Search results for: cell centered finite volume method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24411

Search results for: cell centered finite volume method

23781 Hexane Extract of Thymus serpyllum L.: GC-MS Profile, Antioxidant Potential and Anticancer Impact on HepG2 (Liver Carcinoma) Cell Line

Authors: Salma Baig, Bakrudeen Ali Ahmad, Ainnul Hamidah Syahadah Azizan, Hapipah Mohd Ali, Elham Rouhollahi, Mahmood Ameen Abdulla

Abstract:

Free radical damage induced by reactive oxygen species (ROS) contributes to etiology of many chronic diseases, cancer being one of them. Recent studies have been successful in ROS targeted therapies via antioxidants using mouse models in cancer therapeutics. The present study was designed to scrutinize anticancer activity, antioxidant activity of 5 different extracts of Thymus serpyllum in MDA-MB-231, MCF-7, HepG2, HCT-116, PC3, and A549. Identification of the phytochemicals present in the most active extract of Thymus serpyllum was conducted using gas chromatography coupled with mass spectrophotometry and antioxidant activity was measured by using DPPH radical scavenging and FRAP assay. Anticancer impact of the extract in terms of IC50 was evaluated using MTT cell viability assay. Results revealed that the hexane extract showed the best anticancer activity in HepG2 (Liver Carcinoma Cell Line) with an IC50 value of 23 ± 0.14 µg/ml followed by 25 µg/ml in HCT-116 (Colon Cancer Cell Line), 30 µm/ml in MCF-7 (Breast Cancer Cell Line), 35 µg/ml in MDA-MB-231 (Breast Cancer Cell Line), 57 µg/ml in PC3 (Prostate Cancer Cell Line) and 60 µg/ml in A549 (Lung Carcinoma Cell Line). GC-MS profile of the hexane extract showed the presence of 31 compounds with carvacrol, thymol and thymoquione being the major compounds. Phenolics such as Vitamin E, terpinen-4-ol, borneol and phytol were also identified. Hence, here we present the first report on cytotoxicity of hexane extract of Thymus serpyllum extract in HepG2 cell line with a robust anticancer activity with an IC50 of 23 ± 0.14 µg/ml.

Keywords: Thymus serpyllum L., hexane extract, GC-MS profile, antioxidant activity, anticancer activity, HepG2 cell line

Procedia PDF Downloads 496
23780 Performance Analysis of Encased Sand Columns in Different Clayey Soils Using 3D Numerical Method

Authors: Enayatallah Najari, Ali Noorzad, Mehdi Siavoshnia

Abstract:

One of the most decent and low-cost options in soft clayey soil improvement is using stone columns to reduce the settlement and increase the bearing capacity which is used for different ways to do this in various projects with diverse conditions. In the current study, it is tried to evaluate this improvement method in 4 different weak soils with diverse properties like specific gravity, permeability coefficient, over consolidation ratio (OCR), poison’s ratio, internal friction angle and bulk modulus by using ABAQUS 3D finite element software. Increment and decrement impacts of each mentioned factor on settlement and lateral displacement of weak soil beds are analyzed. In analyzed models, the properties related to sand columns and geosynthetic cover are assumed to be constant with their optimum values, and just soft clayey soil parameters are considered to be variable. It’s also demonstrated that OCR value can play a determinant role in soil resistance.

Keywords: stone columns, geosynthetic, finite element, 3D analysis, soft soils

Procedia PDF Downloads 344
23779 Development of Portable Water Jet Cutter Mobile Hand Tool: Analysis of Nozzle Geometries and Materials

Authors: Razali Bin Abidin

Abstract:

This paper presents the development of a portable water jet cutter for soft materials such as meat. Twelve geometries of nozzles were simulated using finite element method. Water pressure was set to 1500 lb/in². Through the simulation, highest average water output speed was 133.04 m/s. The nozzle was fabricated from Al - alloy 5052 with the Factor of Safety~ 3. This indicates that the nozzle made of Al-alloy 5052 is capable of performing the cutting process without any fracture. Preliminary design of mobile water jet hand tool is presented at the end of this paper.

Keywords: water jet, finite element, Al-alloy 5052, nozzle geometry

Procedia PDF Downloads 357
23778 Nonlinear Structural Behavior of Micro- and Nano-Actuators Using the Galerkin Discretization Technique

Authors: Hassen M. Ouakad

Abstract:

In this paper, the influence of van der Waals, as well as electrostatic forces on the structural behavior of MEMS and NEMS actuators, has been investigated using of a Euler-Bernoulli beam continuous model. In the proposed nonlinear model, the electrostatic fringing-fields and the mid-plane stretching (geometric nonlinearity) effects have been considered. The nonlinear integro-differential equation governing the static structural behavior of the actuator has been derived. An original Galerkin-based reduced-order model has been developed to avoid problems arising from the nonlinearities in the differential equation. The obtained reduced-order model equations have been solved numerically using the Newton-Raphson method. The basic design parameters such as the pull-in parameters (voltage and deflection at pull-in), as well as the detachment length due to the van der Waals force of some investigated micro- and nano-actuators have been calculated. The obtained numerical results have been compared with some other existing methods (finite-elements method and finite-difference method) and the comparison showed good agreement among all assumed numerical techniques.

Keywords: MEMS, NEMS, fringing-fields, mid-plane stretching, Galerkin

Procedia PDF Downloads 210
23777 Analysis of Effects of Magnetic Slot Wedges on Characteristics of Permanent Magnet Synchronous Machine

Authors: B. Ladghem Chikouche

Abstract:

The influence of slot wedges permeability on the electromagnetic performance of three-phase permanent magnet synchronous machine is investigated in this paper. It is shown that the back-EMF waveform, electromagnetic torque and electromagnetic torque ripple are all significantly affected by slot wedges permeability. The paper presents an accurate analytical subdomain model and confirmed by finite-element analyses.

Keywords: exact analytical calculation, finite-element method, magnetic field distribution, permanent magnet machines performance, stator slot wedges permeability

Procedia PDF Downloads 312
23776 Biological Optimization following BM-MSC Seeding of Partially Demineralized and Partially Demineralized Laser-Perforated Structural Bone Allografts Implanted in Critical Femoral Defects

Authors: S. AliReza Mirghasemi, Zameer Hussain, Mohammad Saleh Sadeghi, Narges Rahimi Gabaran, Mohamadreza Baghaban Eslaminejad

Abstract:

Background: Despite promising results have shown by osteogenic cell-based demineralized bone matrix composites, they need to be optimized for grafts that act as structural frameworks in load-bearing defects. The purpose of this experiment is to determine the effect of bone-marrow-mesenchymal-stem-cells seeding on partially demineralized laser-perforated structural allografts that have been implanted in critical femoral defects. Materials and Methods: P3 stem cells were used for graft seeding. Laser perforation in four rows of three holes was achieved. Cell-seeded grafts were incubated for one hour until they were planted into the defect. We used four types of grafts: partially demineralized only (Donly), partially demineralized stem cell seeded (DST), partially demineralized laser-perforated (DLP), and partially demineralized laser-perforated stem cell seeded (DLPST). histologic and histomorphometric analysis were performed at 12 weeks. Results: Partially demineralized laser-perforated had the highest woven bone formation within graft limits, stem cell seeded demineralized laser-perforated remained intact, and the difference between partially demineralized only and partially demineralized stem cell seeded was insignificant. At interface, partially demineralized laser-perforated and partially demineralized only had comparable osteogenesis, but partially demineralized stem cell seeded was inferior. The interface in stem cell seeded demineralized laser-perforated was almost replaced by distinct endochondral osteogenesis with higher angiogenesis in the vicinity. Partially demineralized stem cell seeded and stem cell seeded demineralized laser-perforated graft surfaces had extra vessel-ingrowth-like porosities, a sign of delayed resorption. Conclusion: This demonstrates that simple cell-based composites are not optimal and necessitates the supplementation of synergistic stipulations and surface changes.

Keywords: structural bone allograft, partial demineralization, laser perforation, mesenchymal stem cell

Procedia PDF Downloads 399
23775 First Order Reversal Curve Method for Characterization of Magnetic Nanostructures

Authors: Bashara Want

Abstract:

One of the key factors limiting the performance of magnetic memory is that the coercivity has a distribution with finite width, and the reversal starts at the weakest link in the distribution. So one must first know the distribution of coercivities in order to learn how to reduce the width of distribution and increase the coercivity field to obtain a system with narrow width. First Order Reversal Curve (FORC) method characterizes a system with hysteresis via the distribution of local coercivities and, in addition, the local interaction field. The method is more versatile than usual conventional major hysteresis loops that give only the statistical behaviour of the magnetic system. The FORC method will be presented and discussed at the conference.

Keywords: magnetic materials, hysteresis, first-order reversal curve method, nanostructures

Procedia PDF Downloads 66
23774 Derivation of Human NK Cells from T Cell-Derived Induced Pluripotent Stem Cells Using Xenogeneic Serum-Free and Feeder Cell-Free Culture System

Authors: Aliya Sekenova, Vyacheslav Ogay

Abstract:

The derivation of human induced pluripotent stem cells (iPSCs) from somatic cells by direct reprogramming opens wide perspectives in the regenerative medicine. It means the possibility to develop the personal and, consequently, any immunologically compatible cells for applications in cell-based therapy. The purpose of our study was to develop the technology for the production of NK cells from T cell-derived induced pluripotent stem cells (TiPSCs) for subsequent application in adoptive cancer immunotherapy. Methods: In this study iPSCs were derived from peripheral blood T cells using Sendai virus vectors expressing Oct4, Sox2, Klf4 and c-Myc. Pluripotent characteristics of TiPSCs were examined and confirmed with alkaline phosphatase staining, immunocytochemistry and RT-PCR analysis. For NK cell differentiation, embryoid bodies (EB) formed from (TiPSCs) were cultured in xenogeneic serum-free medium containing human serum, IL-3, IL-7, IL-15, SCF, FLT3L without using M210-B4 and AFT-024 stromal feeder cells. After differentiation, NK cells were characterized with immunofluorescence analysis, flow cytometry and cytotoxicity assay. Results: Here, we for the first time demonstrate that TiPSCs can effectively differentiate into functionally active NK cells without M210-B4 and AFT-024 xenogeneic stroma cells. Immunofluorescence and flow cytometry analysis showed that EB-derived cells can differentiate into a homogeneous population of NK cell expressing high levels of CD56, CD45 and CD16 specific markers. Moreover, these cells significantly express killing activation receptors such as NKp44 and NKp46. In the comparative analysis, we observed that NK cells derived using feeder-free culture system have more high killing activity against K-562 tumor cells, than NK cells derived by feeder-dependent method. Thus, we think that our obtained data will be useful for the development of large-scale production of NK cells for translation into cancer immunotherapy.

Keywords: induced pluripotent stem cells, NK cells, T cells, cell diffentiation, feeder cell-free culture system

Procedia PDF Downloads 314
23773 In vitro Cytotoxicity Study on Silver Powders Synthesized via Different Routes

Authors: Otilia Ruxandra Vasile, Ecaterina Andronescu, Cristina Daniela Ghitulica, Bogdan Stefan Vasile, Roxana Trusca, Eugeniu Vasile, Alina Maria Holban, Carmen Mariana Chifiriuc, Florin Iordache, Horia Maniu

Abstract:

Engineered powders offer great promise in several applications, but little information is known about cytotoxicity effects. The aim of the current study was the synthesis and cytotoxicity examination of silver powders using pyrosol method at temperatures of 600°C, 650°C and 700°C, respectively sol-gel method and calcinations at 500°C, 600°C, 700°C and 800°C. We have chosen to synthesize and examine silver particles cytotoxicity due to its use in biological applications. The synthesized Ag powders were characterized from the structural, compositional and morphological point of view by using XRD, SEM, and TEM with SAED. In order to determine the influence of the synthesis route on Ag particles cytotoxicity, different sizes of micro and nanosilver synthesized powders were evaluated for their potential toxicity. For the study of their cytotoxicity, cell cycle and apoptosis have been done analysis through flow cytometry on human colon carcinoma cells and mesenchymal stem cells and through the MTT assay, while the viability and the morphological changes of the cells have been evaluated by using cloning studies. The results showed that the synthesized silver nanoparticles have displayed significant cytotoxicity effects on cell cultures. Our synthesized silver powders were found to present toxicity in a synthesis route and time-dependent manners for pyrosol synthesized nanoparticles; whereas a lower cytotoxicity has been measured after cells were treated with silver nanoparticles synthesized through sol-gel method.

Keywords: Ag, cytotoxicity, pyrosol method, sol-gel method

Procedia PDF Downloads 574
23772 Safety Assessment and Prophylactic Efficacy of Moringa stenopetala Leaf Extract Through Mitigation of Oxidative Stress in BV-2 Microglial Cell

Authors: Stephen Adeniyi Adefegha, Vitor Mostardeiro, Vera Maria Morsch, Ademir F. Morel, Ivana Beatrice Manica Da Cruz, Sabrina Somacal Maria Rosa Chitolina Schetinger

Abstract:

Moringa stenopetala is often consumed as food and used in folkloric medicine for the management of several diseases. Purpose: This study was set up in order to assess the effect of aqueous extract of Moringa stenopetala on cell viability and oxidative stress biomarkers in BV-2 microglial cells. Aqueous extracts of M. stenopetala were prepared, lyophilized and reconstituted in 0.5% dimethylsulphoxide (DMSO). Cells were treated with M. stenopetala extracts (0.1 - 100 µg/ml) for cell viability and nitric oxide (NO) production tests. However, M. stenopetala extract (50 µg/ml) was used in the treatment of cells for the determination of protein carbonyl content and reactive oxygen species (ROS) level. Incubation of BV-2 microglia cell with M. stenopetala extract maintained cell viability, diminished NO and ROS levels, and reduced protein carbonyl contents Chlorogenic acid, rutin, kaempferol and quercetin derivatives were the main phenolic compounds identified in M. stenopetala leaf extract. These phenolic compounds present in M. stenopetala may be responsible for the mitigation of oxidative stress in BV-2 microglial cells.

Keywords: oxidative stress, BV-2 microglial cell, Moringa stenopetala, cell viability, antioxidant

Procedia PDF Downloads 96
23771 The Choicest Design of InGaP/GaAs Heterojunction Solar Cell

Authors: Djaafar Fatiha, Ghalem Bachir, Hadri Bagdad

Abstract:

We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300 °K led to the following result: Icc =14.22 mA/cm2, Voc =2.42V, FF=91.32 %, η= 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η=23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell .This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.

Keywords: modeling, simulation, multijunction, optimization, Silvaco ATLAS

Procedia PDF Downloads 484
23770 Development of a Robust Protein Classifier to Predict EMT Status of Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) Tumors

Authors: ZhenlinJu, Christopher P. Vellano, RehanAkbani, Yiling Lu, Gordon B. Mills

Abstract:

The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal characteristics, such as profound disruption of cell-cell junctions, loss of apical-basolateral polarity, and extensive reorganization of the actin cytoskeleton to induce cell motility and invasion. A hallmark of EMT is its capacity to promote metastasis, which is due in part to activation of several transcription factors and subsequent downregulation of E-cadherin. Unfortunately, current approaches have yet to uncover robust protein marker sets that can classify tumors as possessing strong EMT signatures. In this study, we utilize reverse phase protein array (RPPA) data and consensus clustering methods to successfully classify a subset of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tumors into an EMT protein signaling group (EMT group). The overall survival (OS) of patients in the EMT group is significantly worse than those in the other Hormone and PI3K/AKT signaling groups. In addition to a shrinkage and selection method for linear regression (LASSO), we applied training/test set and Monte Carlo resampling approaches to identify a set of protein markers that predicts the EMT status of CESC tumors. We fit a logistic model to these protein markers and developed a classifier, which was fixed in the training set and validated in the testing set. The classifier robustly predicted the EMT status of the testing set with an area under the curve (AUC) of 0.975 by Receiver Operating Characteristic (ROC) analysis. This method not only identifies a core set of proteins underlying an EMT signature in cervical cancer patients, but also provides a tool to examine protein predictors that drive molecular subtypes in other diseases.

Keywords: consensus clustering, TCGA CESC, Silhouette, Monte Carlo LASSO

Procedia PDF Downloads 449
23769 Structural Identification for Layered Composite Structures through a Wave and Finite Element Methodology

Authors: Rilwan Kayode Apalowo, Dimitrios Chronopoulos

Abstract:

An approach for identifying the geometric and material characteristics of layered composite structures through an inverse wave and finite element methodology is proposed. These characteristics are obtained through multi-frequency single shot measurements. However, it is established that the frequency regime of the measurements does not matter, meaning that both ultrasonic and structural dynamics frequency spectra can be employed. Taking advantage of a full FE (finite elements) description of the periodic composite, the scheme is able to account for arbitrarily complex structures. In order to demonstrate the robustness of the presented scheme, it is applied to a sandwich composite panel and results are compared with that of experimental characterization techniques. Excellent agreement is obtained with the experimental measurements.

Keywords: structural identification, non-destructive evaluation, finite elements, wave propagation, layered structures, ultrasound

Procedia PDF Downloads 121
23768 A Generalization of the Secret Sharing Scheme Codes Over Certain Ring

Authors: Ibrahim Özbek, Erdoğan Mehmet Özkan

Abstract:

In this study, we generalize (k,n) threshold secret sharing scheme on the study Ozbek and Siap to the codes over the ring Fq+ αFq. In this way, it is mentioned that the method obtained in that article can also be used on codes over rings, and new advantages to be obtained. The method of securely sharing the key in cryptography, which Shamir first systematized and Massey carried over to codes, became usable for all error-correcting codes. The firewall of this scheme is based on the hardness of the syndrome decoding problem. Also, an open study area is left for those working for other rings and code classes. All codes that correct errors with this method have been the working area of this method.

Keywords: secret sharing scheme, linear codes, algebra, finite rings

Procedia PDF Downloads 60
23767 Temporal Axis in Japanese: The Paradox of a Metaphorical Orientation in Time

Authors: Tomoko Usui

Abstract:

In the field of linguistics, it has been said that concepts associated with space and motion systematically contribute structure to the temporal concept. This is the conceptual metaphor theory. conceptual metaphors typically employ a more abstract concept (time) as their target and a more concrete or physical concept as their source (space). This paper will examine two major temporal conceptual metaphors: Ego-centered Moving Time Metaphor and Time-RP Metaphor. Moving time generally receives a front-back orientation, however, Japanese shows a different orientation given to time. By means of Ego perspective, this paper will illustrate the paradox of a metaphorical orientation in time.

Keywords: Ego-centered Moving Time Metaphor, Japanese saki, temporal metaphors, Time RP Metaphor

Procedia PDF Downloads 483
23766 Analysis of Vortex-Induced Vibration Characteristics for a Three-Dimensional Flexible Tube

Authors: Zhipeng Feng, Huanhuan Qi, Pingchuan Shen, Fenggang Zang, Yixiong Zhang

Abstract:

Numerical simulations of vortex-induced vibration of a three-dimensional flexible tube under uniform turbulent flow are calculated when Reynolds number is 1.35×104. In order to achieve the vortex-induced vibration, the three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, the tube is discretized according to the finite element theory, and its dynamic equilibrium equations are solved by the Newmark method. The fluid-tube interaction is realized by utilizing the diffusion-based smooth dynamic mesh method. Considering the vortex-induced vibration system, the variety trends of lift coefficient, drag coefficient, displacement, vertex shedding frequency, phase difference angle of tube are analyzed under different frequency ratios. The nonlinear phenomena of locked-in, phase-switch are captured successfully. Meanwhile, the limit cycle and bifurcation of lift coefficient and displacement are analyzed by using trajectory, phase portrait, and Poincaré sections. The results reveal that: when drag coefficient reaches its minimum value, the transverse amplitude reaches its maximum, and the “lock-in” begins simultaneously. In the range of lock-in, amplitude decreases gradually with increasing of frequency ratio. When lift coefficient reaches its minimum value, the phase difference undergoes a suddenly change from the “out-of-phase” to the “in-phase” mode.

Keywords: vortex induced vibration, limit cycle, LES, CFD, FEM

Procedia PDF Downloads 268
23765 Finite Eigenstrains in Nonlinear Elastic Solid Wedges

Authors: Ashkan Golgoon, Souhayl Sadik, Arash Yavari

Abstract:

Eigenstrains in nonlinear solids are created due to anelastic effects such as non-uniform temperature distributions, growth, remodeling, and defects. Eigenstrains understanding is indispensable, as they can generate residual stresses and strongly affect the overall response of solids. Here, we study the residual stress and deformation fields of an incompressible isotropic infinite wedge with a circumferentially-symmetric distribution of finite eigenstrains. We construct a material manifold, whose Riemannian metric explicitly depends on the eigenstrain distribution, thereby we turn the problem into a classical nonlinear elasticity problem, where we find an embedding of the Riemannian material manifold into the ambient Euclidean space. In particular, we find exact solutions for the residual stress and deformation fields of a neo-Hookean wedge having a symmetric inclusion with finite radial and circumferential eigenstrains. Moreover, we numerically solve a similar problem when a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains is placed in a neo-Hookean wedge. Generalization of the eigenstrain problem to other geometries are also discussed.

Keywords: finite eigenstrains, geometric mechanics, inclusion, inhomogeneity, nonlinear elasticity

Procedia PDF Downloads 241
23764 Construction of Finite Woven Frames through Bounded Linear Operators

Authors: A. Bhandari, S. Mukherjee

Abstract:

Two frames in a Hilbert space are called woven or weaving if all possible merge combinations between them generate frames of the Hilbert space with uniform frame bounds. Weaving frames are powerful tools in wireless sensor networks which require distributed data processing. Considering the practical applications, this article deals with finite woven frames. We provide methods of constructing finite woven frames, in particular, bounded linear operators are used to construct woven frames from a given frame. Several examples are discussed. We also introduce the notion of woven frame sequences and characterize them through the concepts of gaps and angles between spaces.

Keywords: frames, woven frames, gap, angle

Procedia PDF Downloads 176
23763 Bcl-2: A Molecule to Detect Oral Cancer and Precancer

Authors: Vandana Singh, Subash Singh

Abstract:

Introduction: Oral squamous cell carcinoma is the most common malignant tumor of the oral cavity. Normally the death of cell and the growth are active processes and depend not only on external factors but also on the expression of genes like Bcl-2, which activate and inhibit apoptosis. The term Bcl-2 is an acronym for B-cell lymphoma/ leukemia -2 genes. Objectives: An attempt was made to evaluate Bcl-2 oncoprotein expression in patients with oral precancer and cancer and to assess possible correlation between Bcl-2 oncoprotein expression and clinicopathological features of oral precancer and cancer. Material and Methods: This is a selective prospective clinical and immunohistochemical study. Clinicopathological examination is correlated with immunohistochemical findings. The immunolocalization of Bcl-2 protein is performed using the labeled streptavidin biotin (LSAB) method. To visualize the reaction, 3, 3-diaminobenzidine (DAB) is used. Results: Bcl-2 expression was positive in 11 [36.66 %, low Bcl-2 expression 3 (10.00 %), moderate Bcl-2 expression 7 (23.33 %), and high Bcl-2 expression 1 (3.33 %)] oral cancer cases and in 14 [87.50 %, low expression 8 (50 %), moderate expression 6 (37.50 %)] precancer cases. Conclusion: On the basis of the results of our study we conclude that positive Bcl-2 expression may be an indicator of poor prognosis in oral cancer and precancer. Relevance: It has been reported that there is deregulation of Bcl-2 expression during progression from oral epithelial dysplasia to squamous cell carcinoma. It can be used for revealing progression of epithelial dysplasia to malignancy and as a prognostic marker in oral precancer and cancer.

Keywords: BcL-2, immunohistochemistry, oral cancer, oral precancer

Procedia PDF Downloads 248
23762 Finite Element and Experimental Investigation on Vibration Analysis of Laminated Composite Plates

Authors: Azad Mohammed Ali Saber, Lanja Saeed Omer

Abstract:

The present study deals with numerical method (FE) and experimental investigations on the vibration behavior of carbon fiber-polyester laminated plates. Finite element simulation is done using APDL (Ansys Parametric Design Language) macro codes software version 19. Solid185 layered structural element, including eight nodes, is adopted in this analysis. The experimental work is carried out using (Hand Layup method) to fabricate different layers and orientation angles of composite laminate plates. Symmetric samples include four layers (00/900)s and six layers (00/900/00)s, (00/00/900)s. Antisymmetric samples include one layer (00), (450), two layers (00/900), (-450/450), three layers (00/900/00), four layers (00/900)2, (-450/450)2, five layers (00/900)2.5, and six layers (00/900)3, (-450/450)3. An experimental investigation is carried out using a modal analysis technique with a Fast Fourier Transform Analyzer (FFT), Pulse platform, impact hammer, and accelerometer to obtain the frequency response functions. The influences of different parameters such as the number of layers, aspect ratio, modulus ratio, ply orientation, and different boundary conditions on the dynamic behavior of the CFRPs are studied, where the 1st, 2nd, and 3rd natural frequencies are observed to be the minimum for cantilever boundary condition (CFFF) and the maximum for full clamped boundary condition (CCCC). Experimental results show that the natural frequencies of laminated plates are significantly reliant on the type of boundary conditions due to the restraint effect at the edges. Good agreement is achieved among the finite element and experimental results. All results indicate that any increase in aspect ratio causes a decrease in the natural frequency of the CFRPs plate, while any increase in the modulus ratio or number of layers causes an increase in the fundamental natural frequency of vibration.

Keywords: vibration, composite materials, finite element, APDL ANSYS

Procedia PDF Downloads 25
23761 Effect of Two Radial Fins on Heat Transfer and Flow Structure in a Horizontal Annulus

Authors: Anas El Amraoui, Abdelkhalek Cheddadi, Mohammed Touhami Ouazzani

Abstract:

Laminar natural convection in a cylindrical annular cavity filled with air and provided with two fins is studied numerically using the discretization of the governing equations with the Centered Finite Difference method based on the Alternating Direction Implicit (ADI) scheme. The fins are attached to the inner cylinder of radius ri (hot wall of temperature Ti). The outer cylinder of radius ro is maintained at a temperature To (To < Ti). Two values of the dimensionless thickness of the fins are considered: 0.015 and 0.203. We consider a low fin height equal to 0.078 and medium fin heights equal to 0.093 and 0.203. The position of the fin is 0.82π and the radius ratio is equal to 2. The effect of Rayleigh number, Ra, on the flow structure and heat transfer is analyzed for a range of Ra from 103 to 104. The results for established flow structures and heat transfer at low height indicate that the flow regime that occurs is unicellular for all Ra and fin thickness; in addition, the heat transfer rate increases with increasing Rayleigh number and is the same for both thicknesses. At median fin heights 0.093 and 0.203, the increase of Rayleigh number leads to transitions of flow structure which correspond to significant variations of the heat transfer. The critical Rayleigh numbers, Rac.app and Rac.disp corresponding to the appearance of the bicellular flow regime and its disappearance, are determined and their influence on the change of heat transfer rate is analyzed.

Keywords: natural convection, fins, critical Rayleigh number, heat transfer, fluid flow regime, horizontal annulus

Procedia PDF Downloads 387
23760 3D Finite Element Analysis for Mechanics of Soil-Tool Interaction

Authors: A. Armin, R. Fotouhi, W. Szyszkowski

Abstract:

This paper is part of a study to develop robots for farming. As such power requirement to operate equipment attach to such robots become an important factor. Soil-tool interaction play major role in power consumption, thus predicting accurately the forces which act on the blade during the farming is prime importance for optimal designing of farm equipment. In this paper a finite element investigation for tillage tools and soil interaction is described by using an inelastic constitutive material law for agriculture application. A 3-dimentional (3D) nonlinear finite element analysis (FEA) is developed to examine behavior of a blade with different rake angles moving in a block of soil, and to estimate the blade force. The soil model considered is an elastic-plastic with non-associated Drucker-Prager material model. Special use of contact elements are employed to consider connection between soil-blade and soil-soil surfaces. The FEA results are compared with experiment ones, which show good agreement in accurately predicting draft forces developed on the blade when it moves through the soil. Also, a very good correlation was obtained between FEA results and analytical results from classical soil mechanics theories for straight blades. These comparisons verified the FEA model developed. For analyzing complicated soil-tool interactions and for optimum design of blades, this method will be useful.

Keywords: finite element analysis, soil-blade contact modeling, blade force, mechanical engineering

Procedia PDF Downloads 280
23759 Additive Manufacturing of Titanium Metamaterials for Tissue Engineering

Authors: Tuba Kizilirmak

Abstract:

Distinct properties of porous metamaterials have been largely processed for biomedicine requiring a three-dimensional (3D) porous structure engaged with fine mechanical features, biodegradation ability, and biocompatibility. Applications of metamaterials are (i) porous orthopedic and dental implants; (ii) in vitro cell culture of metamaterials and bone regeneration of metamaterials in vivo; (iii) macro-, micro, and nano-level porous metamaterials for sensors, diagnosis, and drug delivery. There are some specific properties to design metamaterials for tissue engineering. These are surface to volume ratio, pore size, and interconnection degrees are selected to control cell behavior and bone ingrowth. In this study, additive manufacturing technique selective laser melting will be used to print the scaffolds. Selective Laser Melting prints the 3D components according to designed 3D CAD models and manufactured materials, adding layers progressively by layer. This study aims to design metamaterials with Ti6Al4V material, which gives benefit in respect of mechanical and biological properties. Ti6Al4V scaffolds will support cell attachment by conferring a suitable area for cell adhesion. This study will control the osteoblast cell attachment on Ti6Al4V scaffolds after the determination of optimum stiffness and other mechanical properties which are close to mechanical properties of bone. Before we produce the samples, we will use a modeling technique to simulate the mechanical behavior of samples. These samples include different lattice models with varying amounts of porosity and density.

Keywords: additive manufacturing, titanium lattices, metamaterials, porous metals

Procedia PDF Downloads 183
23758 Optimization Analysis of a Concentric Tube Heat Exchanger with Field Synergy Principle

Authors: M. C. Lin, C. W. Su

Abstract:

The paper investigates the optimization analysis to the heat exchanger design, mainly with response surface method and genetic algorithm to explore the relationship between optimal fluid flow velocity and temperature of the heat exchanger using field synergy principle. First, finite volume method is proposed to calculate the flow temperature and flow rate distribution for numerical analysis. We identify the most suitable simulation equations by response surface methodology. Furthermore, a genetic algorithm approach is applied to optimize the relationship between fluid flow velocity and flow temperature of the heat exchanger. The results show that the field synergy angle plays vital role in the performance of a true heat exchanger.

Keywords: optimization analysis, field synergy, heat exchanger, genetic algorithm

Procedia PDF Downloads 287
23757 Free Shape Optimisation of Cold Formed Steel Sections

Authors: Mina Mortazavi, Pezhman Sharafi

Abstract:

Cold-formed steel sections are popular construction materials as structural or non-structural elements. The objective of this paper is to propose an optimisation method for open cross sections targeting the maximum nominal axial strength. The cross sections considered in the optimisation process should all meet a determined critical global buckling load to be considered as a candidate for optimisation process. The maximum dimensions of the cross section are fixed and limited into a predefined rectangular area. The optimisation process is repeated for different available coil thicknesses of 1 mm, 2.5 mm and 3 mm to determine the optimum thickness according to the cross section buckling behaviour. A simple-simple boundary is assumed as end conditions. The number of folds is limited to 20 folds to prevent extra complicated sections. The global buckling load is considered as Euler load and is determined according to the moment of inertia of the cross-section with a constant length. The critical buckling loads are obtained using Finite Strip Method. The results of the optimisation analysis are provided, and the optimum cross-section within the considered range is determined.

Keywords: shape optimisation, buckling, cold formed steel, finite strip method

Procedia PDF Downloads 391
23756 Numerical Simulation of Convective Flow of Nanofluids with an Oriented Magnetic Field in a Half Circular-Annulus

Authors: M. J. Uddin, M. M. Rahman

Abstract:

The unsteady convective heat transfer flow of nanofluids in a half circular-annulus shape enclosure using nonhomogeneous dynamic model has been investigated numerically. The round upper wall of the enclosure is maintained at constant low temperature whereas the bottom wall is heated by three different thermal conditions. The enclosure is permeated by a uniform magnetic field having variable orientation. The Brownian motion and thermophoretic phenomena of the nanoparticles are taken into account in model construction. The governing nonlinear momentum, energy, and concentration equations are solved numerically using Galerkin weighted residual finite element method. To discover the best performer, the average Nusselt number is demonstrated for different types of nanofluids. The heat transfer rate for different flow parameters, positions of the annulus, thicknesses of the half circular-annulus and thermal conditions is also exhibited.

Keywords: nanofluid, convection, semicircular-annulus, nonhomogeneous dynamic model, finite element method

Procedia PDF Downloads 204
23755 Enhancing Rupture Pressure Prediction for Corroded Pipes Through Finite Element Optimization

Authors: Benkouiten Imene, Chabli Ouerdia, Boutoutaou Hamid, Kadri Nesrine, Bouledroua Omar

Abstract:

Algeria is actively enhancing gas productivity by augmenting the supply flow. However, this effort has led to increased internal pressure, posing a potential risk to the pipeline's integrity, particularly in the presence of corrosion defects. Sonatrach relies on a vast network of pipelines spanning 24,000 kilometers for the transportation of gas and oil. The aging of these pipelines raises the likelihood of corrosion both internally and externally, heightening the risk of ruptures. To address this issue, a comprehensive inspection is imperative, utilizing specialized scraping tools. These advanced tools furnish a detailed assessment of all pipeline defects. It is essential to recalculate the pressure parameters to safeguard the corroded pipeline's integrity while ensuring the continuity of production. In this context, Sonatrach employs symbolic pressure limit calculations, such as ASME B31G (2009) and the modified ASME B31G (2012). The aim of this study is to perform a comparative analysis of various limit pressure calculation methods documented in the literature, namely DNV RP F-101, SHELL, P-CORRC, NETTO, and CSA Z662. This comparative assessment will be based on a dataset comprising 329 burst tests published in the literature. Ultimately, we intend to introduce a novel approach grounded in the finite element method, employing ANSYS software.

Keywords: pipeline burst pressure, burst test, corrosion defect, corroded pipeline, finite element method

Procedia PDF Downloads 46
23754 Wrinkling Prediction of Membrane Composite of Varying Orientation under In-Plane Shear

Authors: F. Sabri, J. Jamali

Abstract:

In this article, the wrinkling failure of orthotropic composite membranes due to in-plane shear deformation is investigated using nonlinear finite element analyses. A nonlinear post-buckling analysis is performed to show the evolution of shear-induced wrinkles. The method of investigation is based on the post-buckling finite element analysis adopted from commercial FEM code; ANSYS. The resulting wrinkling patterns, their amplitude and their wavelengths under the prescribed loads and boundary conditions were confirmed by experimental results. Our study reveals that wrinkles develop when both the magnitudes and coverage of the minimum principal stresses in the laminated composite laminates are sufficiently large to trigger wrinkling.

Keywords: composite, FEM, membrane, wrinkling

Procedia PDF Downloads 255
23753 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation

Authors: Tomoaki Hashimoto

Abstract:

Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.

Keywords: optimal control, stochastic systems, quantum systems, stabilization

Procedia PDF Downloads 438
23752 Indoor Temperature Estimation with FIR Filter Using R-C Network Model

Authors: Sung Hyun You, Jeong Hoon Kim, Dae Ki Kim, Choon Ki Ahn

Abstract:

In this paper, we proposed a new strategy for estimating indoor temperature based on the modified resistance capacitance (R–C) network thermal dynamic model. Using minimum variance finite impulse response (FIR) filter, accurate indoor temperature estimation can be achieved. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed.

Keywords: energy consumption, resistance-capacitance network model, demand response, finite impulse response filter

Procedia PDF Downloads 429