populous capital city. Beijing is a noted historical and cultural whose city history dates back three millennia which is extremely rich in terms of cultural heritage. In 2012, a digital memory project led by Humanistic Beijing Studies Center in Renmin University of China started with the goal to build a total digital collection of knowledge assets about Beijing and represent Beijing memories in new fresh ways. The title of the entire project is ‘Peking Memory Project(PMP)’. The main goal is for safeguarding the documentary heritage and intellectual memory of Beijing, more specifically speaking, from the perspective of historical humanities and public participation, PMP will comprehensively applied digital technologies like digital capture, digital storage, digital process, digital presentation and digital communication to transform different kinds of cultural heritage of Beijing into digital formats that can be stored, re-organized and shared. These digital memories can be interpreted with a new perspective, be organized with a new theme, be presented in a new way and be utilized with a new need. Taking social memory as theoretical basis and digital technologies as tools, PMP is framed with ‘Two Sites and A Repository’. Two sites mean the special website(s) characterized by ‘professional’ and an interactive website characterized by ‘crowdsourcing’. A Repository means the storage pool used for safety long-time preservation of the digital memories. The work of PMP has ultimately helped to highlight the important role in safeguarding the documentary heritage and intellectual memory of Beijing.

Keywords: digital memory, cultural heritage, digital technologies, peking memory project

Procedia PDF Downloads 177
6015 Risk Screening in Digital Insurance Distribution: Evidence and Explanations

Authors: Finbarr Murphy, Wei Xu, Xian Xu

Abstract:

The embedding of digital technologies in the global economy has attracted increasing attention from economists. With a large and detailed dataset, this study examines the specific case where consumers have a choice between offline and digital channels in the context of insurance purchases. We find that digital channels screen consumers with lower unobserved risk. For the term life, endowment, and disease insurance products, the average risk of the policies purchased through digital channels was 75%, 21%, and 31%, respectively, lower than those purchased offline. As a consequence, the lower unobserved risk leads to weaker information asymmetry and higher profitability of digital channels. We highlight three mechanisms of the risk screening effect: heterogeneous marginal influence of channel features on insurance demand, the channel features directly related to risk control, and the link between the digital divide and risk. We also find that the risk screening effect mainly comes from the extensive margin, i.e., from new consumers. This paper contributes to three connected areas in the insurance context: the heterogeneous economic impacts of digital technology adoption, insurer-side risk selection, and insurance marketing.

Keywords: digital economy, information asymmetry, insurance, mobile application, risk screening

Procedia PDF Downloads 75
6014 Design and Implementation of Low-code Model-building Methods

Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu

Abstract:

This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.

Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment

Procedia PDF Downloads 31
6013 Particle Swarm Optimization Algorithm vs. Genetic Algorithm for Image Watermarking Based Discrete Wavelet Transform

Authors: Omaima N. Ahmad AL-Allaf

Abstract:

Over communication networks, images can be easily copied and distributed in an illegal way. The copyright protection for authors and owners is necessary. Therefore, the digital watermarking techniques play an important role as a valid solution for authority problems. Digital image watermarking techniques are used to hide watermarks into images to achieve copyright protection and prevent its illegal copy. Watermarks need to be robust to attacks and maintain data quality. Therefore, we discussed in this paper two approaches for image watermarking, first is based on Particle Swarm Optimization (PSO) and the second approach is based on Genetic Algorithm (GA). Discrete wavelet transformation (DWT) is used with the two approaches separately for embedding process to cover image transformation. Each of PSO and GA is based on co-relation coefficient to detect the high energy coefficient watermark bit in the original image and then hide the watermark in original image. Many experiments were conducted for the two approaches with different values of PSO and GA parameters. From experiments, PSO approach got better results with PSNR equal 53, MSE equal 0.0039. Whereas GA approach got PSNR equal 50.5 and MSE equal 0.0048 when using population size equal to 100, number of iterations equal to 150 and 3×3 block. According to the results, we can note that small block size can affect the quality of image watermarking based PSO/GA because small block size can increase the search area of the watermarking image. Better PSO results were obtained when using swarm size equal to 100.

Keywords: image watermarking, genetic algorithm, particle swarm optimization, discrete wavelet transform

Procedia PDF Downloads 228
6012 Africa’s Political and Economic Transformation and the Role of the Disporas

Authors: Noah Yusuf

Abstract:

The present paper examined the current level of socio-political and economic development in Africa. Models and experiences from other regions of the world, especially, developing ones with similar historical experience with Africa, were explored. The paper concluded that recommendations emanating from past conferences, seminars and symposia on the continent’s socio-economic and political challenges have been poorly implemented because of lack of strong political will; the donor syndrome; weak resource base; capacity constraints in institutions; and lack of accountability, transparency and poor governance. It is, therefore, recommended that African countries need implement sound policies and reforms on a comprehensive basis, if they are to achieve the desired socio-economic and political transformation; and the African in Diasporas represent critical instruments in attaining the socio-economic and political objectives of the continent.

Keywords: Africa, political transformation, economic transformation, Africans in diasporas

Procedia PDF Downloads 347
6011 Business Intelligence Proposal to Improve Decision Making in Companies Using Google Cloud Platform and Microsoft Power BI

Authors: Joel Vilca Tarazona, Igor Aguilar-Alonso

Abstract:

The problem of this research related to business intelligence is the lack of a tool that supports automated and efficient financial analysis for decision-making and allows an evaluation of the financial statements, which is why the availability of the information is difficult. Relevant information to managers and users as an instrument in decision making financial, and administrative. For them, a business intelligence solution is proposed that will reduce information access time, personnel costs, and process automation, proposing a 4-layer architecture based on what was reviewed by the research methodology.

Keywords: decision making, business intelligence, Google Cloud, Microsoft Power BI

Procedia PDF Downloads 100
6010 The Relationship of Emotional Intelligence, Perceived Stress, Religious Coping with Psychological Distress among Afghan Students

Authors: Mustafa Jahanara

Abstract:

The aim of present research was to study of the relationship between emotional intelligence, perceived stress, positive religious coping with psychological distress to in a sample of undergraduate students in Polytechnic University in Kabul. One hundred and fifty-tow students (102 male, 50 female) were included in this study. All participants completed the Emotional Intelligence Scale (EIS), General Health Questionnaire (GHQ 12), Perceived Stress Scale (PSS-10), and the Brief RCOPE. The results revealed that EI was negatively associated with perceived stress and psychological distress. Also emotional intelligence was positively correlated with positive religious coping. Perceived stress was positive related with psychological distress and negatively correlated with positive religious coping. Eventually positive religious coping was significantly and negatively correlated with psychological distress. However, emotional intelligence and positive religious coping could influence on mental health.

Keywords: emotional intelligence, perceived stress, positive religious coping, psychological distress

Procedia PDF Downloads 520