Search results for: wind turbine systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10603

Search results for: wind turbine systems

4093 Protection of Cultural Heritage against the Effects of Climate Change Using Autonomous Aerial Systems Combined with Automated Decision Support

Authors: Artur Krukowski, Emmanouela Vogiatzaki

Abstract:

The article presents an ongoing work in research projects such as SCAN4RECO or ARCH, both funded by the European Commission under Horizon 2020 program. The former one concerns multimodal and multispectral scanning of Cultural Heritage assets for their digitization and conservation via spatiotemporal reconstruction and 3D printing, while the latter one aims to better preserve areas of cultural heritage from hazards and risks. It co-creates tools that would help pilot cities to save cultural heritage from the effects of climate change. It develops a disaster risk management framework for assessing and improving the resilience of historic areas to climate change and natural hazards. Tools and methodologies are designed for local authorities and practitioners, urban population, as well as national and international expert communities, aiding authorities in knowledge-aware decision making. In this article we focus on 3D modelling of object geometry using primarily photogrammetric methods to achieve very high model accuracy using consumer types of devices, attractive both to professions and hobbyists alike.

Keywords: 3D modelling, UAS, cultural heritage, preservation

Procedia PDF Downloads 127
4092 Non-Equilibrium Synthesis and Structural Characterization of Magnetic FeCoPt Nanocrystalline Alloys

Authors: O. Crisan, A. D. Crisan, I. Mercioniu, R. Nicula, F. Vasiliu

Abstract:

FePt-based systems are currently under scrutiny for their possible use as future materials for perpendicular magnetic recording. Another possible application is in the field of permanent magnets without rare-earths, magnets that are capable to operate at higher temperatures than the classic Nd-Fe-B magnets. Within this work, FeCoPt alloys prepared by rapid solidification from the melt are structurally and magnetically characterized. Extended transmission electron microscopy analysis shows the high degree of L10 ordering. X-ray diffraction is used to characterize the phase structure and to obtain the structural parameters of interest for L10 ordering. Co-existence of hard CoFePt and CoPt L10 phases with the soft fcc FePt phase is obtained within a refined microstructure made of alternatively disposed grains of around 5 to 20 nm in size. Magnetic measurements show increased remanence close to the parent L10 FePt phase and not so high coercivity due to the significant presence of the soft magnetic constituent phase. A Curie temperature of about 820K is reported for the FeCoPt alloy.

Keywords: melt-spinning, FeCoPt alloys, high-resolution electron microscopy (HREM), ordered L10 structure

Procedia PDF Downloads 322
4091 Temporal Delays along the Neurosurgical Care Continuum for Traumatic Brain Injury Patients in Mulago Hospital in Kampala Uganda

Authors: Silvia D. Vaca, Benjamin J. Kuo, Joao Ricardo N. Vissoci, Catherine A. Staton, Linda W. Xu, Michael Muhumuza, Hussein Ssenyonjo, John Mukasa, Joel Kiryabwire, Henry E. Rice, Gerald A. Grant, Michael M. Haglund

Abstract:

Background: While delays to care exist in resource rich settings, greater delays are seen along the care continuum in low- and middle-income countries (LMICs) largely due to limited healthcare capacity to address the disproportional rates of traumatic brain injury (TBI) in Sub Saharan Africa (SSA). While many LMICs have government subsidized systems to offset surgical costs, the burden of securing funds by the patients for medications, supplies, and CT diagnostics poses a significant challenge to timely surgical interventions. In Kampala Uganda, the challenge of obtaining timely CT scans is twofold. First, due to a lack of a functional CT scanner at the tertiary hospital, patients need to arrange their own transportation to the nearby private facility for CT scans. Second, self-financing for the private CT scans ranges from $80 - $130, which is near the average monthly income in Kampala. These bottlenecks contribute significantly to the care continuum delays and are associated with poor TBI outcomes. Objective: The objectives of this study are to 1) describe the temporal delays through a modified three delays model that fits the context of neurosurgical interventions for TBI patients in Kampala and 2) investigate the association between delays and mortality. Methods: Prospective data were collected for 563 TBI patients presenting to a tertiary hospital in Kampala from 1 June – 30 November 2016. Four time intervals were constructed along five time points: injury, hospital arrival, neurosurgical evaluation, CT results, and definitive surgery. Time interval differences among mild, moderate and severe TBI and their association with mortality were analyzed. Results: The mortality rate of all TBI patients presenting to MNRH was 9.6%, which ranged from 4.7% for mild and moderate TBI patients receiving surgery to 81.8% for severe TBI patients who failed to receive surgery. The duration from injury to surgery varied considerably across TBI severity with the largest gap seen between mild TBI (174 hours) and severe TBI (69 hours) patients. Further analysis revealed care continuum differences for interval 3 (neurosurgical evaluation to CT result) and 4 (CT result to surgery) between severe TBI patients (7 hours for interval 3 and 24 hours for interval 4) and mild TBI patients (19 hours for interval 3, and 96 hours for interval 4). These post-arrival delays were associated with mortality for mild (p=0.05) and moderate TBI (p=0.03) patients. Conclusions: To our knowledge, this is the first analysis using a modified ‘three delays’ framework to analyze the care continuum of TBI patients in Uganda from injury to surgery. We found significant associations between delays and mortality for mild and moderate TBI patients. As it currently stands, poorer outcomes were observed for these mild and moderate TBI patients who were managed non-operatively or failed to receive surgery while surgical services were shunted to more severely ill patients. While well intentioned, high mortality rates were still observed for the severe TBI patients managed surgically. These results suggest the need for future research to optimize triage practices, understand delay contributors, and improve pre-hospital logistical referral systems.

Keywords: care continuum, global neurosurgery, Kampala Uganda, LMIC, Mulago, prospective registry, traumatic brain injury

Procedia PDF Downloads 352
4090 Affordable and Environmental Friendly Small Commuter Aircraft Improving European Mobility

Authors: Diego Giuseppe Romano, Gianvito Apuleo, Jiri Duda

Abstract:

Mobility is one of the most important societal needs for amusement, business activities and health. Thus, transport needs are continuously increasing, with the consequent traffic congestion and pollution increase. Aeronautic effort aims at smarter infrastructures use and in introducing greener concepts. A possible solution to address the abovementioned topics is the development of Small Air Transport (SAT) system, able to guarantee operability from today underused airfields in an affordable and green way, helping meanwhile travel time reduction, too. In the framework of Horizon2020, EU (European Union) has funded the Clean Sky 2 SAT TA (Transverse Activity) initiative to address market innovations able to reduce SAT operational cost and environmental impact, ensuring good levels of operational safety. Nowadays, most of the key technologies to improve passenger comfort and to reduce community noise, DOC (Direct Operating Costs) and pilot workload for SAT have reached an intermediate level of maturity TRL (Technology Readiness Level) 3/4. Thus, the key technologies must be developed, validated and integrated on dedicated ground and flying aircraft demonstrators to reach higher TRL levels (5/6). Particularly, SAT TA focuses on the integration at aircraft level of the following technologies [1]: 1)    Low-cost composite wing box and engine nacelle using OoA (Out of Autoclave) technology, LRI (Liquid Resin Infusion) and advance automation process. 2) Innovative high lift devices, allowing aircraft operations from short airfields (< 800 m). 3) Affordable small aircraft manufacturing of metallic fuselage using FSW (Friction Stir Welding) and LMD (Laser Metal Deposition). 4)       Affordable fly-by-wire architecture for small aircraft (CS23 certification rules). 5) More electric systems replacing pneumatic and hydraulic systems (high voltage EPGDS -Electrical Power Generation and Distribution System-, hybrid de-ice system, landing gear and brakes). 6) Advanced avionics for small aircraft, reducing pilot workload. 7) Advanced cabin comfort with new interiors materials and more comfortable seats. 8) New generation of turboprop engine with reduced fuel consumption, emissions, noise and maintenance costs for 19 seats aircraft. (9) Alternative diesel engine for 9 seats commuter aircraft. To address abovementioned market innovations, two different platforms have been designed: Reference and Green aircraft. Reference aircraft is a virtual aircraft designed considering 2014 technologies with an existing engine assuring requested take-off power; Green aircraft is designed integrating the technologies addressed in Clean Sky 2. Preliminary integration of the proposed technologies shows an encouraging reduction of emissions and operational costs of small: about 20% CO2 reduction, about 24% NOx reduction, about 10 db (A) noise reduction at measurement point and about 25% DOC reduction. Detailed description of the performed studies, analyses and validations for each technology as well as the expected benefit at aircraft level are reported in the present paper.

Keywords: affordable, European, green, mobility, technologies development, travel time reduction

Procedia PDF Downloads 104
4089 Technological Enhancements in Supply Chain Management Post COVID-19

Authors: Miran Ismail

Abstract:

COVID-19 has caused widespread disruption in all economical sectors and industries around the world. The COVID-19 lockdown measures have resulted in production halts, restrictions on persons and goods movement, border closures, logistical constraints, and a slowdown in trade and economic activity. The main subject of this paper is to leverage technology to manage the supply chain effectively and efficiently through the usage of artificial intelligence. The research methodology is based on empirical data collected through a questionnaire survey. One of the approaches utilized is a case study of industrial organizations that face obstacles such as high operational costs, large inventory levels, a lack of well-established supplier relationships, human behavior, and system issues. The main contribution of this research to the body of knowledge is the empirical insights and on supply chain sustainability performance measurement. The results provide guidelines for the selection of advanced technologies to support supply chain processes and for the design of sustainable performance measurement systems.

Keywords: information technology, artificial intelligence, supply chain management, industrial organizations

Procedia PDF Downloads 129
4088 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications

Authors: Yasith Mindula Saipath Wickramasinghe

Abstract:

Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.

Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating

Procedia PDF Downloads 123
4087 Enhance Engineering Pedagogy in Programming Course via Knowledge Graph-Based Recommender System

Authors: Yan Li

Abstract:

Purpose: There is a lack of suitable recommendation systems to assist engineering teaching. The existing traditional engineering pedagogies lack learning interests for postgraduate students. The knowledge graph-based recommender system aims to enhance postgraduate students’ programming skills, with a focus on programming courses. Design/methodology/approach: The case study will be used as a major research method, and the two case studies will be taken in both two teaching styles of the universities (Zhejiang University and the University of Nottingham Ningbo China), followed by the interviews. Quantitative and qualitative research methods will be combined in this study. Research limitations/implications: The case studies were only focused on two teaching styles universities, which is not comprehensive enough. The subject was limited to postgraduate students. Originality/value: The study collected and analyzed the data from two teaching styles of universities’ perspectives. It explored the challenges of Engineering education and tried to seek potential enhancement.

Keywords: knowledge graph and recommender system, engineering pedagogy, programming skills, postgraduate students

Procedia PDF Downloads 78
4086 Book Exchange System with a Hybrid Recommendation Engine

Authors: Nilki Upathissa, Torin Wirasinghe

Abstract:

This solution addresses the challenges faced by traditional bookstores and the limitations of digital media, striking a balance between the tactile experience of printed books and the convenience of modern technology. The book exchange system offers a sustainable alternative, empowering users to access a diverse range of books while promoting community engagement. The user-friendly interfaces incorporated into the book exchange system ensure a seamless and enjoyable experience for users. Intuitive features for book management, search, and messaging facilitate effortless exchanges and interactions between users. By streamlining the process, the system encourages readers to explore new books aligned with their interests, enhancing the overall reading experience. Central to the system's success is the hybrid recommendation engine, which leverages advanced technologies such as Long Short-Term Memory (LSTM) models. By analyzing user input, the engine accurately predicts genre preferences, enabling personalized book recommendations. The hybrid approach integrates multiple technologies, including user interfaces, machine learning models, and recommendation algorithms, to ensure the accuracy and diversity of the recommendations. The evaluation of the book exchange system with the hybrid recommendation engine demonstrated exceptional performance across key metrics. The high accuracy score of 0.97 highlights the system's ability to provide relevant recommendations, enhancing users' chances of discovering books that resonate with their interests. The commendable precision, recall, and F1score scores further validate the system's efficacy in offering appropriate book suggestions. Additionally, the curve classifications substantiate the system's effectiveness in distinguishing positive and negative recommendations. This metric provides confidence in the system's ability to navigate the vast landscape of book choices and deliver recommendations that align with users' preferences. Furthermore, the implementation of this book exchange system with a hybrid recommendation engine has the potential to revolutionize the way readers interact with printed books. By facilitating book exchanges and providing personalized recommendations, the system encourages a sense of community and exploration within the reading community. Moreover, the emphasis on sustainability aligns with the growing global consciousness towards eco-friendly practices. With its robust technical approach and promising evaluation results, this solution paves the way for a more inclusive, accessible, and enjoyable reading experience for book lovers worldwide. In conclusion, the developed book exchange system with a hybrid recommendation engine represents a progressive solution to the challenges faced by traditional bookstores and the limitations of digital media. By promoting sustainability, widening access to printed books, and fostering engagement with reading, this system addresses the evolving needs of book enthusiasts. The integration of user-friendly interfaces, advanced machine learning models, and recommendation algorithms ensure accurate and diverse book recommendations, enriching the reading experience for users.

Keywords: recommendation systems, hybrid recommendation systems, machine learning, data science, long short-term memory, recurrent neural network

Procedia PDF Downloads 99
4085 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image

Authors: Abe D. Desta

Abstract:

This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.

Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking

Procedia PDF Downloads 132
4084 Development of Starch Nanoparticles as Vehicles for Curcumin Delivery

Authors: Fernando G. Torres, Omar P. Troncoso

Abstract:

Starch is a highly biocompatible, non-toxic, and biodegradable polymer. It is widely used in biomedical applications, including drug delivery systems and tissue engineering scaffolds. Curcumin, a phenolic compound found in the dried root of Curcuma longa, has been used as a nutritional supplement due to its antimicrobial, anti-inflammatory, and antioxidant effects. However, the major problem with ingesting curcumin by itself is its poor bioavailability due to its poor absorption and rapid metabolism. In this study, we report a novel methodology to prepare starch nanoparticles loaded with curcumin. The nanoparticles were synthesized via nanoprecipitation of starch granules extracted from native Andean potatoes (Solanum tuberosum ssp. and Andigena var Huamantanga varieties). The nanoparticles were crosslinked and stabilized by using sodium tripolyphosphate and Tween®80, respectively. The characterization of the nanoparticles loaded with curcumin was assessed by Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering, Zeta potential, and Differential scanning calorimetry. UV-vis spectrophotometry was used to evaluate the loading efficiency and capacity of the samples. The results showed that native starch nanoparticles could be used to prepare promising nanocarriers for the controlled release of curcumin.

Keywords: starch nanoparticle, nanoprecipitation, curcumin, biomedical applications

Procedia PDF Downloads 133
4083 Rehabilitative Walking: The Development of a Robotic Walking Training Device Using Functional Electrical Stimulation for Treating Spinal Cord Injuries and Lower-Limb Paralysis

Authors: Chung Hyun Goh, Armin Yazdanshenas, X. Neil Dong, Yong Tai Wang

Abstract:

Physical rehabilitation is a necessary step in regaining lower body function after a partial paralysis caused by a spinal cord injury or a stroke. The purpose of this paper is to present the development and optimization of a training device that accurately recreates the motions in a gait cycle with the goal of rehabilitation for individuals with incomplete spinal cord injuries or who are victims of a stroke. A functional electrical stimulator was used in conjunction with the training device to stimulate muscle groups pertaining to rehabilitative walking. The feasibility and reliability of the design are presented. To validate the design functionality, motion analyses of the knee and ankle gait paths were made using motion capture systems. Key results indicate that the robotic walking training device provides a viable mode of physical rehabilitation.

Keywords: functional electrical stimulation, rehabilitative walking, robotic walking training device, spinal cord injuries

Procedia PDF Downloads 149
4082 Negative Sequence-Based Protection Techniques for Microgrid Connected Power Systems

Authors: Isabelle Snyder, Travis Smith

Abstract:

Microgrid protection presents challenges to conventional protection techniques due to the low-induced fault current. Protection relays present in microgrid applications require a combination of settings groups to adjust based on the architecture of the microgrid in islanded and grid-connected modes. In a radial system where the microgrid is at the other end of the feeder, directional elements can be used to identify the direction of the fault current and switch settings groups accordingly (grid-connected or microgrid-connected). However, with multiple microgrid connections, this concept becomes more challenging, and the direction of the current alone is not sufficient to identify the source of the fault current contribution. ORNL has previously developed adaptive relaying schemes through other DOE-funded research projects that will be evaluated and used as a baseline for this research. The four protection techniques in this study are labeled as follows: (1) Adaptive Current only Protection System (ACPS), Intentional (2) Unbalanced Control for Protection Control (IUCPC), (3) Adaptive Protection System with Communication Controller (APSCC) (4) Adaptive Model-Driven Protective Relay (AMDPR).

Keywords: adaptive relaying, microgrid protection, sequence components, islanding detection

Procedia PDF Downloads 106
4081 A Physical Treatment Method as a Prevention Method for Barium Sulfate Scaling

Authors: M. A. Salman, G. Al-Nuwaibit, M. Safar, M. Rughaibi, A. Al-Mesri

Abstract:

Barium sulfate (BaSO₄) is a hard scaling usually precipitates on the surface of equipment in many industrial systems, as oil and gas production, desalination and cooling and boiler operation. It is a scale that extremely resistance to both chemical and mechanical cleaning. So, BaSO₄ is a problematic and expensive scaling. Although barium ions are present in most natural waters at a very low concentration as low as 0.008 mg/l, it could result of scaling problems in the presence of high concentration of sulfate ion or when mixing with incompatible waters as in oil produced water. The scaling potential of BaSO₄ using seawater at the intake of seven desalination plants in Kuwait, brine water and Kuwait oil produced water was calculated and compared then the best location in regards of barium sulfate scaling was reported. Finally, a physical treatment method (magnetic treatment method) and chemical treatment method were used to control BaSO₄ scaling using saturated solutions at different operating temperatures, flow velocities, feed pHs and different magnetic strengths. The results of the two methods were discussed, and the more economical one with the reasonable performance was recommended, which is the physical treatment method.

Keywords: magnetic field strength, flow velocity, retention time, barium sulfate

Procedia PDF Downloads 270
4080 Elements of Socio-Ecological Knowledge for Sustainable Fisheries Management: An Analysis of Chakara Fishery Management in South West India

Authors: Antony Thomas Vanchipurrakkal

Abstract:

Common property resource like fisheries is conserved and managed by fishermen with the help of Local Ecological Knowledge system. Various forms of Social and Ecological elements adapted to formularize management of Chakara fishery. This study tries for a better understanding of elements involved in fishery management in India, such traditional knowledge system practicing within the fishing communities for management and conservation of the marine resources. Participatory Rural Appraisal technique is applied to seize the traditional knowledge system in central Kerala coastal region, India. Socio-Ecological Analysis framework is used for the study. This paper discusses that traditional knowledge systems of chakara fishery and discloses need for inclusive governance system. The paper also discusses adaptation of different elements of the ecological, biological and institutional knowledge system in local ecological knowledge for sustain the fishery. A framework is formulized based on elements operating in chakara fishery management.

Keywords: common property, fisheries, India, local ecological knowledge, management

Procedia PDF Downloads 418
4079 On Demand Transport: Feasibility Study - Local Needs and Capabilities within the Oran Wilaya

Authors: Nadjet Brahmia

Abstract:

The evolution of urban forms, the new aspects of mobility, the ways of life and economic models make public transport conventional collective low-performing on the majority of largest Algerian cities, particularly in the west of Algeria. On the other side, the information and communication technologies (ICT) open new eventualities to develop a new mode of transport which brings together both the tenders offered by the public service collective and those of the particular vehicle, suitable for urban requirements, social and environmental. Like the concrete examples made in the international countries in terms of on-demand transport systems (ODT) more particularly in the developed countries, this article has for objective the opportunity analysis to establish a service of ODT at the level of a few towns of Oran Wilaya, such a service will be subsequently spread on the totality of the Wilaya if not on the whole of Algeria. In this context, we show the different existing means of transport in the current network whose aim to illustrate the points of insufficiency accented in the present transport system, then we discuss the solutions that may exhibit a service of ODT to the problem studied all around the transport sector, to carry at the end to highlight the capabilities of ODT replying to the transformation of mobilities, this in the light of well-defined cases.

Keywords: mobility, on-demand transport, public transport collective, transport system

Procedia PDF Downloads 362
4078 Adaptive Control of Magnetorheological Damper Using Duffing-Like Model

Authors: Hung-Jiun Chi, Cheng-En Tsai, Jia-Ying Tu

Abstract:

Semi-active control of Magnetorheological (MR) dampers for vibration reduction of structural systems has received considerable attention in civil and earthquake engineering, because the effective stiffness and damping properties of MR fluid can change in a very short time in reaction to external loading, requiring only a low level of power. However, the inherent nonlinear dynamics of hysteresis raise challenges in the modeling and control processes. In order to control the MR damper, an innovative Duffing-like equation is proposed to approximate the hysteresis dynamics in a deterministic and systematic manner than previously has been possible. Then, the model-reference adaptive control technique based on the Duffing-like model and the Lyapunov method is discussed. Parameter identification work with experimental data is presented to show the effectiveness of the Duffing-like model. In addition, simulation results show that the resulting adaptive gains enable the MR damper force to track the desired response of the reference model satisfactorily, verifying the effectiveness of the proposed modeling and control techniques.

Keywords: magnetorheological damper, duffing equation, model-reference adaptive control, Lyapunov function, hysteresis

Procedia PDF Downloads 371
4077 Performance Analysis of a Hybrid Channel for Foglet Assisted Smart Asset Reporting

Authors: Hasan Farahneh

Abstract:

Smart asset management along roadsides and in deserted areas is a topic of deprived attention. We find most of the work in emergency reporting services in intelligent transportation systems (ITS) and rural areas but not much in asset reporting. Currently, available asset management mechanisms are based on scheduled maintenance and do not effectively report any emergency situation in a timely manner. This paper is the continuation of our previous work, in which we proposed the usage of Foglets and VLC link between smart vehicles and road side assets. In this paper, we propose a hybrid communication system for asset management and emergency reporting architecture for smart transportation. We incorporate Foglets along with visible light communication (VLC) and radio frequency (RF) communication. We present the channel model and parameters of a hybrid model to support an intelligent transportation system (ITS) system. Simulations show high improvement in the system performance in terms of communication range and received data. We present a comparative analysis of a hybrid ITS system.

Keywords: Internet of Things, Foglets, VLC, RF, smart vehicle, roadside asset management

Procedia PDF Downloads 136
4076 A Computer-Aided System for Tooth Shade Matching

Authors: Zuhal Kurt, Meral Kurt, Bilge T. Bal, Kemal Ozkan

Abstract:

Shade matching and reproduction is the most important element of success in prosthetic dentistry. Until recently, shade matching procedure was implemented by dentists visual perception with the help of shade guides. Since many factors influence visual perception; tooth shade matching using visual devices (shade guides) is highly subjective and inconsistent. Subjective nature of this process has lead to the development of instrumental devices. Nowadays, colorimeters, spectrophotometers, spectroradiometers and digital image analysing systems are used for instrumental shade selection. Instrumental devices have advantages that readings are quantifiable, can obtain more rapidly and simply, objectively and precisely. However, these devices have noticeable drawbacks. For example, translucent structure and irregular surfaces of teeth lead to defects on measurement with these devices. Also between the results acquired by devices with different measurement principles may make inconsistencies. So, its obligatory to search for new methods for dental shade matching process. A computer-aided system device; digital camera has developed rapidly upon today. Currently, advances in image processing and computing have resulted in the extensive use of digital cameras for color imaging. This procedure has a much cheaper process than the use of traditional contact-type color measurement devices. Digital cameras can be taken by the place of contact-type instruments for shade selection and overcome their disadvantages. Images taken from teeth show morphology and color texture of teeth. In last decades, a new method was recommended to compare the color of shade tabs taken by a digital camera using color features. This method showed that visual and computer-aided shade matching systems should be used as concatenated. Recently using methods of feature extraction techniques are based on shape description and not used color information. However, color is mostly experienced as an essential property in depicting and extracting features from objects in the world around us. When local feature descriptors with color information are extended by concatenating color descriptor with the shape descriptor, that descriptor will be effective on visual object recognition and classification task. Therefore, the color descriptor is to be used in combination with a shape descriptor it does not need to contain any spatial information, which leads us to use local histograms. This local color histogram method is remain reliable under variation of photometric changes, geometrical changes and variation of image quality. So, coloring local feature extraction methods are used to extract features, and also the Scale Invariant Feature Transform (SIFT) descriptor used to for shape description in the proposed method. After the combination of these descriptors, the state-of-art descriptor named by Color-SIFT will be used in this study. Finally, the image feature vectors obtained from quantization algorithm are fed to classifiers such as Nearest Neighbor (KNN), Naive Bayes or Support Vector Machines (SVM) to determine label(s) of the visual object category or matching. In this study, SVM are used as classifiers for color determination and shade matching. Finally, experimental results of this method will be compared with other recent studies. It is concluded from the study that the proposed method is remarkable development on computer aided tooth shade determination system.

Keywords: classifiers, color determination, computer-aided system, tooth shade matching, feature extraction

Procedia PDF Downloads 449
4075 Characterization of Gamma Irradiated PVDF and PVDF/Graphene Oxide Composites by Spectroscopic Techniques

Authors: Juliana V. Pereira, Adriana S. M. Batista, Jefferson P. Nascimento, Clascídia A. Furtado, Luiz O. Faria

Abstract:

The combination of the properties of graphene oxide (OG) and PVDF homopolymer makes their combined composite materials as multifunctional systems with great potential. Knowledge of the molecular structure is essential for better use. In this work, the degradation of PVDF polymer exposed to gamma irradiation in oxygen atmosphere in high dose rate has been studied and compared to degradation of PVDF/OG composites. The samples were irradiated with a Co-60 source at constant dose rate, with doses ranging from 100 kGy to 1,000 kGy. In FTIR data shown that the formation of oxidation products was at the both samples with formation of carbonyl and hydroxyl groups amongst the most prevalent products in the pure PVDF samples. In the other hand, the composites samples exhibit less presence of degradation products with predominant formation of carbonyl groups, these results also seen in the UV-Vis analysis. The results show that the samples of composites may have greater resistance to the irradiation process, since they have less degradation products than pure PVDF samples seen by spectroscopic techniques.

Keywords: gamma irradiation, PVDF, PVDF/OG composites, spectroscopic techniques

Procedia PDF Downloads 574
4074 Settlements of Disputes in the Context of Islamic (Sharia) Economics in Indonesia and Egypt: A Comparative Analysis

Authors: Gemala Dewi, Wirdyaningsih, Farida Prihatini

Abstract:

The development of sharia business activities at present has solidified its societal mark and has crossed influence between several nations. In the practice, there may be disputes, breaches and other forms of conflict that occurred along the way. In the meantime, alternative settlements of disputes are utilized differently between nations in the context of their political, social, economic, legal and infrastructural (technology and transportation) scope. Besides the various conditions, there is a common driving factor, which is a consequence of the need for businesses to settle conflicts in an efficient and cost-efficient manner. This factor is paired symbiotically with the limitations of the court and legal processes. Knowing this, Indonesia and Egypt represent countries that have similar social, political, economic and legal conditions. This academic research establishes a normative analysis that looks and compares the rules that regulate the prospects and challenges in the regards of dispute settlements in reference to sharia economics in Indonesia and Egypt. This work recommends that sharia economics dispute settlement is significant to be incorporated in both Indonesian and Egyptian legal systems.

Keywords: sharia economics, dispute resolution, Indonesia, Egypt

Procedia PDF Downloads 345
4073 Active Learning Strategies to Develop Student Skills in Information Systems for Management

Authors: Filomena Lopes, Sandra Fernandes

Abstract:

Active learning strategies are at the center of any change process aimed to improve the development of student skills. This paper aims to analyse the impact of teaching strategies, including problem-based learning (PBL), in the curricular unit of information system for management, based on students’ perceptions of how they contribute to develop the desired learning outcomes of the curricular unit. This course is part of the 1st semester and 3rd year of the graduate degree program in management at a private higher education institution in Portugal. The methodology included an online questionnaire to students (n=40). Findings from students reveal a positive impact of the teaching strategies used. In general, 35% considered that the strategies implemented in the course contributed to the development of courses’ learning objectives. Students considered PBL as the learning strategy that better contributed to enhance the courses’ learning outcomes. This conclusion brings forward the need for further reflection and discussion on the impact of student feedback on teaching and learning processes.

Keywords: higher education, active learning strategies, skills development, student assessment

Procedia PDF Downloads 66
4072 Big Data Applications for the Transport Sector

Authors: Antonella Falanga, Armando Cartenì

Abstract:

Today, an unprecedented amount of data coming from several sources, including mobile devices, sensors, tracking systems, and online platforms, characterizes our lives. The term “big data” not only refers to the quantity of data but also to the variety and speed of data generation. These data hold valuable insights that, when extracted and analyzed, facilitate informed decision-making. The 4Vs of big data - velocity, volume, variety, and value - highlight essential aspects, showcasing the rapid generation, vast quantities, diverse sources, and potential value addition of these kinds of data. This surge of information has revolutionized many sectors, such as business for improving decision-making processes, healthcare for clinical record analysis and medical research, education for enhancing teaching methodologies, agriculture for optimizing crop management, finance for risk assessment and fraud detection, media and entertainment for personalized content recommendations, emergency for a real-time response during crisis/events, and also mobility for the urban planning and for the design/management of public and private transport services. Big data's pervasive impact enhances societal aspects, elevating the quality of life, service efficiency, and problem-solving capacities. However, during this transformative era, new challenges arise, including data quality, privacy, data security, cybersecurity, interoperability, the need for advanced infrastructures, and staff training. Within the transportation sector (the one investigated in this research), applications span planning, designing, and managing systems and mobility services. Among the most common big data applications within the transport sector are, for example, real-time traffic monitoring, bus/freight vehicle route optimization, vehicle maintenance, road safety and all the autonomous and connected vehicles applications. Benefits include a reduction in travel times, road accidents and pollutant emissions. Within these issues, the proper transport demand estimation is crucial for sustainable transportation planning. Evaluating the impact of sustainable mobility policies starts with a quantitative analysis of travel demand. Achieving transportation decarbonization goals hinges on precise estimations of demand for individual transport modes. Emerging technologies, offering substantial big data at lower costs than traditional methods, play a pivotal role in this context. Starting from these considerations, this study explores the usefulness impact of big data within transport demand estimation. This research focuses on leveraging (big) data collected during the COVID-19 pandemic to estimate the evolution of the mobility demand in Italy. Estimation results reveal in the post-COVID-19 era, more than 96 million national daily trips, about 2.6 trips per capita, with a mobile population of more than 37.6 million Italian travelers per day. Overall, this research allows us to conclude that big data better enhances rational decision-making for mobility demand estimation, which is imperative for adeptly planning and allocating investments in transportation infrastructures and services.

Keywords: big data, cloud computing, decision-making, mobility demand, transportation

Procedia PDF Downloads 68
4071 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management

Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix

Abstract:

A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.

Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings

Procedia PDF Downloads 375
4070 Development of Fake News Model Using Machine Learning through Natural Language Processing

Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini

Abstract:

Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.

Keywords: fake news detection, natural language processing, machine learning, classification techniques.

Procedia PDF Downloads 171
4069 Festive Fictions: An Iconographic Study of Ritual and Intersectionality in Cartagena, Colombia

Authors: Melissa Valle

Abstract:

This paper draws upon the studies of visual culture and intersectionality to illuminate how visuality can naturalize social hierarchies. Through the use of iconography, it decodes the denotative, connotative and ideological meanings of symbols of ritualistic events in the context of the Colombian Atlantic Coast. An examination of such exceptional moments, i.e. of the spectacle, brings into focus how such performances are imbued with meaning by both the on-looker and the performer. Through an analysis of preexisting visuals (e.g., advertisements, social media) and visual materials produced by the researcher for the purpose of photo-elicitation interviews, this paper provides a contextual analysis of the ways in which three representations, popular during Colombian Atlantic coastal festivals (Negrita Puloy, Las Palenqueras, and El Son de Negro), have been historically, culturally and politically constituted. This work reveals that the visualizations are born out of and reproduce typifications systems heavily based upon race, gender, class, and ethnicity. Understanding the ways these categories are mutually constituted through the cultural practice of visual representation is essential to a more comprehensive understanding of the role such representation plays in the reproduction of social difference.

Keywords: Colombia, festivals, intersectionality, visual culture

Procedia PDF Downloads 359
4068 Numerical Regularization of Ill-Posed Problems via Hybrid Feedback Controls

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Many mathematical models used in biological and other applications are ill-posed. The reason for that is the nature of differential equations, where the nonlinearities are assumed to be step functions, which is done to simplify the analysis. Prominent examples are switched systems arising from gene regulatory networks and neural field equations. This simplification leads, however, to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid feedback controls to regularize the problem. Roughly speaking, one attaches a finite state control (‘automaton’), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. This ‘hybridization’ is shown to regularize the original switched system and gives rise to efficient hybrid numerical schemes. Several examples are provided in the presentation, which supports the suggested analysis. The method can be of interest in other applied fields, where differential equations contain step-like nonlinearities.

Keywords: hybrid feedback control, ill-posed problems, singular perturbation analysis, step-like nonlinearities

Procedia PDF Downloads 249
4067 Impact of Natural Language Processing in Educational Setting: An Effective Approach towards Improved Learning

Authors: Khaled M. Alhawiti

Abstract:

Natural Language Processing (NLP) is an effective approach for bringing improvement in educational setting. This involves initiating the process of learning through the natural acquisition in the educational systems. It is based on following effective approaches for providing the solution for various problems and issues in education. Natural Language Processing provides solution in a variety of different fields associated with the social and cultural context of language learning. It is based on involving various tools and techniques such as grammar, syntax, and structure of text. It is effective approach for teachers, students, authors, and educators for providing assistance for writing, analysis, and assessment procedure. Natural Language Processing is widely integrated in the large number of educational contexts such as research, science, linguistics, e-learning, evaluations system, and various other educational settings such as schools, higher education system, and universities. Natural Language Processing is based on applying scientific approach in the educational settings. In the educational settings, NLP is an effective approach to ensure that students can learn easily in the same way as they acquired language in the natural settings.

Keywords: natural language processing, education, application, e-learning, scientific studies, educational system

Procedia PDF Downloads 507
4066 Impact of Similarity Ratings on Human Judgement

Authors: Ian A. McCulloh, Madelaine Zinser, Jesse Patsolic, Michael Ramos

Abstract:

Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks.

Keywords: ratings, rankings, crowdsourcing, empirical studies, user studies, similarity measures, human-centered computing, novelty in information retrieval

Procedia PDF Downloads 143
4065 Matching Farmer Competence and Farm Resources with the Transformation of Agri-Food Marketing Systems

Authors: Bhawat Chiamjinnawat

Abstract:

The agri-food market transformation has implied market growth for the fruit industry in Thailand. This article focuses on analysis of farmer competence and farm resources which affect market strategies used by fruit farmers in Chanthaburi province of Thailand. The survey data were collected through the use of face-to-face interviews with structured questionnaires. This study identified 14 drivers related to farmer competence and farm resources of which some had significant effect on the decision to use either high-value markets or traditional markets. The results suggest that farmers who used high-value markets were better educated and they had longer experience and larger sized business. Identifying the important factors that match with the market transformation provides policy with opportunities to support the fruit farmers to increase their market power. Policies that promote business expansion of agricultural cooperatives and knowledge sharing among farmers are recommended to reduce limitations due to limited knowledge, low experience, and small business sizes.

Keywords: farmer competence, farm resources, fruit industry, high-value markets, Thailand

Procedia PDF Downloads 168
4064 Hybrid Wavelet-Adaptive Neuro-Fuzzy Inference System Model for a Greenhouse Energy Demand Prediction

Authors: Azzedine Hamza, Chouaib Chakour, Messaoud Ramdani

Abstract:

Energy demand prediction plays a crucial role in achieving next-generation power systems for agricultural greenhouses. As a result, high prediction quality is required for efficient smart grid management and therefore low-cost energy consumption. The aim of this paper is to investigate the effectiveness of a hybrid data-driven model in day-ahead energy demand prediction. The proposed model consists of Discrete Wavelet Transform (DWT), and Adaptive Neuro-Fuzzy Inference System (ANFIS). The DWT is employed to decompose the original signal in a set of subseries and then an ANFIS is used to generate the forecast for each subseries. The proposed hybrid method (DWT-ANFIS) was evaluated using a greenhouse energy demand data for a week and compared with ANFIS. The performances of the different models were evaluated by comparing the corresponding values of Mean Absolute Percentage Error (MAPE). It was demonstrated that discret wavelet transform can improve agricultural greenhouse energy demand modeling.

Keywords: wavelet transform, ANFIS, energy consumption prediction, greenhouse

Procedia PDF Downloads 93