Search results for: convex optimization
2721 Optimum Dimensions of Hydraulic Structures Foundation and Protections Using Coupled Genetic Algorithm with Artificial Neural Network Model
Authors: Dheyaa W. Abbood, Rafa H. AL-Suhaili, May S. Saleh
Abstract:
A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs length sand their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy.The optimization carried out subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the downstream side of the structure to overcome an excessive exit gradient. The Geo-studios oft ware, was used to analyze 1200 different cases. For each case the length of protection and volume of structure required to satisfy the safety factors mentioned previously were estimated. An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the cross-over probability, the mutation probability and level ,the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate that the most factor that affects the optimum solution is the number of population required. The minimum value that gives stable global optimum solution of this parameters is (30000) while other variables have little effect on the optimum solution.Keywords: inclined cutoff, optimization, genetic algorithm, artificial neural networks, geo-studio, uplift pressure, exit gradient, factor of safety
Procedia PDF Downloads 3252720 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film
Authors: Li Long, Thomas Ortlepp
Abstract:
A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor, and sensor layout geometrical form factor. Based on the properties of electrons, phonons, grain boundaries, and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of the Boltzmann transport equation. The model includes the effect of grain structure, grain boundary trap properties, and doping concentration. The layer structure factor is analyzed with respect to the infrared absorption coefficient. The optimization of layout design is characterized by the form factor, which is calculated for different sensor designs. A double-layer polycrystalline silicon thermopile infrared sensor on a suspended membrane has been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed by measurement results.Keywords: polycrystalline silicon, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor
Procedia PDF Downloads 1452719 Proxisch: An Optimization Approach of Large-Scale Unstable Proxy Servers Scheduling
Authors: Xiaoming Jiang, Jinqiao Shi, Qingfeng Tan, Wentao Zhang, Xuebin Wang, Muqian Chen
Abstract:
Nowadays, big companies such as Google, Microsoft, which have adequate proxy servers, have perfectly implemented their web crawlers for a certain website in parallel. But due to lack of expensive proxy servers, it is still a puzzle for researchers to crawl large amounts of information from a single website in parallel. In this case, it is a good choice for researchers to use free public proxy servers which are crawled from the Internet. In order to improve efficiency of web crawler, the following two issues should be considered primarily: (1) Tasks may fail owing to the instability of free proxy servers; (2) A proxy server will be blocked if it visits a single website frequently. In this paper, we propose Proxisch, an optimization approach of large-scale unstable proxy servers scheduling, which allow anyone with extremely low cost to run a web crawler efficiently. Proxisch is designed to work efficiently by making maximum use of reliable proxy servers. To solve second problem, it establishes a frequency control mechanism which can ensure the visiting frequency of any chosen proxy server below the website’s limit. The results show that our approach performs better than the other scheduling algorithms.Keywords: proxy server, priority queue, optimization algorithm, distributed web crawling
Procedia PDF Downloads 2132718 Energy Efficient Clustering with Adaptive Particle Swarm Optimization
Authors: KumarShashvat, ArshpreetKaur, RajeshKumar, Raman Chadha
Abstract:
Wireless sensor networks have principal characteristic of having restricted energy and with limitation that energy of the nodes cannot be replenished. To increase the lifetime in this scenario WSN route for data transmission is opted such that utilization of energy along the selected route is negligible. For this energy efficient network, dandy infrastructure is needed because it impinges the network lifespan. Clustering is a technique in which nodes are grouped into disjoints and non–overlapping sets. In this technique data is collected at the cluster head. In this paper, Adaptive-PSO algorithm is proposed which forms energy aware clusters by minimizing the cost of locating the cluster head. The main concern is of the suitability of the swarms by adjusting the learning parameters of PSO. Particle Swarm Optimization converges quickly at the beginning stage of the search but during the course of time, it becomes stable and may be trapped in local optima. In suggested network model swarms are given the intelligence of the spiders which makes them capable enough to avoid earlier convergence and also help them to escape from the local optima. Comparison analysis with traditional PSO shows that new algorithm considerably enhances the performance where multi-dimensional functions are taken into consideration.Keywords: Particle Swarm Optimization, adaptive – PSO, comparison between PSO and A-PSO, energy efficient clustering
Procedia PDF Downloads 2492717 Uncertainty and Optimization Analysis Using PETREL RE
Authors: Ankur Sachan
Abstract:
The ability to make quick yet intelligent and value-added decisions to develop new fields has always been of great significance. In situations where the capital expenses and subsurface risk are high, carefully analyzing the inherent uncertainties in the reservoir and how they impact the predicted hydrocarbon accumulation and production becomes a daunting task. The problem is compounded in offshore environments, especially in the presence of heavy oils and disconnected sands where the margin for error is small. Uncertainty refers to the degree to which the data set may be in error or stray from the predicted values. To understand and quantify the uncertainties in reservoir model is important when estimating the reserves. Uncertainty parameters can be geophysical, geological, petrophysical etc. Identification of these parameters is necessary to carry out the uncertainty analysis. With so many uncertainties working at different scales, it becomes essential to have a consistent and efficient way of incorporating them into our analysis. Ranking the uncertainties based on their impact on reserves helps to prioritize/ guide future data gathering and uncertainty reduction efforts. Assigning probabilistic ranges to key uncertainties also enables the computation of probabilistic reserves. With this in mind, this paper, with the help the uncertainty and optimization process in petrel RE shows how the most influential uncertainties can be determined efficiently and how much impact so they have on the reservoir model thus helping in determining a cost effective and accurate model of the reservoir.Keywords: uncertainty, reservoir model, parameters, optimization analysis
Procedia PDF Downloads 6612716 Optimization of Wear during Dry Sliding Wear of AISI 1042 Steel Using Response Surface Methodology
Authors: Sukant Mehra, Parth Gupta, Varun Arora, Sarvoday Singh, Amit Kohli
Abstract:
The study was emphasised on dry sliding wear behavior of AISI 1042 steel. Dry sliding wear tests were performed using pin-on-disk apparatus under normal loads of 5, 7.5 and 10 kgf and at speeds 600, 750 and 900 rpm. Response surface methodology (RSM) was utilized for finding optimal values of process parameter and experiment was based on rotatable, central composite design (CCD). It was found that the wear followed linear pattern with the load and rpm. The obtained optimal process parameters have been predicted and verified by confirmation experiments.Keywords: central composite design (CCD), optimization, response surface methodology (RSM), wear
Procedia PDF Downloads 5772715 Multi Objective Optimization for Two-Sided Assembly Line Balancing
Authors: Srushti Bhatt, M. B. Kiran
Abstract:
Two-sided assembly line balancing problem is yet to be addressed simply to compete for the global market for manufacturers. The task assigned in an ordered sequence to get optimum performance of the system is known as assembly line balancing problem mainly classified as single and two sided. It is very challenging in manufacturing industries to balance two-sided assembly line, wherein the set of sequential workstations the task operations are performed in two sides of the line. The conflicting major objective in two-sided assembly line balancing problem is either to maximize /minimize the performance parameters. The present study emphases on combining different evolutionary algorithm; ant colony, Tabu search and petri net method; and compares their results of an algorithm for solving two-sided assembly line balancing problem. The concept of multi objective optimization of performance parameters is now a day adopted to make a decision involving more than one objective function to be simultaneously optimized. The optimum result can be expected among the selected methods using multi-objective optimization. The performance parameters considered in the present study are a number of workstation, slickness and smoothness index. The simulation of the assembly line balancing problem provides optimal results of classical and practical problems.Keywords: Ant colony, petri net, tabu search, two sided ALBP
Procedia PDF Downloads 2782714 Optimization of Dez Dam Reservoir Operation Using Genetic Algorithm
Authors: Alireza Nikbakht Shahbazi, Emadeddin Shirali
Abstract:
Since optimization issues of water resources are complicated due to the variety of decision making criteria and objective functions, it is sometimes impossible to resolve them through regular optimization methods or, it is time or money consuming. Therefore, the use of modern tools and methods is inevitable in resolving such problems. An accurate and essential utilization policy has to be determined in order to use natural resources such as water reservoirs optimally. Water reservoir programming studies aim to determine the final cultivated land area based on predefined agricultural models and water requirements. Dam utilization rule curve is also provided in such studies. The basic information applied in water reservoir programming studies generally include meteorological, hydrological, agricultural and water reservoir related data, and the geometric characteristics of the reservoir. The system of Dez dam water resources was simulated applying the basic information in order to determine the capability of its reservoir to provide the objectives of the performed plan. As a meta-exploratory method, genetic algorithm was applied in order to provide utilization rule curves (intersecting the reservoir volume). MATLAB software was used in order to resolve the foresaid model. Rule curves were firstly obtained through genetic algorithm. Then the significance of using rule curves and the decrease in decision making variables in the system was determined through system simulation and comparing the results with optimization results (Standard Operating Procedure). One of the most essential issues in optimization of a complicated water resource system is the increasing number of variables. Therefore a lot of time is required to find an optimum answer and in some cases, no desirable result is obtained. In this research, intersecting the reservoir volume has been applied as a modern model in order to reduce the number of variables. Water reservoir programming studies has been performed based on basic information, general hypotheses and standards and applying monthly simulation technique for a statistical period of 30 years. Results indicated that application of rule curve prevents the extreme shortages and decrease the monthly shortages.Keywords: optimization, rule curve, genetic algorithm method, Dez dam reservoir
Procedia PDF Downloads 2672713 Parametric Appraisal of Robotic Arc Welding of Mild Steel Material by Principal Component Analysis-Fuzzy with Taguchi Technique
Authors: Amruta Rout, Golak Bihari Mahanta, Gunji Bala Murali, Bibhuti Bhusan Biswal, B. B. V. L. Deepak
Abstract:
The use of industrial robots for performing welding operation is one of the chief sign of contemporary welding in these days. The weld joint parameter and weld process parameter modeling is one of the most crucial aspects of robotic welding. As weld process parameters affect the weld joint parameters differently, a multi-objective optimization technique has to be utilized to obtain optimal setting of weld process parameter. In this paper, a hybrid optimization technique, i.e., Principal Component Analysis (PCA) combined with fuzzy logic has been proposed to get optimal setting of weld process parameters like wire feed rate, welding current. Gas flow rate, welding speed and nozzle tip to plate distance. The weld joint parameters considered for optimization are the depth of penetration, yield strength, and ultimate strength. PCA is a very efficient multi-objective technique for converting the correlated and dependent parameters into uncorrelated and independent variables like the weld joint parameters. Also in this approach, no need for checking the correlation among responses as no individual weight has been assigned to responses. Fuzzy Inference Engine can efficiently consider these aspects into an internal hierarchy of it thereby overcoming various limitations of existing optimization approaches. At last Taguchi method is used to get the optimal setting of weld process parameters. Therefore, it has been concluded the hybrid technique has its own advantages which can be used for quality improvement in industrial applications.Keywords: robotic arc welding, weld process parameters, weld joint parameters, principal component analysis, fuzzy logic, Taguchi method
Procedia PDF Downloads 1802712 Flame Dynamics in Small Scale Channels
Authors: Mohammed Mahmoud Osman Ahmed, Akram Mohammad
Abstract:
Flame dynamics in heated quartz glass channels of various aspect ratios (2,5,10,15) were experimentally investigated. A premixed Propane-air mixture was used for the reported experiments. Regarding micro-combustion, flame quenching is considered to be the most crucial problem to overcome first. Experiments were carried out on four channels with different aspect ratios. The results show that at a very low equivalence ratio ϕ=0.4, there is no flame inside the channels. The FREI condition (Flame with repetitive extinction and ignition) was overcome by increasing velocity and by making the channels more in contact with the external heater. The flame tested inside the channels at different locations for V=0.3 m/s or higher below V=0.65 m/s. The effects of equivalence ratio and flow velocity on the characteristics of combustion in the channels were examined. Different ways of flame propagation were observed in the current investigations based on how they appear as planar, concave and convex flames.Keywords: flame stabilization, combustion, flame dynamics, small-scale channels, external heater
Procedia PDF Downloads 2292711 Parallel 2-Opt Local Search on GPU
Authors: Wen-Bao Qiao, Jean-Charles Créput
Abstract:
To accelerate the solution for large scale traveling salesman problems (TSP), a parallel 2-opt local search algorithm with simple implementation based on Graphics Processing Unit (GPU) is presented and tested in this paper. The parallel scheme is based on technique of data decomposition by dynamically assigning multiple K processors on the integral tour to treat K edges’ 2-opt local optimization simultaneously on independent sub-tours, where K can be user-defined or have a function relationship with input size N. We implement this algorithm with doubly linked list on GPU. The implementation only requires O(N) memory. We compare this parallel 2-opt local optimization against sequential exhaustive 2-opt search along integral tour on TSP instances from TSPLIB with more than 10000 cities.Keywords: parallel 2-opt, double links, large scale TSP, GPU
Procedia PDF Downloads 6282710 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718
Authors: Pushpendra S. Bharti, S. Maheshwari
Abstract:
Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.Keywords: electric discharge machining, material removal rate, surface roughness, too wear rate, multi-response signal-to-noise ratio, multi response signal-to-noise ratio, optimization
Procedia PDF Downloads 3552709 Optimum Dewatering Network Design Using Firefly Optimization Algorithm
Authors: S. M. Javad Davoodi, Mojtaba Shourian
Abstract:
Groundwater table close to the ground surface causes major problems in construction and mining operation. One of the methods to control groundwater in such cases is using pumping wells. These pumping wells remove excess water from the site project and lower the water table to a desirable value. Although the efficiency of this method is acceptable, it needs high expenses to apply. It means even small improvement in a design of pumping wells can lead to substantial cost savings. In order to minimize the total cost in the method of pumping wells, a simulation-optimization approach is applied. The proposed model integrates MODFLOW as the simulation model with Firefly as the optimization algorithm. In fact, MODFLOW computes the drawdown due to pumping in an aquifer and the Firefly algorithm defines the optimum value of design parameters which are numbers, pumping rates and layout of the designing wells. The developed Firefly-MODFLOW model is applied to minimize the cost of the dewatering project for the ancient mosque of Kerman city in Iran. Repetitive runs of the Firefly-MODFLOW model indicates that drilling two wells with the total rate of pumping 5503 m3/day is the result of the minimization problem. Results show that implementing the proposed solution leads to at least 1.5 m drawdown in the aquifer beneath mosque region. Also, the subsidence due to groundwater depletion is less than 80 mm. Sensitivity analyses indicate that desirable groundwater depletion has an enormous impact on total cost of the project. Besides, in a hypothetical aquifer decreasing the hydraulic conductivity contributes to decrease in total water extraction for dewatering.Keywords: groundwater dewatering, pumping wells, simulation-optimization, MODFLOW, firefly algorithm
Procedia PDF Downloads 2942708 Kriging-Based Global Optimization Method for Bluff Body Drag Reduction
Authors: Bingxi Huang, Yiqing Li, Marek Morzynski, Bernd R. Noack
Abstract:
We propose a Kriging-based global optimization method for active flow control with multiple actuation parameters. This method is designed to converge quickly and avoid getting trapped into local minima. We follow the model-free explorative gradient method (EGM) to alternate between explorative and exploitive steps. This facilitates a convergence similar to a gradient-based method and the parallel exploration of potentially better minima. In contrast to EGM, both kinds of steps are performed with Kriging surrogate model from the available data. The explorative step maximizes the expected improvement, i.e., favors regions of large uncertainty. The exploitive step identifies the best location of the cost function from the Kriging surrogate model for a subsequent weight-biased linear-gradient descent search method. To verify the effectiveness and robustness of the improved Kriging-based optimization method, we have examined several comparative test problems of varying dimensions with limited evaluation budgets. The results show that the proposed algorithm significantly outperforms some model-free optimization algorithms like genetic algorithm and differential evolution algorithm with a quicker convergence for a given budget. We have also performed direct numerical simulations of the fluidic pinball (N. Deng et al. 2020 J. Fluid Mech.) on three circular cylinders in equilateral-triangular arrangement immersed in an incoming flow at Re=100. The optimal cylinder rotations lead to 44.0% net drag power saving with 85.8% drag reduction and 41.8% actuation power. The optimal results for active flow control based on this configuration have achieved boat-tailing mechanism by employing Coanda forcing and wake stabilization by delaying separation and minimizing the wake region.Keywords: direct numerical simulations, flow control, kriging, stochastic optimization, wake stabilization
Procedia PDF Downloads 1072707 Mixed Integer Programing for Multi-Tier Rebate with Discontinuous Cost Function
Authors: Y. Long, L. Liu, K. V. Branin
Abstract:
One challenge faced by procurement decision-maker during the acquisition process is how to compare similar products from different suppliers and allocate orders among different products or services. This work focuses on allocating orders among multiple suppliers considering rebate. The objective function is to minimize the total acquisition cost including purchasing cost and rebate benefit. Rebate benefit is complex and difficult to estimate at the ordering step. Rebate rules vary for different suppliers and usually change over time. In this work, we developed a system to collect the rebate policies, standardized the rebate policies and developed two-stage optimization models for ordering allocation. Rebate policy with multi-tiers is considered in modeling. The discontinuous cost function of rebate benefit is formulated for different scenarios. A piecewise linear function is used to approximate the discontinuous cost function of rebate benefit. And a Mixed Integer Programing (MIP) model is built for order allocation problem with multi-tier rebate. A case study is presented and it shows that our optimization model can reduce the total acquisition cost by considering rebate rules.Keywords: discontinuous cost function, mixed integer programming, optimization, procurement, rebate
Procedia PDF Downloads 2602706 Simulation and Optimization of Hybrid Energy System Autonomous PV-Diesel-Wind Power with Battery Storage for Relay Antenna Telecommunication
Authors: Tahri Toufik, Bouchachia Mohamed, Braikia Oussama
Abstract:
The objective of this work is the design and optimization of a hybrid PV-Diesel-Wind power system with storage in order to power a relay antenna telecommunication isolated in Chlef region. The aim of the simulation of this hybrid system by the HOMER software is to determine the size and the number of each element of the system and to determine the optimal technical and economic configuration using monthly average values per year for a fixed charge antenna relay telecommunication of 22kWh/d.Keywords: HOMER, hybrid, PV-diesel-wind system, relay antenna telecommunication
Procedia PDF Downloads 5192705 Radial Distribution Network Reliability Improvement by Using Imperialist Competitive Algorithm
Authors: Azim Khodadadi, Sahar Sadaat Vakili, Ebrahim Babaei
Abstract:
This study presents a numerical method to optimize the failure rate and repair time of a typical radial distribution system. Failure rate and repair time are effective parameters in customer and energy based indices of reliability. Decrease of these parameters improves reliability indices. Thus, system stability will be boost. The penalty functions indirectly reflect the cost of investment which spent to improve these indices. Constraints on customer and energy based indices, i.e. SAIFI, SAIDI, CAIDI and AENS have been considered by using a new method which reduces optimization algorithm controlling parameters. Imperialist Competitive Algorithm (ICA) used as main optimization technique and particle swarm optimization (PSO), simulated annealing (SA) and differential evolution (DE) has been applied for further investigation. These algorithms have been implemented on a test system by MATLAB. Obtained results have been compared with each other. The optimized values of repair time and failure rate are much lower than current values which this achievement reduced investment cost and also ICA gives better answer than the other used algorithms.Keywords: imperialist competitive algorithm, failure rate, repair time, radial distribution network
Procedia PDF Downloads 6692704 Multi-Criteria Optimal Management Strategy for in-situ Bioremediation of LNAPL Contaminated Aquifer Using Particle Swarm Optimization
Authors: Deepak Kumar, Jahangeer, Brijesh Kumar Yadav, Shashi Mathur
Abstract:
In-situ remediation is a technique which can remediate either surface or groundwater at the site of contamination. In the present study, simulation optimization approach has been used to develop management strategy for remediating LNAPL (Light Non-Aqueous Phase Liquid) contaminated aquifers. Benzene, toluene, ethyl benzene and xylene are the main component of LNAPL contaminant. Collectively, these contaminants are known as BTEX. In in-situ bioremediation process, a set of injection and extraction wells are installed. Injection wells supply oxygen and other nutrient which convert BTEX into carbon dioxide and water with the help of indigenous soil bacteria. On the other hand, extraction wells check the movement of plume along downstream. In this study, optimal design of the system has been done using PSO (Particle Swarm Optimization) algorithm. A comprehensive management strategy for pumping of injection and extraction wells has been done to attain a maximum allowable concentration of 5 ppm and 4.5 ppm. The management strategy comprises determination of pumping rates, the total pumping volume and the total running cost incurred for each potential injection and extraction well. The results indicate a high pumping rate for injection wells during the initial management period since it facilitates the availability of oxygen and other nutrients necessary for biodegradation, however it is low during the third year on account of sufficient oxygen availability. This is because the contaminant is assumed to have biodegraded by the end of the third year when the concentration drops to a permissible level.Keywords: groundwater, in-situ bioremediation, light non-aqueous phase liquid, BTEX, particle swarm optimization
Procedia PDF Downloads 4452703 Gariep Dam Basin Management for Satisfying Ecological Flow Requirements
Authors: Dimeji Abe, Nonso Okoye, Gideon Ikpimi, Prince Idemudia
Abstract:
Multi-reservoir optimization operation has been a critical issue for river basin management. Water, as a scarce resource, is in high demand and the problems associated with the reservoir as its storage facility are enormous. The complexity in balancing the supply and demand of this prime resource has created the need to examine the best way to solve the problem using optimization techniques. The objective of this study is to evaluate the performance of the multi-objective meta-heuristic algorithm for the operation of Gariep Dam for satisfying ecological flow requirements. This study uses an evolutionary algorithm called backtrack search algorithm (BSA) to determine the best way to optimise the dam operations of hydropower production, flood control, and water supply without affecting the environmental flow requirement for the survival of aquatic bodies and sustain life downstream of the dam. To achieve this objective, the operations of the dam that corresponds to different tradeoffs between the objectives are optimized. The results indicate the best model from the algorithm that satisfies all the objectives without any constraint violation. It is expected that hydropower generation will be improved and more water will be available for ecological flow requirements with the use of the algorithm. This algorithm also provides farmers with more irrigation water as well to improve their business.Keywords: BSA evolutionary algorithm, metaheuristics, optimization, river basin management
Procedia PDF Downloads 2452702 Inversion of Electrical Resistivity Data: A Review
Authors: Shrey Sharma, Gunjan Kumar Verma
Abstract:
High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.Keywords: inversion, limitations, optimization, resistivity
Procedia PDF Downloads 3662701 Innovative Dissipative Bracings for Seismic-Resistant Automated Rack Supported Warehouses
Authors: Agnese Natali, Francesco Morelli, Walter Salvatore
Abstract:
Automated Rack Supported Warehouses (ARSWs) are storage buildings whose structure is made of the same racks where goods are placed. The possibility of designing dissipative seismic-resistant ARSWs is investigated. Diagonals are the dissipative elements, arranged as tense-only X bracings. Local optimization is numerically performed to satisfy the over-resistant connection request for the dissipative element, that is hard to be reached due the geometrical limits of the thin-walled diagonals and must be balanced with resistance, the limit of slenderness, and ductility requests.Keywords: steel racks, thin-walled cold-formed elements, structural optimization, hierarchy rules, dog-bone philosophy
Procedia PDF Downloads 1632700 Developing a Simulation-Based Optimization Framework to Perform Energy Simulation for Indian Buildings
Authors: Sujoy Anirudha Das, Albert Thomas
Abstract:
Building sector is a major consumer of energy globally, and it has corresponding effects to the environment with respect to the carbon emissions. Given the fact that India is expected to add 40-billion square meter of new buildings till 2050, we need frameworks that help in reducing the overall energy consumption in the building sector. Even though several simulation-based frameworks that help in analyzing the building energy consumption are developed globally, in the Indian context, to the best of our knowledge, there is a lack of a comprehensive, yet user-friendly framework to simulate and optimize the effects of various energy influencing factors, specifically for Indian buildings. Therefore, this study is aimed at developing a simulation-based optimization framework to model the energy interactions in different types of Indian buildings by considering the dynamic nature of various energy influencing factors. This comprehensive framework can be used by various building stakeholders to test the energy effects of different factors such as, but not limited to, the various building materials, the orientation, the weather fluctuations, occupancy changes and the type of the building (e.g., office, residential). The results from the case study involving several building types would help us in gaining insights to build new energy-efficient buildings as well as retrofit the existing structures in a more convenient way to consume less energy, exclusively for an Indian scenario.Keywords: building energy consumption, building energy simulations, energy efficient buildings, optimization framework
Procedia PDF Downloads 1782699 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling
Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar
Abstract:
Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.Keywords: toolpath, part program, optimization, pocket
Procedia PDF Downloads 2882698 CSoS-STRE: A Combat System-of-System Space-Time Resilience Enhancement Framework
Authors: Jiuyao Jiang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
Modern warfare has transitioned from the paradigm of isolated combat forces to system-to-system confrontations due to advancements in combat technologies and application concepts. A combat system-of-systems (CSoS) is a combat network composed of independently operating entities that interact with one another to provide overall operational capabilities. Enhancing the resilience of CSoS is garnering increasing attention due to its significant practical value in optimizing network architectures, improving network security and refining operational planning. Accordingly, a unified framework called CSoS space-time resilience enhancement (CSoS-STRE) has been proposed, which enhances the resilience of CSoS by incorporating spatial features. Firstly, a multilayer spatial combat network model has been constructed, which incorporates an information layer depicting the interrelations among combat entities based on the OODA loop, along with a spatial layer that considers the spatial characteristics of equipment entities, thereby accurately reflecting the actual combat process. Secondly, building upon the combat network model, a spatiotemporal resilience optimization model is proposed, which reformulates the resilience optimization problem as a classical linear optimization model with spatial features. Furthermore, the model is extended from scenarios without obstacles to those with obstacles, thereby further emphasizing the importance of spatial characteristics. Thirdly, a resilience-oriented recovery optimization method based on improved non dominated sorting genetic algorithm II (R-INSGA) is proposed to determine the optimal recovery sequence for the damaged entities. This method not only considers spatial features but also provides the optimal travel path for multiple recovery teams. Finally, the feasibility, effectiveness, and superiority of the CSoS-STRE are demonstrated through a case study. Simultaneously, under deliberate attack conditions based on degree centrality and maximum operational loop performance, the proposed CSoS-STRE method is compared with six baseline recovery strategies, which are based on performance, time, degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. The comparison demonstrates that CSoS-STRE achieves faster convergence and superior performance.Keywords: space-time resilience enhancement, resilience optimization model, combat system-of-systems, recovery optimization method, no-obstacles and obstacles
Procedia PDF Downloads 172697 Application of Particle Swarm Optimization to Thermal Sensor Placement for Smart Grid
Authors: Hung-Shuo Wu, Huan-Chieh Chiu, Xiang-Yao Zheng, Yu-Cheng Yang, Chien-Hao Wang, Jen-Cheng Wang, Chwan-Lu Tseng, Joe-Air Jiang
Abstract:
Dynamic Thermal Rating (DTR) provides crucial information by estimating the ampacity of transmission lines to improve power dispatching efficiency. To perform the DTR, it is necessary to install on-line thermal sensors to monitor conductor temperature and weather variables. A simple and intuitive strategy is to allocate a thermal sensor to every span of transmission lines, but the cost of sensors might be too high to bear. To deal with the cost issue, a thermal sensor placement problem must be solved. This research proposes and implements a hybrid algorithm which combines proper orthogonal decomposition (POD) with particle swarm optimization (PSO) methods. The proposed hybrid algorithm solves a multi-objective optimization problem that concludes the minimum number of sensors and the minimum error on conductor temperature, and the optimal sensor placement is determined simultaneously. The data of 345 kV transmission lines and the hourly weather data from the Taiwan Power Company and Central Weather Bureau (CWB), respectively, are used by the proposed method. The simulated results indicate that the number of sensors could be reduced using the optimal placement method proposed by the study and an acceptable error on conductor temperature could be achieved. This study provides power companies with a reliable reference for efficiently monitoring and managing their power grids.Keywords: dynamic thermal rating, proper orthogonal decomposition, particle swarm optimization, sensor placement, smart grid
Procedia PDF Downloads 4332696 Optimal Tuning of Linear Quadratic Regulator Controller Using a Particle Swarm Optimization for Two-Rotor Aerodynamical System
Authors: Ayad Al-Mahturi, Herman Wahid
Abstract:
This paper presents an optimal state feedback controller based on Linear Quadratic Regulator (LQR) for a two-rotor aero-dynamical system (TRAS). TRAS is a highly nonlinear multi-input multi-output (MIMO) system with two degrees of freedom and cross coupling. There are two parameters that define the behavior of LQR controller: state weighting matrix and control weighting matrix. The two parameters influence the performance of LQR. Particle Swarm Optimization (PSO) is proposed to optimally tune weighting matrices of LQR. The major concern of using LQR controller is to stabilize the TRAS by making the beam move quickly and accurately for tracking a trajectory or to reach a desired altitude. The simulation results were carried out in MATLAB/Simulink. The system is decoupled into two single-input single-output (SISO) systems. Comparing the performance of the optimized proportional, integral and derivative (PID) controller provided by INTECO, results depict that LQR controller gives a better performance in terms of both transient and steady state responses when PSO is performed.Keywords: LQR controller, optimal control, particle swarm optimization (PSO), two rotor aero-dynamical system (TRAS)
Procedia PDF Downloads 3242695 Energy and Exergy Performance Optimization on a Real Gas Turbine Power Plant
Authors: Farhat Hajer, Khir Tahar, Cherni Rafik, Dakhli Radhouen, Ammar Ben Brahim
Abstract:
This paper presents the energy and exergy optimization of a real gas turbine power plant performance of 100 MW of power, installed in the South East of Tunisia. A simulation code is established using the EES (Engineering Equation Solver) software. The parameters considered are those of the actual operating conditions of the gas turbine thermal power station under study. The results show that thermal and exergetic efficiency decreases with the increase of the ambient temperature. Air excess has an important effect on the thermal efficiency. The emission of NOx rises in the summer and decreases in the winter. The obtained rates of NOx are compared with measurements results.Keywords: efficiency, exergy, gas turbine, temperature
Procedia PDF Downloads 2842694 Seat Assignment Model for Student Admissions Process at Saudi Higher Education Institutions
Authors: Mohammed Salem Alzahrani
Abstract:
In this paper, student admission process is studied to optimize the assignment of vacant seats with three main objectives. Utilizing all vacant seats, satisfying all program of study admission requirements and maintaining fairness among all candidates are the three main objectives of the optimization model. Seat Assignment Method (SAM) is used to build the model and solve the optimization problem with help of Northwest Coroner Method and Least Cost Method. A closed formula is derived for applying the priority of assigning seat to candidate based on SAM.Keywords: admission process model, assignment problem, Hungarian Method, Least Cost Method, Northwest Corner Method, SAM
Procedia PDF Downloads 5002693 Application of Simulated Annealing to Threshold Optimization in Distributed OS-CFAR System
Authors: L. Abdou, O. Taibaoui, A. Moumen, A. Talib Ahmed
Abstract:
This paper proposes an application of the simulated annealing to optimize the detection threshold in an ordered statistics constant false alarm rate (OS-CFAR) system. Using conventional optimization methods, such as the conjugate gradient, can lead to a local optimum and lose the global optimum. Also for a system with a number of sensors that is greater than or equal to three, it is difficult or impossible to find this optimum; Hence, the need to use other methods, such as meta-heuristics. From a variety of meta-heuristic techniques, we can find the simulated annealing (SA) method, inspired from a process used in metallurgy. This technique is based on the selection of an initial solution and the generation of a near solution randomly, in order to improve the criterion to optimize. In this work, two parameters will be subject to such optimisation and which are the statistical order (k) and the scaling factor (T). Two fusion rules; “AND” and “OR” were considered in the case where the signals are independent from sensor to sensor. The results showed that the application of the proposed method to the problem of optimisation in a distributed system is efficiency to resolve such problems. The advantage of this method is that it allows to browse the entire solutions space and to avoid theoretically the stagnation of the optimization process in an area of local minimum.Keywords: distributed system, OS-CFAR system, independent sensors, simulating annealing
Procedia PDF Downloads 4972692 A Hybrid Based Algorithm to Solve the Multi-objective Minimum Spanning Tree Problem
Authors: Boumesbah Asma, Chergui Mohamed El-amine
Abstract:
Since it has been shown that the multi-objective minimum spanning tree problem (MOST) is NP-hard even with two criteria, we propose in this study a hybrid NSGA-II algorithm with an exact mutation operator, which is only used with low probability, to find an approximation to the Pareto front of the problem. In a connected graph G, a spanning tree T of G being a connected and cycle-free graph, if k edges of G\T are added to T, we obtain a partial graph H of G inducing a reduced size multi-objective spanning tree problem compared to the initial one. With a weak probability for the mutation operator, an exact method for solving the reduced MOST problem considering the graph H is then used to give birth to several mutated solutions from a spanning tree T. Then, the selection operator of NSGA-II is activated to obtain the Pareto front approximation. Finally, an adaptation of the VNS metaheuristic is called for further improvements on this front. It allows finding good individuals to counterbalance the diversification and the intensification during the optimization search process. Experimental comparison studies with an exact method show promising results and indicate that the proposed algorithm is efficient.Keywords: minimum spanning tree, multiple objective linear optimization, combinatorial optimization, non-sorting genetic algorithm, variable neighborhood search
Procedia PDF Downloads 92