Search results for: brand image fit
2517 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique
Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu
Abstract:
Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing
Procedia PDF Downloads 1012516 A Pilot Study of Influences of Scan Speed on Image Quality for Digital Tomosynthesis
Authors: Li-Ting Huang, Yu-Hsiang Shen, Cing-Ciao Ke, Sheng-Pin Tseng, Fan-Pin Tseng, Yu-Ching Ni, Chia-Yu Lin
Abstract:
Chest radiography is the most common technique for the diagnosis and follow-up of pulmonary diseases. However, the lesions superimposed with normal structures are difficult to be detected in chest radiography. Chest tomosynthesis is a relatively new technique to obtain 3D section images from a set of low-dose projections acquired over a limited angular range. However, there are some limitations with chest tomosynthesis. Patients undergoing tomosynthesis have to be able to hold their breath firmly for 10 seconds. A digital tomosynthesis system with advanced reconstruction algorithm and high-stability motion mechanism was developed by our research group. The potential for the system to perform a bidirectional chest scan within 10 seconds is expected. The purpose of this study is to realize the influences of the scan speed on the image quality for our digital tomosynthesis system. The major factors that lead image blurring are the motion of the X-ray source and the patient. For the fore one, an experiment of imaging a chest phantom with three different scan speeds, which are 6 cm/s, 8 cm/s, and 15 cm/s, was proceeded to understand the scan speed influences on the image quality. For the rear factor, a normal SD (Sprague-Dawley) rat was imaged with it alive and sacrificed to assess the impact on the image quality due to breath motion. In both experiments, the profile of the ROIs (region of interest) and the CNRs (contrast-to-noise ratio) of the ROIs to the normal tissue of the reconstructed images was examined to realize the degradations of the qualities of the images. The preliminary results show that no obvious degradation of the image quality was observed with increasing scan speed, possibly due to the advanced designs for the hardware and software of the system. It implies that higher speed (15 cm/s) than that of the commercialized tomosynthesis system (12 cm/s) for the proposed system is achieved, and therefore a complete chest scan within 10 seconds is expected.Keywords: chest radiography, digital tomosynthesis, image quality, scan speed
Procedia PDF Downloads 3322515 Normalized P-Laplacian: From Stochastic Game to Image Processing
Authors: Abderrahim Elmoataz
Abstract:
More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems
Procedia PDF Downloads 5122514 Plant Disease Detection Using Image Processing and Machine Learning
Authors: Sanskar, Abhinav Pal, Aryush Gupta, Sushil Kumar Mishra
Abstract:
One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper.Keywords: plant diseases, machine learning, image processing, deep learning
Procedia PDF Downloads 102513 Bypassing Docker Transport Layer Security Using Remote Code Execution
Authors: Michael J. Hahn
Abstract:
Docker is a powerful tool used by many companies such as PayPal, MetLife, Expedia, Visa, and many others. Docker works by bundling multiple applications, binaries, and libraries together on top of an operating system image called a container. The container runs on a Docker engine that in turn runs on top of a standard operating system. This centralization saves a lot of system resources. In this paper, we will be demonstrating how to bypass Transport Layer Security and execute remote code within Docker containers built on a base image of Alpine Linux version 3.7.0 through the use of .apk files due to flaws in the Alpine Linux package management program. This exploit renders any applications built using Docker with a base image of Alpine Linux vulnerable to unwanted outside forces.Keywords: cloud, cryptography, Docker, Linux, security
Procedia PDF Downloads 1982512 A Conglomerate of Multiple Optical Character Recognition Table Detection and Extraction
Authors: Smita Pallavi, Raj Ratn Pranesh, Sumit Kumar
Abstract:
Information representation as tables is compact and concise method that eases searching, indexing, and storage requirements. Extracting and cloning tables from parsable documents is easier and widely used; however, industry still faces challenges in detecting and extracting tables from OCR (Optical Character Recognition) documents or images. This paper proposes an algorithm that detects and extracts multiple tables from OCR document. The algorithm uses a combination of image processing techniques, text recognition, and procedural coding to identify distinct tables in the same image and map the text to appropriate the corresponding cell in dataframe, which can be stored as comma-separated values, database, excel, and multiple other usable formats.Keywords: table extraction, optical character recognition, image processing, text extraction, morphological transformation
Procedia PDF Downloads 1442511 Automated Digital Mammogram Segmentation Using Dispersed Region Growing and Pectoral Muscle Sliding Window Algorithm
Authors: Ayush Shrivastava, Arpit Chaudhary, Devang Kulshreshtha, Vibhav Prakash Singh, Rajeev Srivastava
Abstract:
Early diagnosis of breast cancer can improve the survival rate by detecting cancer at an early stage. Breast region segmentation is an essential step in the analysis of digital mammograms. Accurate image segmentation leads to better detection of cancer. It aims at separating out Region of Interest (ROI) from rest of the image. The procedure begins with removal of labels, annotations and tags from the mammographic image using morphological opening method. Pectoral Muscle Sliding Window Algorithm (PMSWA) is used for removal of pectoral muscle from mammograms which is necessary as the intensity values of pectoral muscles are similar to that of ROI which makes it difficult to separate out. After removing the pectoral muscle, Dispersed Region Growing Algorithm (DRGA) is used for segmentation of mammogram which disperses seeds in different regions instead of a single bright region. To demonstrate the validity of our segmentation method, 322 mammographic images from Mammographic Image Analysis Society (MIAS) database are used. The dataset contains medio-lateral oblique (MLO) view of mammograms. Experimental results on MIAS dataset show the effectiveness of our proposed method.Keywords: CAD, dispersed region growing algorithm (DRGA), image segmentation, mammography, pectoral muscle sliding window algorithm (PMSWA)
Procedia PDF Downloads 3132510 User Authentication Using Graphical Password with Sound Signature
Authors: Devi Srinivas, K. Sindhuja
Abstract:
This paper presents architecture to improve surveillance applications based on the usage of the service oriented paradigm, with smart phones as user terminals, allowing application dynamic composition and increasing the flexibility of the system. According to the result of moving object detection research on video sequences, the movement of the people is tracked using video surveillance. The moving object is identified using the image subtraction method. The background image is subtracted from the foreground image, from that the moving object is derived. So the Background subtraction algorithm and the threshold value is calculated to find the moving image by using background subtraction algorithm the moving frame is identified. Then, by the threshold value the movement of the frame is identified and tracked. Hence, the movement of the object is identified accurately. This paper deals with low-cost intelligent mobile phone-based wireless video surveillance solution using moving object recognition technology. The proposed solution can be useful in various security systems and environmental surveillance. The fundamental rule of moving object detecting is given in the paper, then, a self-adaptive background representation that can update automatically and timely to adapt to the slow and slight changes of normal surroundings is detailed. While the subtraction of the present captured image and the background reaches a certain threshold, a moving object is measured to be in the current view, and the mobile phone will automatically notify the central control unit or the user through SMS (Short Message System). The main advantage of this system is when an unknown image is captured by the system it will alert the user automatically by sending an SMS to user’s mobile.Keywords: security, graphical password, persuasive cued click points
Procedia PDF Downloads 5372509 Electrospray Deposition Technique of Dye Molecules in the Vacuum
Authors: Nouf Alharbi
Abstract:
The electrospray deposition technique became an important method that enables fragile, nonvolatile molecules to be deposited in situ in high vacuum environments. Furthermore, it is considered one of the ways to close the gap between basic surface science and molecular engineering, which represents a gradual change in the range of scientist research. Also, this paper talked about one of the most important techniques that have been developed and aimed for helping to further develop and characterize the electrospray by providing data collected using an image charge detection instrument. Image charge detection mass spectrometry (CDMS) is used to measure speed and charge distributions of the molecular ions. As well as, some data has been included using SIMION simulation to simulate the energies and masses of the molecular ions through the system in order to refine the mass-selection process.Keywords: charge, deposition, electrospray, image, ions, molecules, SIMION
Procedia PDF Downloads 1332508 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease
Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani
Abstract:
Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence
Procedia PDF Downloads 202507 Determination of Heavy Metals in Canned Dry-Milk and Fish from Supermarkets in Addis Ababa
Authors: Kefyalew Muleta, Tetemke Mehari
Abstract:
Background: Human being require metallic elements such as copper and zinc up to certain limits that could cause problems if found in excess. Other metallic elements like cadmium and lead can be harmful to health if foodstuffs containing them are consumed regularly. Canned dry-milk and fish contain these metals in the journey from farm to fork. Objective: This study was designed to determine the concentration of Cd, Cu, Pb, and Zn in four brands of canned dry-milk and fish from supermarkets in Addis Ababa. Methods: Laboratory based cross-sectional study design was used to determine the concentration of the heavy metals in four different brands of canned dry-milk and fish imported from different country from February to March 2013. The foods brands were sampled by simple random sampling method from eight supermarkets in Addis Ababa and coded. Wet oxidation using HNO3 and H2O2 was used to extract the heavy metals from the foods samples and analyzed by Flame Atomic Absorption Spectroscopy. Conclusions: From this study, it can be concluded that the level of Cadmium and Copper residues in canned dry-milk significantly vary among brands; and the levels of copper residue significantly vary among brands of canned fish at 95 % level. The AM milk brand from Ethiopia was safe in cadmium level. The cadmium and lead level in the NF fish brands from Indonesia packed in vegetables oil, and the lead level in DF brand packed in brine are safe.Keywords: AAS, canned dry milk, canned fish, Cd, Cu, Pb, Zn
Procedia PDF Downloads 4202506 Screening Deformed Red Blood Cells Irradiated by Ionizing Radiations Using Windowed Fourier Transform
Authors: Dahi Ghareab Abdelsalam Ibrahim, R. H. Bakr
Abstract:
Ionizing radiation, such as gamma radiation and X-rays, has many applications in medical diagnoses and cancer treatment. In this paper, we used the windowed Fourier transform to extract the complex image of the deformed red blood cells. The real values of the complex image are used to extract the best fitting of the deformed cell boundary. Male albino rats are irradiated by γ-rays from ⁶⁰Co. The male albino rats are anesthetized with ether, and then blood samples are collected from the eye vein by heparinized capillary tubes for studying the radiation-damaging effect in-vivo by the proposed windowed Fourier transform. The peripheral blood films are prepared according to the Brown method. The peripheral blood film is photographed by using an Automatic Image Contour Analysis system (SAMICA) from ELBEK-Bildanalyse GmbH, Siegen, Germany. The SAMICA system is provided with an electronic camera connected to a computer through a built-in interface card, and the image can be magnified up to 1200 times and displayed by the computer. The images of the peripheral blood films are then analyzed by the windowed Fourier transform method to extract the precise deformation from the best fitting. Based on accurate deformation evaluation of the red blood cells, diseases can be diagnosed in their primary stages.Keywords: windowed Fourier transform, red blood cells, phase wrapping, Image processing
Procedia PDF Downloads 852505 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes
Authors: Sky Chou, Joseph C. Chen
Abstract:
This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.Keywords: injection molding, shrinkage, six sigma, Taguchi parameter design
Procedia PDF Downloads 1782504 Content-Based Mammograms Retrieval Based on Breast Density Criteria Using Bidimensional Empirical Mode Decomposition
Authors: Sourour Khouaja, Hejer Jlassi, Nadia Feddaoui, Kamel Hamrouni
Abstract:
Most medical images, and especially mammographies, are now stored in large databases. Retrieving a desired image is considered of great importance in order to find previous similar cases diagnosis. Our method is implemented to assist radiologists in retrieving mammographic images containing breast with similar density aspect as seen on the mammogram. This is becoming a challenge seeing the importance of density criteria in cancer provision and its effect on segmentation issues. We used the BEMD (Bidimensional Empirical Mode Decomposition) to characterize the content of images and Euclidean distance measure similarity between images. Through the experiments on the MIAS mammography image database, we confirm that the results are promising. The performance was evaluated using precision and recall curves comparing query and retrieved images. Computing recall-precision proved the effectiveness of applying the CBIR in the large mammographic image databases. We found a precision of 91.2% for mammography with a recall of 86.8%.Keywords: BEMD, breast density, contend-based, image retrieval, mammography
Procedia PDF Downloads 2322503 Exploring the Nexus of Gastronomic Tourism and Its Impact on Destination Image
Authors: Usha Dinakaran, Richa Ganguly
Abstract:
Gastronomic tourism has evolved into a prominent niche within the travel industry, with tourists increasingly seeking unique culinary experiences as a primary motivation for their journeys. This research explores the intricate relationship between gastronomic tourism and its profound influence on the overall image of travel destinations. It delves into the multifaceted aspects of culinary experiences, tourists' perceptions, and the preservation of cultural identity, all of which play pivotal roles in shaping a destination's image. The primary aim of this study is to comprehensively examine the interplay between gastronomy and tourism, specifically focusing on its impact on destination image. The research seeks to achieve the following objectives: (1) Investigate how tourists perceive and engage with gastronomic tourism experiences. (2) Understand the significance of food in shaping the tourism image. (3.) Explore the connection between gastronomy and the destination's cultural identity Quantify the relationship between tourists' engagement in co-creation activities related to gastronomic tourism and their overall satisfaction with the quality of their culinary experiences. To achieve these objectives, a mixed-method research approach will be employed, including surveys, interviews, and content analysis. Data will be collected from tourists visiting diverse destinations known for their culinary offerings. This research anticipates uncovering valuable insights into the nexus between gastronomic tourism and destination image. It is expected to shed light on how tourists' perceptions of culinary experiences impact their overall perception of a destination. Additionally, the study aims to identify factors influencing tourist satisfaction and how cultural identity is preserved and promoted through gastronomic tourism. The findings of this research hold practical implications for destination marketers and stakeholders. Understanding the symbiotic relationship between gastronomy and tourism can guide the development of more targeted marketing strategies. Furthermore, promoting co-creation activities can enhance tourists' culinary experiences and contribute to the positive image of destinations.This study contributes to the growing body of knowledge regarding gastronomic tourism by consolidating insights from various studies and offering a comprehensive perspective on its impact on destination image. It offers a platform for future research in this domain and underscores the importance of culinary experiences in contemporary travel. In conclusion, this research endeavors to illuminate the dynamic interplay between gastronomic tourism and destination image, providing valuable insights for both academia and industry stakeholders in the field of tourism and hospitality.Keywords: gastronomy, tourism, destination image, culinary
Procedia PDF Downloads 742502 Optimization of the Dental Direct Digital Imaging by Applying the Self-Recognition Technology
Authors: Mina Dabirinezhad, Mohsen Bayat Pour, Amin Dabirinejad
Abstract:
This paper is intended to introduce the technology to solve some of the deficiencies of the direct digital radiology. Nowadays, digital radiology is the latest progression in dental imaging, which has become an essential part of dentistry. There are two main parts of the direct digital radiology comprised of an intraoral X-ray machine and a sensor (digital image receptor). The dentists and the dental nurses experience afflictions during the taking image process by the direct digital X-ray machine. For instance, sometimes they need to readjust the sensor in the mouth of the patient to take the X-ray image again due to the low quality of that. Another problem is, the position of the sensor may move in the mouth of the patient and it triggers off an inappropriate image for the dentists. It means that it is a time-consuming process for dentists or dental nurses. On the other hand, taking several the X-ray images brings some problems for the patient such as being harmful to their health and feeling pain in their mouth due to the pressure of the sensor to the jaw. The author provides a technology to solve the above-mentioned issues that is called “Self-Recognition Direct Digital Radiology” (SDDR). This technology is based on the principle that the intraoral X-ray machine is capable to diagnose the location of the sensor in the mouth of the patient automatically. In addition, to solve the aforementioned problems, SDDR technology brings out fewer environmental impacts in comparison to the previous version.Keywords: Dental direct digital imaging, digital image receptor, digital x-ray machine, and environmental impacts
Procedia PDF Downloads 1382501 Multi-Atlas Segmentation Based on Dynamic Energy Model: Application to Brain MR Images
Authors: Jie Huo, Jonathan Wu
Abstract:
Segmentation of anatomical structures in medical images is essential for scientific inquiry into the complex relationships between biological structure and clinical diagnosis, treatment and assessment. As a method of incorporating the prior knowledge and the anatomical structure similarity between a target image and atlases, multi-atlas segmentation has been successfully applied in segmenting a variety of medical images, including the brain, cardiac, and abdominal images. The basic idea of multi-atlas segmentation is to transfer the labels in atlases to the coordinate of the target image by matching the target patch to the atlas patch in the neighborhood. However, this technique is limited by the pairwise registration between target image and atlases. In this paper, a novel multi-atlas segmentation approach is proposed by introducing a dynamic energy model. First, the target is mapped to each atlas image by minimizing the dynamic energy function, then the segmentation of target image is generated by weighted fusion based on the energy. The method is tested on MICCAI 2012 Multi-Atlas Labeling Challenge dataset which includes 20 target images and 15 atlases images. The paper also analyzes the influence of different parameters of the dynamic energy model on the segmentation accuracy and measures the dice coefficient by using different feature terms with the energy model. The highest mean dice coefficient obtained with the proposed method is 0.861, which is competitive compared with the recently published method.Keywords: brain MRI segmentation, dynamic energy model, multi-atlas segmentation, energy minimization
Procedia PDF Downloads 3362500 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform
Abstract:
Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab
Procedia PDF Downloads 902499 Effects of Financial and Non-Financial Accounting Information Reports on Corporate Credibility and Image of the Listed-Firms in Thailand
Authors: Anocha Rojanapanich
Abstract:
This research investigates the effect of financial accounting information and non-financial accounting reports on corporate credibility via strength of board of directors and market environment volatility as moderating effect. Data in this research is collected by questionnaire form non-financial companies listed on the Stock Exchange of Thailand. Multiple regression statistic technique is used for analyzing the data. Results find that firms with greater financial accounting information reports and non-financial accounting information reports will gain greater corporate credibility. Therefore, the corporate reporting has the value for the firms. Moreover, the strength of board of directors will positively moderate the financial and non-financial accounting information reports and corporate credibility relationship. And market environment volatility will negatively moderate the financial and nonfinancial accounting information reports and corporate credibility relationship and the contribution of accounting information reports on corporate credibility is generated to the corporate image. That is the corporate image has affected by corporate credibility.Keywords: corporate credibility, financial and non-financial reports, firms performance, corporate image
Procedia PDF Downloads 2982498 Examination of How Do Smart Watches Influence the Market of Luxury Watches with Particular Regard of the Buying-Reasons
Authors: Christopher Benedikt Jakob
Abstract:
In our current society, there is no need to take a look at the wristwatch to know the exact time. Smartphones, the watch in the car or the computer watch, inform us about the time too. Over hundreds of years, luxury watches have held a fascination for human beings. Consumers buy watches that cost thousands of euros, although they could buy much cheaper watches which also fulfill the function to indicate the correct time. This shows that the functional value has got a minor meaning with reference to the buying-reasons as regards luxury watches. For a few years, people have an increased demand to track data like their walking distance per day or to track their sleep for example. Smart watches enable consumers to get information about these data. There exists a trend that people intend to optimise parts of their social life, and thus they get the impression that they are able to optimise themselves as human beings. With the help of smart watches, they are able to optimise parts of their productivity and to realise their targets at the same time. These smart watches are also offered as luxury models, and the question is: how will customers of traditional luxury watches react? Therefore this study has the intention to give answers to the question why people are willing to spend an enormous amount of money on the consumption of luxury watches. The self-expression model, the relationship basis model, the functional benefit representation model and the means-end-theory are chosen as an appropriate methodology to find reasons why human beings purchase specific luxury watches and luxury smart watches. This evaluative approach further discusses these strategies concerning for example if consumers buy luxury watches/smart watches to express the current self or the ideal self and if human beings make decisions on expected results. The research critically evaluates that relationships are compared on the basis of their advantages. Luxury brands offer socio-emotional advantages like social functions of identification and that the strong brand personality of luxury watches and luxury smart watches helps customers to structure and retrieve brand awareness which simplifies the process of decision-making. One of the goals is to identify if customers know why they like specific luxury watches and dislike others although they are produced in the same country and cost comparable prices. It is very obvious that the market for luxury watches especially for luxury smart watches is changing way faster than it has been in the past. Therefore the research examines the market changing parameters in detail.Keywords: buying-behaviour, brand management, consumer, luxury watch, smart watch
Procedia PDF Downloads 2102497 Enhancement of Underwater Haze Image with Edge Reveal Using Pixel Normalization
Authors: M. Dhana Lakshmi, S. Sakthivel Murugan
Abstract:
As light passes from source to observer in the water medium, it is scattered by the suspended particulate matter. This scattering effect will plague the captured images with non-uniform illumination, blurring details, halo artefacts, weak edges, etc. To overcome this, pixel normalization with an Amended Unsharp Mask (AUM) filter is proposed to enhance the degraded image. To validate the robustness of the proposed technique irrespective of atmospheric light, the considered datasets are collected on dual locations. For those images, the maxima and minima pixel intensity value is computed and normalized; then the AUM filter is applied to strengthen the blurred edges. Finally, the enhanced image is obtained with good illumination and contrast. Thus, the proposed technique removes the effect of scattering called de-hazing and restores the perceptual information with enhanced edge detail. Both qualitative and quantitative analyses are done on considering the standard non-reference metric called underwater image sharpness measure (UISM), and underwater image quality measure (UIQM) is used to measure color, sharpness, and contrast for both of the location images. It is observed that the proposed technique has shown overwhelming performance compared to other deep-based enhancement networks and traditional techniques in an adaptive manner.Keywords: underwater drone imagery, pixel normalization, thresholding, masking, unsharp mask filter
Procedia PDF Downloads 1952496 Application of a Universal Distortion Correction Method in Stereo-Based Digital Image Correlation Measurement
Authors: Hu Zhenxing, Gao Jianxin
Abstract:
Stereo-based digital image correlation (also referred to as three-dimensional (3D) digital image correlation (DIC)) is a technique for both 3D shape and surface deformation measurement of a component, which has found increasing applications in academia and industries. The accuracy of the reconstructed coordinate depends on many factors such as configuration of the setup, stereo-matching, distortion, etc. Most of these factors have been investigated in literature. For instance, the configuration of a binocular vision system determines the systematic errors. The stereo-matching errors depend on the speckle quality and the matching algorithm, which can only be controlled in a limited range. And the distortion is non-linear particularly in a complex imaging acquisition system. Thus, the distortion correction should be carefully considered. Moreover, the distortion function is difficult to formulate in a complex imaging acquisition system using conventional models in such cases where microscopes and other complex lenses are involved. The errors of the distortion correction will propagate to the reconstructed 3D coordinates. To address the problem, an accurate mapping method based on 2D B-spline functions is proposed in this study. The mapping functions are used to convert the distorted coordinates into an ideal plane without distortions. This approach is suitable for any image acquisition distortion models. It is used as a prior process to convert the distorted coordinate to an ideal position, which enables the camera to conform to the pin-hole model. A procedure of this approach is presented for stereo-based DIC. Using 3D speckle image generation, numerical simulations were carried out to compare the accuracy of both the conventional method and the proposed approach.Keywords: distortion, stereo-based digital image correlation, b-spline, 3D, 2D
Procedia PDF Downloads 4982495 Computer-Aided Detection of Simultaneous Abdominal Organ CT Images by Iterative Watershed Transform
Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid
Abstract:
Interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Segmentation of liver, spleen and kidneys is regarded as a major primary step in the computer-aided diagnosis of abdominal organ diseases. In this paper, a semi-automated method for medical image data is presented for the abdominal organ segmentation data using mathematical morphology. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. Our algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter, we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, simultaneous organ segmentation, the watershed algorithm
Procedia PDF Downloads 4412494 Body Image Dissatifaction with and Personal Behavioral Control in Obese Patients Who are Attending to Treatment
Authors: Mariela Gonzalez, Zoraide Lugli, Eleonora Vivas, Rosana Guzmán
Abstract:
The objective was to determine the predictive capacity of self-efficacy perceived for weight control, locus of weight control and skills of weight self-management in the dissatisfaction of the body image in obese people who attend treatment. Sectional study conducted in the city of Maracay, Venezuela, with 243 obese who attend to treatment, 173 of the feminine gender and 70 of the male, with ages ranging between 18 and 57 years old. The sample body mass index ranged between 29.39 and 44.14. The following instruments were used: The Body Shape Questionnaire (BSQ), the inventory of body weight self-regulation, The Inventory of self-efficacy in the regulation of body weight and the Inventory of the Locus of weight control. Calculating the descriptive statistics and of central tendency, coefficients of correlation and multiple regression; it was found that a low ‘perceived Self-efficacy in the weight control’ and a high ‘Locus of external control’, predict the dissatisfaction with body image in obese who attend treatment. The findings are a first approximation to give an account of the importance of the personal control variables in the study of the psychological grief on the overweight individual.Keywords: dissatisfaction with body image, obese people, personal control, psychological variables
Procedia PDF Downloads 4332493 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks
Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle
Abstract:
Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3
Procedia PDF Downloads 662492 Multi-Channel Charge-Coupled Device Sensors Real-Time Cell Growth Monitor System
Authors: Han-Wei Shih, Yao-Nan Wang, Ko-Tung Chang, Lung-Ming Fu
Abstract:
A multi-channel cell growth real-time monitor and evaluation system using charge-coupled device (CCD) sensors with 40X lens integrating a NI LabVIEW image processing program is proposed and demonstrated. The LED light source control of monitor system is utilizing 8051 microprocessor integrated with NI LabVIEW software. In this study, the same concentration RAW264.7 cells growth rate and morphology in four different culture conditions (DMEM, LPS, G1, G2) were demonstrated. The real-time cells growth image was captured and analyzed by NI Vision Assistant every 10 minutes in the incubator. The image binarization technique was applied for calculating cell doubling time and cell division index. The cells doubling time and cells division index of four group with DMEM, LPS, LPS+G1, LPS+G2 are 12.3 hr,10.8 hr,14.0 hr,15.2 hr and 74.20%, 78.63%, 69.53%, 66.49%. The image magnification of multi-channel CCDs cell real-time monitoring system is about 100X~200X which compares with the traditional microscope.Keywords: charge-coupled device (CCD), RAW264.7, doubling time, division index
Procedia PDF Downloads 3582491 Traffic Density Measurement by Automatic Detection of the Vehicles Using Gradient Vectors from Aerial Images
Authors: Saman Ghaffarian, Ilgin Gökaşar
Abstract:
This paper presents a new automatic vehicle detection method from very high resolution aerial images to measure traffic density. The proposed method starts by extracting road regions from image using road vector data. Then, the road image is divided into equal sections considering resolution of the images. Gradient vectors of the road image are computed from edge map of the corresponding image. Gradient vectors on the each boundary of the sections are divided where the gradient vectors significantly change their directions. Finally, number of vehicles in each section is carried out by calculating the standard deviation of the gradient vectors in each group and accepting the group as vehicle that has standard deviation above predefined threshold value. The proposed method was tested in four very high resolution aerial images acquired from Istanbul, Turkey which illustrate roads and vehicles with diverse characteristics. The results show the reliability of the proposed method in detecting vehicles by producing 86% overall F1 accuracy value.Keywords: aerial images, intelligent transportation systems, traffic density measurement, vehicle detection
Procedia PDF Downloads 3792490 Image Compression Using Block Power Method for SVD Decomposition
Authors: El Asnaoui Khalid, Chawki Youness, Aksasse Brahim, Ouanan Mohammed
Abstract:
In these recent decades, the important and fast growth in the development and demand of multimedia products is contributing to an insufficient in the bandwidth of device and network storage memory. Consequently, the theory of data compression becomes more significant for reducing the data redundancy in order to save more transfer and storage of data. In this context, this paper addresses the problem of the lossless and the near-lossless compression of images. This proposed method is based on Block SVD Power Method that overcomes the disadvantages of Matlab's SVD function. The experimental results show that the proposed algorithm has a better compression performance compared with the existing compression algorithms that use the Matlab's SVD function. In addition, the proposed approach is simple and can provide different degrees of error resilience, which gives, in a short execution time, a better image compression.Keywords: image compression, SVD, block SVD power method, lossless compression, near lossless
Procedia PDF Downloads 3872489 Recognition of Objects in a Maritime Environment Using a Combination of Pre- and Post-Processing of the Polynomial Fit Method
Authors: R. R. Hordijk, O. J. G. Somsen
Abstract:
Traditionally, radar systems are the eyes and ears of a ship. However, these systems have their drawbacks and nowadays they are extended with systems that work with video and photos. Processing of data from these videos and photos is however very labour-intensive and efforts are being made to automate this process. A major problem when trying to recognize objects in water is that the 'background' is not homogeneous so that traditional image recognition technics do not work well. Main question is, can a method be developed which automate this recognition process. There are a large number of parameters involved to facilitate the identification of objects on such images. One is varying the resolution. In this research, the resolution of some images has been reduced to the extreme value of 1% of the original to reduce clutter before the polynomial fit (pre-processing). It turned out that the searched object was clearly recognizable as its grey value was well above the average. Another approach is to take two images of the same scene shortly after each other and compare the result. Because the water (waves) fluctuates much faster than an object floating in the water one can expect that the object is the only stable item in the two images. Both these methods (pre-processing and comparing two images of the same scene) delivered useful results. Though it is too early to conclude that with these methods all image problems can be solved they are certainly worthwhile for further research.Keywords: image processing, image recognition, polynomial fit, water
Procedia PDF Downloads 5342488 Risk Factors for High Resistance of Ciprofloxacin Against Escherichia coli in Complicated Urinary Tract Infection
Authors: Liaqat Ali, Khalid Farooq, Shafieullah Khan, Nasir Orakzai, Qudratullah
Abstract:
Objectives: To determine the risk factors for high resistance of ciprofloxacin in complicated urinary tract infections. Materials and Methods: It is an analytical study that was conducted in the department of Urology (Team ‘C’) at Institute of Kidney Diseases Hayatabad Peshawar from 1st June 2012 till 31st December 2012. Total numbers of 100 patients with complicated UTI was selected in the study. Multivariate analysis and linear regression were performed for the detection of risk factors. All the data was recorded on structured Proforma and was analyzed on SPSS version 17. Results: The mean age of the patient was 55.6 years (Range 3-82 years). 62 patients were male while 38 patients were female. 66 isolates of E-Coli were found sensitive to ciprofloxacin while 34 isolates were found Resistant for ciprofloxacin. Using multivariate analysis and linear regression, an increasing age above 50 (p=0.002) History of urinary catheterization especially for bladder outflow obstruction (p=0.001) and previous multiple use of ciprofloxacin (p=0.001) and poor brand of ciprofloxacin were found to be independent risk factors for high resistance of ciprofloxacin. Conclusion: UTI is common illness across the globe with increasing trend of antimicrobial resistance for ciprofloxacin against E Coli in complicated UTI. The risk factors for emerging resistance are increasing age, urinary catheterization and multiple use and poor brand of ciprofloxacin.Keywords: urinary tract infection, ciprofloxacin, urethral catheterization, antimicrobial resistance
Procedia PDF Downloads 354