Search results for: coding complexity metric mccabe
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2522

Search results for: coding complexity metric mccabe

1892 Perspective Shifting in the Elicited Language Production Can Defy with Aging

Authors: Tuyuan Cheng

Abstract:

As we age, many things become more difficult. Among the abilities are the linguistic and cognitive ones. Competing theories have shown that these two functions could diminish together or that one is selectively affected by the other. In other words, some proposes aging affects sentence production in the same way it affects sentence comprehension and other cognitive functions, while some argues it does not.To address this question, the current investigation is conducted into the critical aspect of sentences as well as cognitive abilities – the syntactic complexity and the number of perspective shifts being contained in the elicited production. Healthy non-pathological aging is often characterized by a cognitive and neural decline in a number of cognitive abilities. Although the language is assumed to be of the more stable domain, a variety of findings in the cognitive aging literature would suggest otherwise. Older adults often show deficits in language production and multiple aspects of comprehension. Nevertheless, while some age differences likely reflect cognitive decline, others might reflect changes in communicative goals, and some even display cognitive advantages. In the domain of language processing, research efforts have been made in tests that probed a variety of communicative abilities. In general, there exists a distinction: Comprehension seems to be selectively unaffected, while production does not. The current study raises a novel question and investigates whether aging affects the production of relative clauses (RCs) under the cognitive factor of perspective shifts. Based on Perspective Hypothesis (MacWhinney, 2000, 2005), our cognitive processes build upon a fundamental system of perspective-taking, and language provides a series of cues to facilitate the construction and shifting of perspectives. These cues include a wide variety of constructions, including RCs structures. In this regard, linguistic complexity can be determined by the number of perspective shifts, and the processing difficulties of RCs can be interpreted within the theory of perspective shifting. Two experiments were conducted to study language production under controlled conditions. In Experiment 1, older healthy participants were tested on standard measures of cognitive aging, including MMSE (Mini-Mental State Examination), ToMI-2 (a simplified Theory of Mind Inventory-2), and a perspective-shifting comprehension task programmed with E-Prime. The results were analyzed to examine if/how they are correlated with aging people’s subsequent production data. In Experiment 2, the production profile of differing RCs, SRC vs. ORC, were collected with healthy aging participants who perform a picture elicitation task. Variable containing 0, 1, or 2 perspective shifts were juxtaposed respectively to the pictures and counterbalanced presented for elicitation. In parallel, a controlled group of young adults were recruited to examine the linguistic and cognitive abilities in question. The results lead us to the discussion whetheraging affects RCs production in a manner determined by its semantic structure or the number of perspective shifts it contains or the status of participants’ mental understanding. The major findingsare: (1) Elders’ production on Chinese RCtypes did not display intrinsic difficulty asymmetry. (2) RC types (the linguistic structural features) and the cognitiveperspective shifts jointly play important roles in the elders’ RCproduction. (3) The production of RC may defy the aging in the case offlexibly preserved cognitive ability.

Keywords: cognition aging, perspective hypothesis, perspective shift, relative clauses, sentence complexity

Procedia PDF Downloads 121
1891 "Project" Approach in Urban: A Response to Uncertainty

Authors: Mouhoubi Nedjima, Sassi Boudemagh Souad

Abstract:

In this paper, we will try to demonstrate the importance of the project approach in the urban to deal with uncertainty, the importance of the involvement of all stakeholders in the urban project process and that the absence of an actor can lead to project failure but also the importance of the urban project management. These points are handled through the following questions: Does the urban adhere to the theory of complexity? Does the project approach bring hope and solution to make urban planning "sustainable"? How converging visions of actors for the same project? Is the management of urban project the solution to support the urban project approach?

Keywords: strategic planning, project, urban project stakeholders, management

Procedia PDF Downloads 514
1890 A Corpus-Based Study on the Lexical, Syntactic and Sequential Features across Interpreting Types

Authors: Qianxi Lv, Junying Liang

Abstract:

Among the various modes of interpreting, simultaneous interpreting (SI) is regarded as a ‘complex’ and ‘extreme condition’ of cognitive tasks while consecutive interpreters (CI) do not have to share processing capacity between tasks. Given that SI exerts great cognitive demand, it makes sense to posit that the output of SI may be more compromised than that of CI in the linguistic features. The bulk of the research has stressed the varying cognitive demand and processes involved in different modes of interpreting; however, related empirical research is sparse. In keeping with our interest in investigating the quantitative linguistic factors discriminating between SI and CI, the current study seeks to examine the potential lexical simplification, syntactic complexity and sequential organization mechanism with a self-made inter-model corpus of transcribed simultaneous and consecutive interpretation, translated speech and original speech texts with a total running word of 321960. The lexical features are extracted in terms of the lexical density, list head coverage, hapax legomena, and type-token ratio, as well as core vocabulary percentage. Dependency distance, an index for syntactic complexity and reflective of processing demand is employed. Frequency motif is a non-grammatically-bound sequential unit and is also used to visualize the local function distribution of interpreting the output. While SI is generally regarded as multitasking with high cognitive load, our findings evidently show that CI may impose heavier or taxing cognitive resource differently and hence yields more lexically and syntactically simplified output. In addition, the sequential features manifest that SI and CI organize the sequences from the source text in different ways into the output, to minimize the cognitive load respectively. We reasoned the results in the framework that cognitive demand is exerted both on maintaining and coordinating component of Working Memory. On the one hand, the information maintained in CI is inherently larger in volume compared to SI. On the other hand, time constraints directly influence the sentence reformulation process. The temporal pressure from the input in SI makes the interpreters only keep a small chunk of information in the focus of attention. Thus, SI interpreters usually produce the output by largely retaining the source structure so as to relieve the information from the working memory immediately after formulated in the target language. Conversely, CI interpreters receive at least a few sentences before reformulation, when they are more self-paced. CI interpreters may thus tend to retain and generate the information in a way to lessen the demand. In other words, interpreters cope with the high demand in the reformulation phase of CI by generating output with densely distributed function words, more content words of higher frequency values and fewer variations, simpler structures and more frequently used language sequences. We consequently propose a revised effort model based on the result for a better illustration of cognitive demand during both interpreting types.

Keywords: cognitive demand, corpus-based, dependency distance, frequency motif, interpreting types, lexical simplification, sequential units distribution, syntactic complexity

Procedia PDF Downloads 181
1889 Interaction Between Task Complexity and Collaborative Learning on Virtual Patient Design: The Effects on Students’ Performance, Cognitive Load, and Task Time

Authors: Fatemeh Jannesarvatan, Ghazaal Parastooei, Jimmy frerejan, Saedeh Mokhtari, Peter Van Rosmalen

Abstract:

Medical and dental education increasingly emphasizes the acquisition, integration, and coordination of complex knowledge, skills, and attitudes that can be applied in practical situations. Instructional design approaches have focused on using real-life tasks in order to facilitate complex learning in both real and simulated environments. The Four component instructional design (4C/ID) model has become a useful guideline for designing instructional materials that improve learning transfer, especially in health profession education. The objective of this study was to apply the 4C/ID model in the creation of virtual patients (VPs) that dental students can use to practice their clinical management and clinical reasoning skills. The study first explored the context and concept of complication factors and common errors for novices and how they can affect the design of a virtual patient program. The study then selected key dental information and considered the content needs of dental students. The design of virtual patients was based on the 4C/ID model's fundamental principles, which included: Designing learning tasks that reflect real patient scenarios and applying different levels of task complexity to challenge students to apply their knowledge and skills in different contexts. Creating varied learning materials that support students during the VP program and are closely integrated with the learning tasks and students' curricula. Cognitive feedback was provided at different levels of the program. Providing procedural information where students followed a step-by-step process from history taking to writing a comprehensive treatment plan. Four virtual patients were designed using the 4C/ID model's principles, and an experimental design was used to test the effectiveness of the principles in achieving the intended educational outcomes. The 4C/ID model provides an effective framework for designing engaging and successful virtual patients that support the transfer of knowledge and skills for dental students. However, there are some challenges and pitfalls that instructional designers should take into account when developing these educational tools.

Keywords: 4C/ID model, virtual patients, education, dental, instructional design

Procedia PDF Downloads 82
1888 The Use of Tourism Destination Management for Image Branding as a Preferable Choice of Foreign Policy

Authors: Mehtab Alam, Mudiarasan Kuppusamy

Abstract:

Image branding is the prominent and well-guided phenomena of managing tourism destinations. It examines the image of cities forming as brand identity. Transformation of cities into tourist destinations is obligatory for the current management practices to be used for foreign policy. The research considers the features of perception, destination accommodation, destination quality, traveler revisit, destination information system, and behavioral image for tourism destination management. Using the quantitative and qualitative research methodology, the objective is to examine and investigate the opportunities for destination branding. It investigates the features and management of tourism destinations in Abbottabad city of Pakistan through SPSS and NVivo 12 software. The prospective outlook of the results and coding reflects the significant contribution of integrated destination management for image branding, where Abbottabad has the potential to become a destination city. The positive impact of branding integrates tourism management as it is fulfilling travelers’ requirements to influence the choice of destination for innovative foreign policy.

Keywords: image branding, destination management, tourism, foreign policy, innovative

Procedia PDF Downloads 96
1887 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea

Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim

Abstract:

Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: deep learning, algae concentration, remote sensing, satellite

Procedia PDF Downloads 184
1886 Risk-Based Computer Auditing and Measures of Prevention

Authors: Mohammad Hadi Khorashadi Zadeh, Amin Karkon, Seyd Mohammad Reza Mashhoori ‎

Abstract:

the technology of Computer audit played a major role in the progress and ‎prospects of a proper application to improve the quality and efficiency of audit ‎work. But due to the technical complexity and the specific risks of computer ‎audit, it should be shown effective in audit and preventive action. Mainly through ‎research in this paper, we proposes the causes of audit risk in a computer ‎environment and the risk of further proposals for measures to control, to some ‎extent reduce the risk of computer audit and improve the audit quality.‎

Keywords: computer auditing, risk, measures to prevent, information technology

Procedia PDF Downloads 490
1885 Revolutionary Solutions for Modeling and Visualization of Complex Software Systems

Authors: Jay Xiong, Li Lin

Abstract:

Existing software modeling and visualization approaches using UML are outdated, which are outcomes of reductionism and the superposition principle that the whole of a system is the sum of its parts, so that with them all tasks of software modeling and visualization are performed linearly, partially, and locally. This paper introduces revolutionary solutions for modeling and visualization of complex software systems, which make complex software systems much easy to understand, test, and maintain. The solutions are based on complexity science, offering holistic, automatic, dynamic, virtual, and executable approaches about thousand times more efficient than the traditional ones.

Keywords: complex systems, software maintenance, software modeling, software visualization

Procedia PDF Downloads 401
1884 Design and Implementation of Automated Car Anti-Collision System Device Using Distance Sensor

Authors: Mehrab Masayeed Habib, Tasneem Sanjana, Ahmed Amin Rumel

Abstract:

Automated car anti-collision system is a trending technology of science. A car anti-collision system is an automobile safety system. The aim of this paper was to describe designing a car anti-collision system device to reduce the severity of an accident. The purpose of this device is to prevent collision among cars and objects to reduce the accidental death of human. This project gives an overview of secure & smooth journey of car as well as the certainty of human life. This system is controlled by microcontroller PIC. Sharp distance sensor is used to detect any object within the danger range. A crystal oscillator is used to produce the oscillation and generates the clock pulse of the microcontroller. An LCD is used to give information about the safe distance and a buzzer is used as alarm. An actuator is used as automatic break and inside the actuator; there is a motor driver that runs the actuator. For coding ‘microC PRO for PIC’ was used and ’Proteus Design Suite version 8 Software’ was used for simulation.

Keywords: sharp distance sensor, microcontroller, MicroC PRO for PIC, proteus, actuator, automobile anti-collision system

Procedia PDF Downloads 474
1883 Manipulation of the Public Sphere to Win Cultural Hegemony: The Process by Which Islamic State Uses the Principles of the Overton Window to Engineer Extremism

Authors: A. Brigitte Coles

Abstract:

In order to be successful in a campaign against terror and maintain a favorable world order, we must recognize the effects of priming, framing, and agenda setting on the public sphere, and address how terrorist organizations are able to manipulate language and symbols to shift public opinion and increase recruitment success. Because of their unprecedented activity in the region and foreign recruitment success, this study specifically addresses how the Islamic State (IS/ISIS/ISIL) manipulates the public sphere to amplify support and increase western recruitment. By following a grounded theory methodology and coding triangulated data from IS propaganda, a model for the process of terrorist recruitment has emerged, concerning both environments and personalities susceptible to recruitment, and the steps by which an extremist can be created. This has resulted in the ability to reverse engineer a method by which counter recruitment operations can be facilitated in an effort to lessen the vulnerability of areas and individuals, as well as create dissent among current extremists.

Keywords: countering violent extremism, counter-terrorism, recruitment, overton window

Procedia PDF Downloads 346
1882 Performance Analysis of M-Ary Pulse Position Modulation in Multihop Multiple Input Multiple Output-Free Space Optical System over Uncorrelated Gamma-Gamma Atmospheric Turbulence Channels

Authors: Hechmi Saidi, Noureddine Hamdi

Abstract:

The performance of Decode and Forward (DF) multihop Free Space Optical ( FSO) scheme deploying Multiple Input Multiple Output (MIMO) configuration under Gamma-Gamma (GG) statistical distribution, that adopts M-ary Pulse Position Modulation (MPPM) coding, is investigated. We have extracted exact and estimated values of Symbol-Error Rates (SERs) respectively. A closed form formula related to the Probability Density Function (PDF) is expressed for our designed system. Thanks to the use of DF multihop MIMO FSO configuration and MPPM signaling, atmospheric turbulence is combatted; hence the transmitted signal quality is improved.

Keywords: free space optical, multiple input multiple output, M-ary pulse position modulation, multihop, decode and forward, symbol error rate, gamma-gamma channel

Procedia PDF Downloads 199
1881 Teaching Computer Programming to Diverse Students: A Comparative, Mixed-Methods, Classroom Research Study

Authors: Almudena Konrad, Tomás Galguera

Abstract:

Lack of motivation and interest is a serious obstacle to students’ learning computing skills. A need exists for a knowledge base on effective pedagogy and curricula to teach computer programming. This paper presents results from research evaluating a six-year project designed to teach complex concepts in computer programming collaboratively, while supporting students to continue developing their computer thinking and related coding skills individually. Utilizing a quasi-experimental, mixed methods design, the pedagogical approaches and methods were assessed in two contrasting groups of students with different socioeconomic status, gender, and age composition. Analyses of quantitative data from Likert-scale surveys and an evaluation rubric, combined with qualitative data from reflective writing exercises and semi-structured interviews yielded convincing evidence of the project’s success at both teaching and inspiring students.

Keywords: computational thinking, computing education, computer programming curriculum, logic, teaching methods

Procedia PDF Downloads 316
1880 Wireless Sensor Network for Forest Fire Detection and Localization

Authors: Tarek Dandashi

Abstract:

WSNs may provide a fast and reliable solution for the early detection of environment events like forest fires. This is crucial for alerting and calling for fire brigade intervention. Sensor nodes communicate sensor data to a host station, which enables a global analysis and the generation of a reliable decision on a potential fire and its location. A WSN with TinyOS and nesC for the capturing and transmission of a variety of sensor information with controlled source, data rates, duration, and the records/displaying activity traces is presented. We propose a similarity distance (SD) between the distribution of currently sensed data and that of a reference. At any given time, a fire causes diverging opinions in the reported data, which alters the usual data distribution. Basically, SD consists of a metric on the Cumulative Distribution Function (CDF). SD is designed to be invariant versus day-to-day changes of temperature, changes due to the surrounding environment, and normal changes in weather, which preserve the data locality. Evaluation shows that SD sensitivity is quadratic versus an increase in sensor node temperature for a group of sensors of different sizes and neighborhood. Simulation of fire spreading when ignition is placed at random locations with some wind speed shows that SD takes a few minutes to reliably detect fires and locate them. We also discuss the case of false negative and false positive and their impact on the decision reliability.

Keywords: forest fire, WSN, wireless sensor network, algortihm

Procedia PDF Downloads 263
1879 Efficient Motion Estimation by Fast Three Step Search Algorithm

Authors: S. M. Kulkarni, D. S. Bormane, S. L. Nalbalwar

Abstract:

The rapid development in the technology have dramatic impact on the medical health care field. Medical data base obtained with latest machines like CT Machine, MRI scanner requires large amount of memory storage and also it requires large bandwidth for transmission of data in telemedicine applications. Thus, there is need for video compression. As the database of medical images contain number of frames (slices), hence while coding of these images there is need of motion estimation. Motion estimation finds out movement of objects in an image sequence and gets motion vectors which represents estimated motion of object in the frame. In order to reduce temporal redundancy between successive frames of video sequence, motion compensation is preformed. In this paper three step search (TSS) block matching algorithm is implemented on different types of video sequences. It is shown that three step search algorithm produces better quality performance and less computational time compared with exhaustive full search algorithm.

Keywords: block matching, exhaustive search motion estimation, three step search, video compression

Procedia PDF Downloads 491
1878 Emerging Technologies for Learning: In Need of a Pro-Active Educational Strategy

Authors: Pieter De Vries, Renate Klaassen, Maria Ioannides

Abstract:

This paper is about an explorative research into the use of emerging technologies for teaching and learning in higher engineering education. The assumption is that these technologies and applications, which are not yet widely adopted, will help to improve education and as such actively work on the ability to better deal with the mismatch of skills bothering our industries. Technologies such as 3D printing, the Internet of Things, Virtual Reality, and others, are in a dynamic state of development which makes it difficult to grasp the value for education. Also, the instruments in current educational research seem not appropriate to assess the value of such technologies. This explorative research aims to foster an approach to better deal with this new complexity. The need to find out is urgent, because these technologies will be dominantly present in the near future in all aspects of life, including education. The methodology used in this research comprised an inventory of emerging technologies and tools that potentially give way to innovation and are used or about to be used in technical universities. The inventory was based on both a literature review and a review of reports and web resources like blogs and others and included a series of interviews with stakeholders in engineering education and at representative industries. In addition, a number of small experiments were executed with the aim to analyze the requirements for the use of in this case Virtual Reality and the Internet of Things to better understanding the opportunities and limitations in the day-today learning environment. The major findings indicate that it is rather difficult to decide about the value of these technologies for education due to the dynamic state of change and therefor unpredictability and the lack of a coherent policy at the institutions. Most decisions are being made by teachers on an individual basis, who in their micro-environment are not equipped to select, test and ultimately decide about the use of these technologies. Most experiences are being made in the industry knowing that the skills to handle these technologies are in high demand. The industry though is worried about the inclination and the capability of education to help bridge the skills gap related to the emergence of new technologies. Due to the complexity, the diversity, the speed of development and the decay, education is challenged to develop an approach that can make these technologies work in an integrated fashion. For education to fully profit from the opportunities, these technologies offer it is eminent to develop a pro-active strategy and a sustainable approach to frame the emerging technologies development.

Keywords: emerging technologies, internet of things, pro-active strategy, virtual reality

Procedia PDF Downloads 192
1877 Enterprise Information Portal Features: Results of Content Analysis Literature Review

Authors: Michal Krčál

Abstract:

Since their introduction in 1990’s, Enterprise Information Portals (EIPs) were investigated from different perspectives (e.g. project management, technology acceptance, IS success). However, no systematic literature review was produced to systematize both the research efforts and the technology itself. This paper reports first results of an extent systematic literature review study focused on research of EIPs and its categorization, specifically it reports a conceptual model of EIP features. The previous attempt to categorize EIP features was published in 2002. For the purpose of the literature review, content of 89 articles was analyzed in order to identify and categorize features of EIPs. The methodology of the literature review was as follows. Firstly, search queries in major indexing databases (Web of Science and SCOPUS) were used. The results of queries were analyzed according to their usability for the goal of the study. Then, full-texts were coded in Atlas.ti according to previously established coding scheme. The codes were categorized and the conceptual model of EIP features was created.

Keywords: enterprise information portal, content analysis, features, systematic literature review

Procedia PDF Downloads 298
1876 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping

Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa

Abstract:

The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.

Keywords: neural network computing, continuous functions generating the input-output mapping, decreasing the training time, machines with big memories

Procedia PDF Downloads 283
1875 Corruption, Tax Systems and Inclusive Development

Authors: Lawrence Kwaku Amoako, Parrendah Adwoa Kpeli

Abstract:

This paper analyses the implications of the corruption and tax system on inclusive development. We employ a sample of 45 countries between 2007 and 2020. We test for two related hypotheses; first, corruption hinders the smooth mobilisation of revenue through the tax system. Second, a rise in corruption amidst a defective tax system impairs inclusive development. We expect that a rise in the level of corruption in the economy will distort the tax system, thus affecting efficient revenue mobilisation and, subsequently, inclusive development. By extension, these findings have important policy implications for governments in containing corruption and building an effective tax system as it will help promote inclusive development.

Keywords: corruption, development, tax systems, tax complexity

Procedia PDF Downloads 113
1874 Investigate and Solving Analytic of Nonlinear Differential at Vibrations (Earthquake)and Beam-Column, by New Approach “AGM”

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Sara Akbari

Abstract:

In this study, we investigate building structures nonlinear behavior also solving analytic of nonlinear differential at vibrations. As we know most of engineering systems behavior in practical are non- linear process (especial at structural) and analytical solving (no numerical) these problems are complex, difficult and sometimes impossible (of course at form of analytical solving). In this symposium, we are going to exposure one method in engineering, that can solve sets of nonlinear differential equations with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical Method (Runge-Kutte 4th) and exact solutions. Finally, we can proof AGM method could be created huge evolution for researcher and student (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software, we can analytical solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations.

Keywords: new method AGM, vibrations, beam-column, angular frequency, energy dissipated, critical load

Procedia PDF Downloads 392
1873 Using Machine Learning as an Alternative for Predicting Exchange Rates

Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior

Abstract:

This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.

Keywords: exchage rate, prediction, machine learning, deep learning

Procedia PDF Downloads 33
1872 Bit Error Rate Performance of MIMO Systems for Wireless Communications

Authors: E. Ghayoula, M. Haj Taieb, A. Bouallegue, J. Y. Chouinard, R. Ghayoula

Abstract:

This paper evaluates the bit error rate (BER) performance of MIMO systems for wireless communication. MIMO uses multiple transmitting antennas, multiple receiving antennas and the space-time block codes to provide diversity. MIMO transmits signal encoded by space-time block (STBC) encoder through different transmitting antennas. These signals arrive at the receiver at slightly different times. Spatially separated multiple receiving antennas are employed to provide diversity reception to combat the effect of fading in the channel. This paper presents a detailed study of diversity coding for MIMO systems. STBC techniques are implemented and simulation results in terms of the BER performance with varying number of MIMO transmitting and receiving antennas are presented. Our results show how increasing the number of both transmit and receive antenna improves system performance and reduces the bit error rate.

Keywords: MIMO systems, diversity, BER, MRRC, SIMO, MISO, STBC, alamouti, SNR

Procedia PDF Downloads 490
1871 Energy Efficient Clustering with Reliable and Load-Balanced Multipath Routing for Wireless Sensor Networks

Authors: Alamgir Naushad, Ghulam Abbas, Shehzad Ali Shah, Ziaul Haq Abbas

Abstract:

Unlike conventional networks, it is particularly challenging to manage resources efficiently in Wireless Sensor Networks (WSNs) due to their inherent characteristics, such as dynamic network topology and limited bandwidth and battery power. To ensure energy efficiency, this paper presents a routing protocol for WSNs, namely, Enhanced Hybrid Multipath Routing (EHMR), which employs hierarchical clustering and proposes a next hop selection mechanism between nodes according to a maximum residual energy metric together with a minimum hop count. Load-balancing of data traffic over multiple paths is achieved for a better packet delivery ratio and low latency rate. Reliability is ensured in terms of higher data rate and lower end-to-end delay. EHMR also enhances the fast-failure recovery mechanism to recover a failed path. Simulation results demonstrate that EHMR achieves a higher packet delivery ratio, reduced energy consumption per-packet delivery, lower end-to-end latency, and reduced effect of data rate on packet delivery ratio when compared with eminent WSN routing protocols.

Keywords: energy efficiency, load-balancing, hierarchical clustering, multipath routing, wireless sensor networks

Procedia PDF Downloads 87
1870 Identification of Genomic Mutations in Prostate Cancer and Cancer Stem Cells By Single Cell RNAseq Analysis

Authors: Wen-Yang Hu, Ranli Lu, Mark Maienschein-Cline, Danping Hu, Larisa Nonn, Toshi Shioda, Gail S. Prins

Abstract:

Background: Genetic mutations are highly associated with increased prostate cancer risk. In addition to whole genome sequencing, somatic mutations can be identified by aligning transcriptome sequences to the human genome. Here we analyzed bulk RNAseq and single cell RNAseq data of human prostate cancer cells and their matched non-cancer cells in benign regions from 4 individual patients. Methods: Sequencing raw reads were aligned to the reference genome hg38 using STAR. Variants were annotated using Annovar with respect to overlap gene annotation information, effect on gene and protein sequence, and SIFT annotation of nonsynonymous variant effect. We determined cancer-specific novel alleles by comparing variant calls in cancer cells to matched benign cells from the same individual by selecting unique alleles that were only detected in the cancer samples. Results: In bulk RNAseq data from 3 patients, the most common variants were the noncoding mutations at UTR3/UTR5, and the major variant types were single-nucleotide polymorphisms (SNP) including frameshift mutations. C>T transversion is the most frequently presented substitution of SNP. A total of 222 genes carrying unique exonic or UTR variants were revealed in cancer cells across 3 patients but not in benign cells. Among them, transcriptome levels of 7 genes (CITED2, YOD1, MCM4, HNRNPA2B1, KIF20B, DPYSL2, NR4A1) were significantly up or down regulated in cancer stem cells. Out of the 222 commonly mutated genes in cancer, 19 have nonsynonymous variants and 11 are damaged genes with variants including SIFT, frameshifts, stop gain/loss, and insertions/deletions (indels). Two damaged genes, activating transcription factor 6 (ATF6) and histone demethylase KDM3A are of particular interest; the former is a survival factor for certain cancer cells while the later positively activates androgen receptor target genes in prostate cancer. Further, single cell RNAseq data of cancer cells and their matched non-cancer benign cells from both primary 2D and 3D tumoroid cultures were analyzed. Similar to the bulk RNAseq data, single cell RNAseq in cancer demonstrated that the exonic mutations are less common than noncoding variants, with SNPs including frameshift mutations the most frequently presented types in cancer. Compared to cancer stem cell enriched-3D tumoroids, 2D cancer cells carried 3-times higher variants, 8-times more coding mutations and 10-times more nonsynonymous SNP. Finally, in both 2D primary and 3D tumoroid cultures, cancer stem cells exhibited fewer coding mutations and noncoding SNP or insertions/deletions than non-stem cancer cells. Summary: Our study demonstrates the usefulness of bulk and single cell RNAseaq data in identifying somatic mutations in prostate cancer, providing an alternative method in screening candidate genes for prostate cancer diagnosis and potential therapeutic targets. Cancer stem cells carry fewer somatic mutations than non-stem cancer cells due to their inherited immortal stand DNA from parental stem cells that explains their long-lived characteristics.

Keywords: prostate cancer, stem cell, genomic mutation, RNAseq

Procedia PDF Downloads 23
1869 The Generalized Pareto Distribution as a Model for Sequential Order Statistics

Authors: Mahdy ‎Esmailian, Mahdi ‎Doostparast, Ahmad ‎Parsian

Abstract:

‎In this article‎, ‎sequential order statistics (SOS) censoring type II samples coming from the generalized Pareto distribution are considered‎. ‎Maximum likelihood (ML) estimators of the unknown parameters are derived on the basis of the available multiple SOS data‎. ‎Necessary conditions for existence and uniqueness of the derived ML estimates are given‎. Due to complexity in the proposed likelihood function‎, ‎a useful re-parametrization is suggested‎. ‎For illustrative purposes‎, ‎a Monte Carlo simulation study is conducted and an illustrative example is analysed‎.

Keywords: bayesian estimation‎, generalized pareto distribution‎, ‎maximum likelihood estimation‎, sequential order statistics

Procedia PDF Downloads 513
1868 A Cooperative Space-Time Transmission Scheme Based On Symbol Combinations

Authors: Keunhong Chae, Seokho Yoon

Abstract:

This paper proposes a cooperative Alamouti space time transmission scheme with low relay complexity for the cooperative communication systems. In the proposed scheme, the source node combines the data symbols to construct the Alamouti-coded form at the destination node, while the conventional scheme performs the corresponding operations at the relay nodes. In simulation results, it is shown that the proposed scheme achieves the second order cooperative diversity while maintaining the same bit error rate (BER) performance as that of the conventional scheme.

Keywords: Space-time transmission, cooperative communication system, MIMO.

Procedia PDF Downloads 352
1867 Competitiveness and Pricing Policy Assessment for Resilience Surface Access System at Airports

Authors: Dimitrios J. Dimitriou

Abstract:

Considering a worldwide tendency, air transports are growing very fast and many changes have taken place in planning, management and decision making process. Given the complexity of airport operation, the best use of existing capacity is the key driver of efficiency and productivity. This paper deals with the evaluation framework for the ground access at airports, by using a set of mode choice indicators providing key messages towards airport’s ground access performance. The application presents results for a sample of 12 European airports, illustrating recommendations to define policy and improve service for the air transport access chain.

Keywords: airport ground access, air transport chain, airport access performance, airport policy

Procedia PDF Downloads 371
1866 Structural Analysis and Modelling in an Evolving Iron Ore Operation

Authors: Sameh Shahin, Nannang Arrys

Abstract:

Optimizing pit slope stability and reducing strip ratio of a mining operation are two key tasks in geotechnical engineering. With a growing demand for minerals and an increasing cost associated with extraction, companies are constantly re-evaluating the viability of mineral deposits and challenging their geological understanding. Within Rio Tinto Iron Ore, the Structural Geology (SG) team investigate and collect critical data, such as point based orientations, mapping and geological inferences from adjacent pits to re-model deposits where previous interpretations have failed to account for structurally controlled slope failures. Utilizing innovative data collection methods and data-driven investigation, SG aims to address the root causes of slope instability. Committing to a resource grid drill campaign as the primary source of data collection will often bias data collection to a specific orientation and significantly reduce the capability to identify and qualify complexity. Consequently, these limitations make it difficult to construct a realistic and coherent structural model that identifies adverse structural domains. Without the consideration of complexity and the capability of capturing these structural domains, mining operations run the risk of inadequately designed slopes that may fail and potentially harm people. Regional structural trends have been considered in conjunction with surface and in-pit mapping data to model multi-batter fold structures that were absent from previous iterations of the structural model. The risk is evident in newly identified dip-slope and rock-mass controlled sectors of the geotechnical design rather than a ubiquitous dip-slope sector across the pit. The reward is two-fold: 1) providing sectors of rock-mass controlled design in previously interpreted structurally controlled domains and 2) the opportunity to optimize the slope angle for mineral recovery and reduced strip ratio. Furthermore, a resulting high confidence model with structures and geometries that can account for historic slope instabilities in structurally controlled domains where design assumptions failed.

Keywords: structural geology, geotechnical design, optimization, slope stability, risk mitigation

Procedia PDF Downloads 49
1865 Adaption of the Design Thinking Method for Production Planning in the Meat Industry Using Machine Learning Algorithms

Authors: Alica Höpken, Hergen Pargmann

Abstract:

The resource-efficient planning of the complex production planning processes in the meat industry and the reduction of food waste is a permanent challenge. The complexity of the production planning process occurs in every part of the supply chain, from agriculture to the end consumer. It arises from long and uncertain planning phases. Uncertainties such as stochastic yields, fluctuations in demand, and resource variability are part of this process. In the meat industry, waste mainly relates to incorrect storage, technical causes in production, or overproduction. The high amount of food waste along the complex supply chain in the meat industry could not be reduced by simple solutions until now. Therefore, resource-efficient production planning by conventional methods is currently only partially feasible. The realization of intelligent, automated production planning is basically possible through the application of machine learning algorithms, such as those of reinforcement learning. By applying the adapted design thinking method, machine learning methods (especially reinforcement learning algorithms) are used for the complex production planning process in the meat industry. This method represents a concretization to the application area. A resource-efficient production planning process is made available by adapting the design thinking method. In addition, the complex processes can be planned efficiently by using this method, since this standardized approach offers new possibilities in order to challenge the complexity and the high time consumption. It represents a tool to support the efficient production planning in the meat industry. This paper shows an elegant adaption of the design thinking method to apply the reinforcement learning method for a resource-efficient production planning process in the meat industry. Following, the steps that are necessary to introduce machine learning algorithms into the production planning of the food industry are determined. This is achieved based on a case study which is part of the research project ”REIF - Resource Efficient, Economic and Intelligent Food Chain” supported by the German Federal Ministry for Economic Affairs and Climate Action of Germany and the German Aerospace Center. Through this structured approach, significantly better planning results are achieved, which would be too complex or very time consuming using conventional methods.

Keywords: change management, design thinking method, machine learning, meat industry, reinforcement learning, resource-efficient production planning

Procedia PDF Downloads 129
1864 Simplified Linear Regression Model to Quantify the Thermal Resilience of Office Buildings in Three Different Power Outage Day Times

Authors: Nagham Ismail, Djamel Ouahrani

Abstract:

Thermal resilience in the built environment reflects the building's capacity to adapt to extreme climate changes. In hot climates, power outages in office buildings pose risks to the health and productivity of workers. Therefore, it is of interest to quantify the thermal resilience of office buildings by developing a user-friendly simplified model. This simplified model begins with creating an assessment metric of thermal resilience that measures the duration between the power outage and the point at which the thermal habitability condition is compromised, considering different power interruption times (morning, noon, and afternoon). In this context, energy simulations of an office building are conducted for Qatar's summer weather by changing different parameters that are related to the (i) wall characteristics, (ii) glazing characteristics, (iii) load, (iv) orientation and (v) air leakage. The simulation results are processed using SPSS to derive linear regression equations, aiding stakeholders in evaluating the performance of commercial buildings during different power interruption times. The findings reveal the significant influence of glazing characteristics on thermal resilience, with the morning power outage scenario posing the most detrimental impact in terms of the shortest duration before compromising thermal resilience.

Keywords: thermal resilience, thermal envelope, energy modeling, building simulation, thermal comfort, power disruption, extreme weather

Procedia PDF Downloads 78
1863 Study of Variation of Winds Behavior on Micro Urban Environment with Use of Fuzzy Logic for Wind Power Generation: Case Study in the Cities of Arraial do Cabo and São Pedro da Aldeia, State of Rio de Janeiro, Brazil

Authors: Roberto Rosenhaim, Marcos Antonio Crus Moreira, Robson da Cunha, Gerson Gomes Cunha

Abstract:

This work provides details on the wind speed behavior within cities of Arraial do Cabo and São Pedro da Aldeia located in the Lakes Region of the State of Rio de Janeiro, Brazil. This region has one of the best potentials for wind power generation. In interurban layer, wind conditions are very complex and depend on physical geography, size and orientation of buildings and constructions around, population density, and land use. In the same context, the fundamental surface parameter that governs the production of flow turbulence in urban canyons is the surface roughness. Such factors can influence the potential for power generation from the wind within the cities. Moreover, the use of wind on a small scale is not fully utilized due to complexity of wind flow measurement inside the cities. It is difficult to accurately predict this type of resource. This study demonstrates how fuzzy logic can facilitate the assessment of the complexity of the wind potential inside the cities. It presents a decision support tool and its ability to deal with inaccurate information using linguistic variables created by the heuristic method. It relies on the already published studies about the variables that influence the wind speed in the urban environment. These variables were turned into the verbal expressions that are used in computer system, which facilitated the establishment of rules for fuzzy inference and integration with an application for smartphones used in the research. In the first part of the study, challenges of the sustainable development which are described are followed by incentive policies to the use of renewable energy in Brazil. The next chapter follows the study area characteristics and the concepts of fuzzy logic. Data were collected in field experiment by using qualitative and quantitative methods for assessment. As a result, a map of the various points is presented within the cities studied with its wind viability evaluated by a system of decision support using the method multivariate classification based on fuzzy logic.

Keywords: behavior of winds, wind power, fuzzy logic, sustainable development

Procedia PDF Downloads 294