Search results for: transverse flux PM linear machine
401 Study of Polish and Ukrainian Volunteers Helping War Refugees. Psychological and Motivational Conditions of Coping with Stress of Volunteer Activity
Authors: Agata Chudzicka-Czupała, Nadiya Hapon, Liudmyla Karamushka, Marta żywiołek-Szeja
Abstract:
Objectives: The study is about the determinants of coping with stress connected with volunteer activity for Russo-Ukrainian war 2022 refugees. We examined the mental health reactions, chosen psychological traits, and motivational functions of volunteers working in Poland and Ukraine in relation to their coping with stress styles. The study was financed with funds from the Foundation for Polish Science in the framework of the FOR UKRAINE Programme. Material and Method: The study was conducted in 2022. The study was a quantitative, questionnaire-based survey. Data was collected through an online survey. The volunteers were asked to assess their propensity to use different styles of coping with stress connected with their activity for Russo-Ukrainian war refugees using The Brief Coping Orientation to Problems Experienced Inventory (Brief-COPE) questionnaire. Depression, anxiety, and stress were measured using the Depression, Anxiety, and Stress (DASS)-21 item scale. Chosen psychological traits, psychological capital and hardiness, were assessed by The Psychological Capital Questionnaire and The Norwegian Revised Scale of Hardiness (DRS-15R). Then The Volunteer Function Inventory (VFI) was used. The significance of differences between the variable means of the samples was tested by the Student's t-test. We used multivariate linear regression to identify factors associated with coping with stress styles separately for each national sample. Results: The sample consisted of 720 volunteers helping war refugees (in Poland, 435 people, and 285 in Ukraine). The results of the regression analysis indicate variables that are significant predictors of the propensity to use particular styles of coping with stress (problem-focused style, emotion-focused style and avoidant coping). These include levels of depression and stress, individual psychological characteristics and motivational functions, different for Polish and Ukrainians. Ukrainian volunteers are significantly more likely to use all three coping with stress styles than Polish ones. The results also prove significant differences in the severity of anxiety, stress and depression, the selected psychological traits and motivational functions studied, which led volunteers to participate in activities for war refugees. Conclusions: The results show that depression and stress severity, as well as psychological capital and hardiness, and motivational factors are connected with coping with stress behavior. The results indicate the need for increased attention to the well-being of volunteers acting under stressful conditions. They also prove the necessity of guiding the selection of people for specific types of voluKeywords: anxiety, coping with stress styles, depression, hardiness, mental health, motivational functions, psychological capital, resilience, stress, war, volunteer, civil society
Procedia PDF Downloads 71400 Expression of Selected miRNAs in Placenta of the Intrauterine Restricted Growth Fetuses in Cattle
Authors: Karolina Rutkowska, Hubert Pausch, Jolanta Oprzadek, Krzysztof Flisikowski
Abstract:
The placenta is one of the most important organs that plays a crucial role in the fetal growth and development. Placenta dysfunction is one of the primary cause of the intrauterine growth restriction (IUGR). Cattle have the cotyledonary placenta which consists of two anatomical parts: fetal and maternal. In the case of cattle during the first months of pregnancy, it is very easy to separate maternal caruncle from fetal cotyledon tissue, easier in fact than removing an ordinary glove from one's hand. Which in fact make easier to conduct tissue-specific molecular studies. Typically, animal models for the study of IUGR are created using surgical methods and malnutrition of the pregnant mother or in the case of mice by genetic modifications. However, proposed cattle model with MIMT1Del/WT deletion is unique because it was created without any surgical methods what significantly distinguish it from the other animal models. The primary objective of the study was to identify differential expression of selected miRNAs in the placenta from normal and intrauterine growth restricted fetuses. There was examined the expression of miRNA in the fetal and maternal part of the placenta from 24 fetuses (12 samples from the fetal part of the placenta and 12 samples from maternal part of the placenta). In the study, there was done miRNAs sequencing in the placenta of MIMT1Del/WT fetuses and MIMT1WT/WT fetuses. Then, there were selected miRNAs that are involved in fetal growth and development. Analysis of miRNAs expression was conducted on ABI7500 machine. miRNAs expression was analyzed by reverse-transcription polymerase chain reaction (RT-PCR). As the reference gene was used SNORD47. The results were expressed as 2ΔΔCt: ΔΔCt = (Ctij − CtSNORD47j) − (Cti1 − CtSNORD471). Where Ctij and CtSNORD47j are the Ct values for gene i and for SNORD47 in a sample (named j); Cti1 and CtSNORD471 are the Ct values in sample 1. Differences between groups were evaluated with analysis of variance by using One-Way ANOVA. Bonferroni’s tests were used for interpretation of the data. All normalised miRNA expression values are expressed on a value of natural logarithm. The data were expressed as least squares mean with standard errors. Significance was declared when P < 0.05. The study shows that miRNAs expression depends on the part of the placenta where they origin (fetal or maternal) and on the genotype of the animal. miRNAs offer a particularly new approach to study IUGR. Corresponding tissue samples were collected according to the standard veterinary protocols according to the European Union Normative for Care and Use of Experimental Animals. All animal experiments were approved by the Animal Ethics Committee of the State Provincial Office of Southern Finland (ESAVI-2010-08583/YM-23).Keywords: placenta, intrauterine growth restriction, miRNA, cattle
Procedia PDF Downloads 314399 Sleep Ecology, Sleep Regulation and Behavior Problems in Maltreated Preschoolers: A Scoping Review
Authors: Sabrina Servot, Annick St-Amand, Michel Rousseau, Valerie Simard, Evelyne Touchette
Abstract:
Child maltreatment has a profound impact on children’s development. In its victims, internalizing and externalizing problems are highly prevalent, and sleep problems are common. Furthermore, the environment they live in is often disorganized, lacking routine and consistency. In non-maltreated children, several studies documented the important role of sleep regulation and sleep ecology. A poor sleep ecology (e.g., lack of sleep hygiene and bedtime routine, inappropriate sleeping location) may lead to sleep regulation problems (e.g., short sleep duration, nocturnal awakenings), and sleep regulation problems may increase the risk of behavior problems. Therefore, this scoping review aims to map evidence about sleep ecology and sleep regulation and the associations between sleep ecology, sleep regulation, and behavior problems in maltreated preschoolers. Literature from 1993 was searched in PsycInfo, Pubmed, Medline, Eric, and Proquest Dissertations and Theses. Articles and thesis were comprehensively reviewed based upon inclusion/exclusion criteria: 1) it concerns maltreated children aged 1-5 years, and 2) it addresses at least one of the following: sleep ecology, sleep regulation, and/or their associations with behavior problems in maltreated preschoolers. From the 650 studies screened, nine of them were included. Data were charted according to study characteristics, nature of variable documented, measures, analyses performed, and results of each study, then synthesized in a narrative summary. The main results show all included articles were quantitative. Foster children samples were used in four studies, children experienced different types of maltreatment in six studies, while one was specifically about sexually abused children. Regarding sleep ecology, only one study describing maltreated preschoolers’ sleep ecology was found, while seven studies documented sleep regulation. Among these seven studies, 17 different sleep variables (e.g., parasomnia, dyssomnia, total 24-h sleep duration) were used, each study documenting from one to nine of them. Actigraphic measures were employed in three studies, the others used parent-reported questionnaires or sleep diaries. Maltreated children’s sleep was described and/or compared to non-maltreated children’s sleep, or an intervention group, showing mild differences. As for associations between sleep regulation and behavior problems, five studies investigated it and performed correlational or linear regression analyses between sleep and behavior problems, revealing some significant associations. No study was found about associations between sleep ecology and sleep regulation, between sleep ecology and behavior problems, or between these three variables. In conclusion, literature about sleep ecology, sleep regulation, and their associations with behavior problems are far more scarce in maltreated preschoolers than in non-maltreated ones. At present, there is especially a paucity of research about sleep ecology and the association between sleep ecology and sleep regulation in maltreated preschoolers, while studies on non-maltreated children showed sleep ecology plays a major role in sleep regulation. In addition, as sleep regulation is measured in many different ways among the studies, it is difficult to compare their findings. Finally, it seems necessary that research fill these gaps, as recommendations could be made to clinicians working with maltreated preschoolers regarding the use of sleep ecology and sleep regulation as intervention tools.Keywords: maltreated preschoolers, sleep ecology, sleep regulation, behavior problems
Procedia PDF Downloads 150398 Revolutionizing Healthcare Communication: The Transformative Role of Natural Language Processing and Artificial Intelligence
Authors: Halimat M. Ajose-Adeogun, Zaynab A. Bello
Abstract:
Artificial Intelligence (AI) and Natural Language Processing (NLP) have transformed computer language comprehension, allowing computers to comprehend spoken and written language with human-like cognition. NLP, a multidisciplinary area that combines rule-based linguistics, machine learning, and deep learning, enables computers to analyze and comprehend human language. NLP applications in medicine range from tackling issues in electronic health records (EHR) and psychiatry to improving diagnostic precision in orthopedic surgery and optimizing clinical procedures with novel technologies like chatbots. The technology shows promise in a variety of medical sectors, including quicker access to medical records, faster decision-making for healthcare personnel, diagnosing dysplasia in Barrett's esophagus, boosting radiology report quality, and so on. However, successful adoption requires training for healthcare workers, fostering a deep understanding of NLP components, and highlighting the significance of validation before actual application. Despite prevailing challenges, continuous multidisciplinary research and collaboration are critical for overcoming restrictions and paving the way for the revolutionary integration of NLP into medical practice. This integration has the potential to improve patient care, research outcomes, and administrative efficiency. The research methodology includes using NLP techniques for Sentiment Analysis and Emotion Recognition, such as evaluating text or audio data to determine the sentiment and emotional nuances communicated by users, which is essential for designing a responsive and sympathetic chatbot. Furthermore, the project includes the adoption of a Personalized Intervention strategy, in which chatbots are designed to personalize responses by merging NLP algorithms with specific user profiles, treatment history, and emotional states. The synergy between NLP and personalized medicine principles is critical for tailoring chatbot interactions to each user's demands and conditions, hence increasing the efficacy of mental health care. A detailed survey corroborated this synergy, revealing a remarkable 20% increase in patient satisfaction levels and a 30% reduction in workloads for healthcare practitioners. The poll, which focused on health outcomes and was administered to both patients and healthcare professionals, highlights the improved efficiency and favorable influence on the broader healthcare ecosystem.Keywords: natural language processing, artificial intelligence, healthcare communication, electronic health records, patient care
Procedia PDF Downloads 76397 Risk Assessment of Flood Defences by Utilising Condition Grade Based Probabilistic Approach
Authors: M. Bahari Mehrabani, Hua-Peng Chen
Abstract:
Management and maintenance of coastal defence structures during the expected life cycle have become a real challenge for decision makers and engineers. Accurate evaluation of the current condition and future performance of flood defence structures is essential for effective practical maintenance strategies on the basis of available field inspection data. Moreover, as coastal defence structures age, it becomes more challenging to implement maintenance and management plans to avoid structural failure. Therefore, condition inspection data are essential for assessing damage and forecasting deterioration of ageing flood defence structures in order to keep the structures in an acceptable condition. The inspection data for flood defence structures are often collected using discrete visual condition rating schemes. In order to evaluate future condition of the structure, a probabilistic deterioration model needs to be utilised. However, existing deterioration models may not provide a reliable prediction of performance deterioration for a long period due to uncertainties. To tackle the limitation, a time-dependent condition-based model associated with a transition probability needs to be developed on the basis of condition grade scheme for flood defences. This paper presents a probabilistic method for predicting future performance deterioration of coastal flood defence structures based on condition grading inspection data and deterioration curves estimated by expert judgement. In condition-based deterioration modelling, the main task is to estimate transition probability matrices. The deterioration process of the structure related to the transition states is modelled according to Markov chain process, and a reliability-based approach is used to estimate the probability of structural failure. Visual inspection data according to the United Kingdom Condition Assessment Manual are used to obtain the initial condition grade curve of the coastal flood defences. The initial curves then modified in order to develop transition probabilities through non-linear regression based optimisation algorithms. The Monte Carlo simulations are then used to evaluate the future performance of the structure on the basis of the estimated transition probabilities. Finally, a case study is given to demonstrate the applicability of the proposed method under no-maintenance and medium-maintenance scenarios. Results show that the proposed method can provide an effective predictive model for various situations in terms of available condition grading data. The proposed model also provides useful information on time-dependent probability of failure in coastal flood defences.Keywords: condition grading, flood defense, performance assessment, stochastic deterioration modelling
Procedia PDF Downloads 233396 Effect of Plant Growth Regulators on in vitro Biosynthesis of Antioxidative Compounds in Callus Culture and Regenerated Plantlets Derived from Taraxacum officinale
Authors: Neha Sahu, Awantika Singh, Brijesh Kumar, K. R. Arya
Abstract:
Taraxacum officinale Weber or dandelion (Asteraceae) is an important Indian traditional herb used to treat liver detoxification, digestive problems, spleen, hepatic and kidney disorders, etc. The plant is well known to possess important phenolic and flavonoids to serve as a potential source of antioxidative and chemoprotective agents. Biosynthesis of bioactive compounds through in vitro cultures is a requisite for natural resource conservation and to provide an alternative source for pharmaceutical applications. Thus an efficient and reproducible protocol was developed for in vitro biosynthesis of bioactive antioxidative compounds from leaf derived callus and in vitro regenerated cultures of Taraxacum officinale using MS media fortified with various combinations of auxins and cytokinins. MS media containing 0.25 mg/l 2, 4-D (2, 4-Dichloro phenoxyacetic acid) with 0.05 mg/l 2-iP [N6-(2-Isopentenyl adenine)] was found as an effective combination for the establishment of callus with 92 % callus induction frequency. Moreover, 2.5 mg/l NAA (α-Naphthalene acetic acid) with 0.5 mg/l BAP (6-Benzyl aminopurine) and 1.5 mg/l NAA showed the optimal response for in vitro plant regeneration with 80 % regeneration frequency and rooting respectively. In vitro regenerated plantlets were further transferred to soil and acclimatized. Quantitative variability of accumulated bioactive compounds in cultures (in vitro callus, plantlets and acclimatized) were determined through UPLC-MS/MS (ultra-performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry) and compared with wild plants. The phytochemical determination of in vitro and wild grown samples showed the accumulation of 6 compounds. In in vitro callus cultures and regenerated plantlets, two major antioxidative compounds i.e. chlorogenic acid (14950.0 µg/g and 4086.67 µg/g) and umbelliferone (10400.00 µg/g and 2541.67 µg/g) were found respectively. Scopoletin was found to be highest in vitro regenerated plants (83.11 µg/g) as compared to wild plants (52.75 µg/g). Notably, scopoletin is not detected in callus and acclimatized plants, but quinic acid (6433.33 µg/g) and protocatechuic acid (92.33 µg/g) were accumulated at the highest level in acclimatized plants as compared to other samples. Wild grown plants contained highest content (948.33 µg/g) of flavonoid glycoside i.e. luteolin-7-O-glucoside. Our data suggests that in vitro callus and regenerated plants biosynthesized higher content of antioxidative compounds in controlled conditions when compared to wild grown plants. These standardized cultural conditions may be explored as a sustainable source of plant materials for enhanced production and adequate supply of oxidative polyphenols.Keywords: anti-oxidative compounds, in vitro cultures, Taraxacum officinale, UPLC-MS/MS
Procedia PDF Downloads 201395 Bio-Medical Equipment Technicians: Crucial Workforce to Improve Quality of Health Services in Rural Remote Hospitals in Nepal
Authors: C. M. Sapkota, B. P. Sapkota
Abstract:
Background: Continuous developments in science and technology are increasing the availability of thousands of medical devices – all of which should be of good quality and used appropriately to address global health challenges. It is obvious that bio medical devices are becoming ever more indispensable in health service delivery and among the key workforce responsible for their design, development, regulation, evaluation and training in their use: biomedical technician (BMET) is the crucial. As a pivotal member of health workforce, biomedical technicians are an essential component of the quality health service delivery mechanism supporting the attainment of the Sustainable Development Goals. Methods: The study was based on cross sectional descriptive design. Indicators measuring the quality of health services were assessed in Mechi Zonal Hospital (MZH) and Sagarmatha Zonal Hospital (SZH). Indicators were calculated based on the data about hospital utilization and performance of 2018 available in Medical record section of both hospitals. MZH had employed the BMET during 2018 but SZH had no BMET in 2018.Focus Group Discussion with health workers in both hospitals was conducted to validate the hospital records. Client exit interview was conducted to assess the level of client satisfaction in both the hospitals. Results: In MZH there was round the clock availability and utilization of Radio diagnostics equipment, Laboratory equipment. Operation Theater was functional throughout the year. Bed Occupancy rate in MZH was 97% but in SZH it was only 63%.In SZH, OT was functional only 54% of the days in 2018. CT scan machine was just installed but not functional. Computerized X-Ray in SZH was functional only in 72% of the days. Level of client satisfaction was 87% in MZH but was just 43% in SZH. MZH performed all (256) the Caesarean Sections but SZH performed only 36% of 210 Caesarean Sections in 2018. In annual performance ranking of Government Hospitals, MZH was placed in 1st rank while as SZH was placed in 19th rank out of 32 referral hospitals nationwide in 2018. Conclusion: Biomedical technicians are the crucial member of the human resource for health team with the pivotal role. Trained and qualified BMET professionals are required within health-care systems in order to design, evaluate, regulate, acquire, maintain, manage and train on safe medical technologies. Applying knowledge of engineering and technology to health-care systems to ensure availability, affordability, accessibility, acceptability and utilization of the safer, higher quality, effective, appropriate and socially acceptable bio medical technology to populations for preventive, promotive, curative, rehabilitative and palliative care across all levels of the health service delivery.Keywords: biomedical equipment technicians, BMET, human resources for health, HRH, quality health service, rural hospitals
Procedia PDF Downloads 126394 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis
Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara
Abstract:
Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy
Procedia PDF Downloads 350393 Electric Vehicle Fleet Operators in the Energy Market - Feasibility and Effects on the Electricity Grid
Authors: Benjamin Blat Belmonte, Stephan Rinderknecht
Abstract:
The transition to electric vehicles (EVs) stands at the forefront of innovative strategies designed to address environmental concerns and reduce fossil fuel dependency. As the number of EVs on the roads increases, so too does the potential for their integration into energy markets. This research dives deep into the transformative possibilities of using electric vehicle fleets, specifically electric bus fleets, not just as consumers but as active participants in the energy market. This paper investigates the feasibility and grid effects of electric vehicle fleet operators in the energy market. Our objective centers around a comprehensive exploration of the sector coupling domain, with an emphasis on the economic potential in both electricity and balancing markets. Methodologically, our approach combines data mining techniques with thorough pre-processing, pulling from a rich repository of electricity and balancing market data. Our findings are grounded in the actual operational realities of the bus fleet operator in Darmstadt, Germany. We employ a Mixed Integer Linear Programming (MILP) approach, with the bulk of the computations being processed on the High-Performance Computing (HPC) platform ‘Lichtenbergcluster’. Our findings underscore the compelling economic potential of EV fleets in the energy market. With electric buses becoming more prevalent, the considerable size of these fleets, paired with their substantial battery capacity, opens up new horizons for energy market participation. Notably, our research reveals that economic viability is not the sole advantage. Participating actively in the energy market also translates into pronounced positive effects on grid stabilization. Essentially, EV fleet operators can serve a dual purpose: facilitating transport while simultaneously playing an instrumental role in enhancing grid reliability and resilience. This research highlights the symbiotic relationship between the growth of EV fleets and the stabilization of the energy grid. Such systems could lead to both commercial and ecological advantages, reinforcing the value of electric bus fleets in the broader landscape of sustainable energy solutions. In conclusion, the electrification of transport offers more than just a means to reduce local greenhouse gas emissions. By positioning electric vehicle fleet operators as active participants in the energy market, there lies a powerful opportunity to drive forward the energy transition. This study serves as a testament to the synergistic potential of EV fleets in bolstering both economic viability and grid stabilization, signaling a promising trajectory for future sector coupling endeavors.Keywords: electric vehicle fleet, sector coupling, optimization, electricity market, balancing market
Procedia PDF Downloads 74392 Upward Spread Forced Smoldering Phenomenon: Effects and Applications
Authors: Akshita Swaminathan, Vinayak Malhotra
Abstract:
Smoldering is one of the most persistent types of combustion which can take place for very long periods (hours, days, months) if there is an abundance of fuel. It causes quite a notable number of accidents and is one of the prime suspects for fire and safety hazards. It can be ignited with weaker ignition and is more difficult to suppress than flaming combustion. Upward spread smoldering is the case in which the air flow is parallel to the direction of the smoldering front. This type of smoldering is quite uncontrollable, and hence, there is a need to study this phenomenon. As compared to flaming combustion, a smoldering phenomenon often goes unrecognised and hence is a cause for various fire accidents. A simplified experimental setup was raised to study the upward spread smoldering, its effects due to varying forced flow and its effects when it takes place in the presence of external heat sources and alternative energy sources such as acoustic energy. Linear configurations were studied depending on varying forced flow effects on upward spread smoldering. Effect of varying forced flow on upward spread smoldering was observed and studied: (i) in the presence of external heat source (ii) in the presence of external alternative energy sources (acoustic energy). The role of ash removal was observed and studied. Results indicate that upward spread forced smoldering was affected by various key controlling parameters such as the speed of the forced flow, surface orientation, interspace distance (distance between forced flow and the pilot fuel). When an external heat source was placed on either side of the pilot fuel, it was observed that the smoldering phenomenon was affected. The surface orientation and interspace distance between the external heat sources and the pilot fuel were found to play a huge role in altering the regression rate. Lastly, by impinging an alternative energy source in the form of acoustic energy on the smoldering front, it was observed that varying frequencies affected the smoldering phenomenon in different ways. The surface orientation also played an important role. This project highlights the importance of fire and safety hazard and means of better combustion for all kinds of scientific research and practical applications. The knowledge acquired from this work can be applied to various engineering systems ranging from aircrafts, spacecrafts and even to buildings fires, wildfires and help us in better understanding and hence avoiding such widespread fires. Various fire disasters have been recorded in aircrafts due to small electric short circuits which led to smoldering fires. These eventually caused the engine to catch fire that cost damage to life and property. Studying this phenomenon can help us to control, if not prevent, such disasters.Keywords: alternative energy sources, flaming combustion, ignition, regression rate, smoldering
Procedia PDF Downloads 143391 Raman Spectroscopy Analysis of MnTiO₃-TiO₂ Eutectic
Authors: Adrian Niewiadomski, Barbara Surma, Katarzyna Kolodziejak, Dorota A. Pawlak
Abstract:
Oxide-oxide eutectic is attracting increasing interest of scientific community because of their unique properties and numerous potential applications. Some of the most interesting examples of applications are metamaterials, glucose sensors, photoactive materials, thermoelectric materials, and photocatalysts. Their unique properties result from the fact that composite materials consist of two or more phases. As a result, these materials have additive and product properties. Additive properties originate from particular phases while product properties originate from the interaction between phases. MnTiO3-TiO2 eutectic is one of such materials. TiO2 is a well-known semiconductor, and it is used as a photocatalyst. Moreover, it may be used to produce solar cells, in a gas sensing devices and in electrochemistry. MnTiO3 is a semiconductor and antiferromagnetic. Therefore it has potential application in integrated circuits devices, and as a gas and humidity sensor, in non-linear optics and as a visible-light activated photocatalyst. The above facts indicate that eutectic MnTiO3-TiO2 constitutes an extremely promising material that should be studied. Despite that Raman spectroscopy is a powerful method to characterize materials, to our knowledge Raman studies of eutectics are very limited, and there are no studies of the MnTiO3-TiO2 eutectic. While to our knowledge the papers regarding this material are scarce. The MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, were grown by the micro-pulling-down method at the Institute of Electronic Materials Technology in Warsaw, Poland. A nitrogen atmosphere was maintained during whole crystal growth process. The as-grown samples of MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, are black and opaque. Samples were cut perpendicular to the growth direction. Cross sections were examined with scanning electron microscopy (SEM) and with Raman spectroscopy. The present studies showed that maintaining nitrogen atmosphere during crystal growth process may result in obtaining black TiO2 crystals. SEM and Raman experiments showed that studied eutectic consists of three distinct regions. Furthermore, two of these regions correspond with MnTiO3, while the third region corresponds with the TiO2-xNx phase. Raman studies pointed out that TiO2-xNx phase crystallizes in rutile structure. The studies show that Raman experiments may be successfully used to characterize eutectic materials. The MnTiO3-TiO2 eutectic was grown by the micro-pulling-down method. SEM and micro-Raman experiments were used to establish phase composition of studied eutectic. The studies revealed that the TiO2 phase had been doped with nitrogen. Therefore the TiO2 phase is, in fact, a solid solution with TiO2-xNx composition. The remaining two phases exhibit Raman lines of both rutile TiO2 and MnTiO3. This points out to some kind of coexistence of these phases in studied eutectic.Keywords: compound materials, eutectic growth and characterization, Raman spectroscopy, rutile TiO₂
Procedia PDF Downloads 193390 Understanding Everyday Insecurities Emerging from Fragmented Territorial Control in Post-Accord Colombia
Authors: Clara Voyvodic
Abstract:
Transitions from conflict to peace are by no means smooth nor linear, particularly from the perspective of those living through them. Over the last few decades, the changing focus in peacebuilding studies has come to appreciate the everyday experience of communities and how that provides a lens through which the relative success or efficacy of these transitions can be understood. In particular, the demobilization of a significant conflict actor is not without consequences, not just for the macro-view of state stabilization and peace, but for the communities who find themselves without a clear authority of territorial control. In Colombia, the demobilization and disarmament of the FARC guerilla group provided a brief respite to the conflict and a major political win for President Manuel Santos. However, this victory has proven short-lived. Drawing from extensive field research in Colombia within the last year, including interviews with local communities and actors operating in these regions, field observations, and other primary resources, this paper examines the post-accord transitions in Colombia and the everyday security experiences of local communities in regions formerly controlled by the FARC. In order to do so, the research focused on a semi-ethnographic approach in the northern region of the department of Antioquia and the coastal area of the border department of Nariño that documented how individuals within these marginalized communities have come to understand and negotiate their security in the years following the accord and the demobilization of the FARC. This presentation will argue that the removal of the FARC as an informal governance actor opened a space for multiple actors to attempt to control the same territory, including the state. This shift has had a clear impact on the everyday security experiences of the local communities. With an exploration of the dynamics of local governance and its impact on lived security experiences, this research seeks to demonstrate how distinct patterns of armed group behavior are emerging not only from a vacuum of control left by the FARC but from an increase in state presence that nonetheless remains inconsistent and unpersuasive as a monopoly of force in the region. The increased multiplicity of actors, particularly the state, has meant that the normal (informal) rules for communities to navigate these territories are no longer in play as the identities, actions, and intentions of different competing groups have become frustratingly opaque. This research provides a prescient analysis on how the shifting dynamics of territorial control in a post-peace accord landscape produce uncertain realities that affect the daily lives of the local communities and endanger the long-term prospect of human-centered security.Keywords: armed actors, conflict transitions, informal governance, post-accord, security experiences
Procedia PDF Downloads 132389 Audit and Assurance Program for AI-Based Technologies
Authors: Beatrice Arthur
Abstract:
The rapid development of artificial intelligence (AI) has transformed various industries, enabling faster and more accurate decision-making processes. However, with these advancements come increased risks, including data privacy issues, systemic biases, and challenges related to transparency and accountability. As AI technologies become more integrated into business processes, there is a growing need for comprehensive auditing and assurance frameworks to manage these risks and ensure ethical use. This paper provides a literature review on AI auditing and assurance programs, highlighting the importance of adapting traditional audit methodologies to the complexities of AI-driven systems. Objective: The objective of this review is to explore current AI audit practices and their role in mitigating risks, ensuring accountability, and fostering trust in AI systems. The study aims to provide a structured framework for developing audit programs tailored to AI technologies while also investigating how AI impacts governance, risk management, and regulatory compliance in various sectors. Methodology: This research synthesizes findings from academic publications and industry reports from 2014 to 2024, focusing on the intersection of AI technologies and IT assurance practices. The study employs a qualitative review of existing audit methodologies and frameworks, particularly the COBIT 2019 framework, to understand how audit processes can be aligned with AI governance and compliance standards. The review also considers real-time auditing as an emerging necessity for influencing AI system design during early development stages. Outcomes: Preliminary findings indicate that while AI auditing is still in its infancy, it is rapidly gaining traction as both a risk management strategy and a potential driver of business innovation. Auditors are increasingly being called upon to develop controls that address the ethical and operational risks posed by AI systems. The study highlights the need for continuous monitoring and adaptable audit techniques to handle the dynamic nature of AI technologies. Future Directions: Future research will explore the development of AI-specific audit tools and real-time auditing capabilities that can keep pace with evolving technologies. There is also a need for cross-industry collaboration to establish universal standards for AI auditing, particularly in high-risk sectors like healthcare and finance. Further work will involve engaging with industry practitioners and policymakers to refine the proposed governance and audit frameworks. Funding/Support Acknowledgements: This research is supported by the Information Systems Assurance Management Program at Concordia University of Edmonton.Keywords: AI auditing, assurance, risk management, governance, COBIT 2019, transparency, accountability, machine learning, compliance
Procedia PDF Downloads 23388 Coupling Random Demand and Route Selection in the Transportation Network Design Problem
Authors: Shabnam Najafi, Metin Turkay
Abstract:
Network design problem (NDP) is used to determine the set of optimal values for certain pre-specified decision variables such as capacity expansion of nodes and links by optimizing various system performance measures including safety, congestion, and accessibility. The designed transportation network should improve objective functions defined for the system by considering the route choice behaviors of network users at the same time. The NDP studies mostly investigated the random demand and route selection constraints separately due to computational challenges. In this work, we consider both random demand and route selection constraints simultaneously. This work presents a nonlinear stochastic model for land use and road network design problem to address the development of different functional zones in urban areas by considering both cost function and air pollution. This model minimizes cost function and air pollution simultaneously with random demand and stochastic route selection constraint that aims to optimize network performance via road capacity expansion. The Bureau of Public Roads (BPR) link impedance function is used to determine the travel time function in each link. We consider a city with origin and destination nodes which can be residential or employment or both. There are set of existing paths between origin-destination (O-D) pairs. Case of increasing employed population is analyzed to determine amount of roads and origin zones simultaneously. Minimizing travel and expansion cost of routes and origin zones in one side and minimizing CO emission in the other side is considered in this analysis at the same time. In this work demand between O-D pairs is random and also the network flow pattern is subject to stochastic user equilibrium, specifically logit route choice model. Considering both demand and route choice, random is more applicable to design urban network programs. Epsilon-constraint is one of the methods to solve both linear and nonlinear multi-objective problems. In this work epsilon-constraint method is used to solve the problem. The problem was solved by keeping first objective (cost function) as the objective function of the problem and second objective as a constraint that should be less than an epsilon, where epsilon is an upper bound of the emission function. The value of epsilon should change from the worst to the best value of the emission function to generate the family of solutions representing Pareto set. A numerical example with 2 origin zones and 2 destination zones and 7 links is solved by GAMS and the set of Pareto points is obtained. There are 15 efficient solutions. According to these solutions as cost function value increases, emission function value decreases and vice versa.Keywords: epsilon-constraint, multi-objective, network design, stochastic
Procedia PDF Downloads 647387 Homeostatic Analysis of the Integrated Insulin and Glucagon Signaling Network: Demonstration of Bistable Response in Catabolic and Anabolic States
Authors: Pramod Somvanshi, Manu Tomar, K. V. Venkatesh
Abstract:
Insulin and glucagon are responsible for homeostasis of key plasma metabolites like glucose, amino acids and fatty acids in the blood plasma. These hormones act antagonistically to each other during the secretion and signaling stages. In the present work, we analyze the effect of macronutrients on the response from integrated insulin and glucagon signaling pathways. The insulin and glucagon pathways are connected by DAG (a calcium signaling component which is part of the glucagon signaling module) which activates PKC and inhibits IRS (insulin signaling component) constituting a crosstalk. AKT (insulin signaling component) inhibits cAMP (glucagon signaling component) through PDE3 forming the other crosstalk between the two signaling pathways. Physiological level of anabolism and catabolism is captured through a metric quantified by the activity levels of AKT and PKA in their phosphorylated states, which represent the insulin and glucagon signaling endpoints, respectively. Under resting and starving conditions, the phosphorylation metric represents homeostasis indicating a balance between the anabolic and catabolic activities in the tissues. The steady state analysis of the integrated network demonstrates the presence of a bistable response in the phosphorylation metric with respect to input plasma glucose levels. This indicates that two steady state conditions (one in the homeostatic zone and other in the anabolic zone) are possible for a given glucose concentration depending on the ON or OFF path. When glucose levels rise above normal, during post-meal conditions, the bistability is observed in the anabolic space denoting the dominance of the glycogenesis in liver. For glucose concentrations lower than the physiological levels, while exercising, metabolic response lies in the catabolic space denoting the prevalence of glycogenolysis in liver. The non-linear positive feedback of AKT on IRS in insulin signaling module of the network is the main cause of the bistable response. The span of bistability in the phosphorylation metric increases as plasma fatty acid and amino acid levels rise and eventually the response turns monostable and catabolic representing diabetic conditions. In the case of high fat or protein diet, fatty acids and amino acids have an inhibitory effect on the insulin signaling pathway by increasing the serine phosphorylation of IRS protein via the activation of PKC and S6K, respectively. Similar analysis was also performed with respect to input amino acid and fatty acid levels. This emergent property of bistability in the integrated network helps us understand why it becomes extremely difficult to treat obesity and diabetes when blood glucose level rises beyond a certain value.Keywords: bistability, diabetes, feedback and crosstalk, obesity
Procedia PDF Downloads 275386 On-Ice Force-Velocity Modeling Technical Considerations
Authors: Dan Geneau, Mary Claire Geneau, Seth Lenetsky, Ming -Chang Tsai, Marc Klimstra
Abstract:
Introduction— Horizontal force-velocity profiling (HFVP) involves modeling an athletes linear sprint kinematics to estimate valuable maximum force and velocity metrics. This approach to performance modeling has been used in field-based team sports and has recently been introduced to ice-hockey as a forward skating performance assessment. While preliminary data has been collected on ice, distance constraints of the on-ice test restrict the ability of the athletes to reach their maximal velocity which result in limits of the model to effectively estimate athlete performance. This is especially true of more elite athletes. This report explores whether athletes on-ice are able to reach a velocity plateau similar to what has been seen in overground trials. Fourteen male Major Junior ice-hockey players (BW= 83.87 +/- 7.30 kg, height = 188 ± 3.4cm cm, age = 18 ± 1.2 years n = 14) were recruited. For on-ice sprints, participants completed a standardized warm-up consisting of skating and dynamic stretching and a progression of three skating efforts from 50% to 95%. Following the warm-up, participants completed three on ice 45m sprints, with three minutes of rest in between each trial. For overground sprints, participants completed a similar dynamic warm-up to that of on-ice trials. Following the warm-up participants completed three 40m overground sprint trials. For each trial (on-ice and overground), radar was used to collect instantaneous velocity (Stalker ATS II, Texas, USA) aimed at the participant’s waist. Sprint velocities were modelled using custom Python (version 3.2) script using a mono-exponential function, similar to previous work. To determine if on-ice tirals were achieving a maximum velocity (plateau), minimum acceleration values of the modeled data at the end of the sprint were compared (using paired t-test) between on-ice and overground trials. Significant differences (P<0.001) between overground and on-ice minimum accelerations were observed. It was found that on-ice trials consistently reported higher final acceleration values, indicating a maximum maintained velocity (plateau) had not been reached. Based on these preliminary findings, it is suggested that reliable HFVP metrics cannot yet be collected from all ice-hockey populations using current methods. Elite male populations were not able to achieve a velocity plateau similar to what has been seen in overground trials, indicating the absence of a maximum velocity measure. With current velocity and acceleration modeling techniques, including a dependency of a velocity plateau, these results indicate the potential for error in on-ice HFVP measures. Therefore, these findings suggest that a greater on-ice sprint distance may be required or the need for other velocity modeling techniques, where maximal velocity is not required for a complete profile.Keywords: ice-hockey, sprint, skating, power
Procedia PDF Downloads 100385 Family Cohesion, Social Networks, and Cultural Differences in Latino and Asian American Help Seeking Behaviors
Authors: Eileen Y. Wong, Katherine Jin, Anat Talmon
Abstract:
Background: Help seeking behaviors are highly contingent on socio-cultural factors such as ethnicity. Both Latino and Asian Americans underutilize mental health services compared to their White American counterparts. This difference may be related to the composite of one’s social support system, which includes family cohesion and social networks. Previous studies have found that Latino families are characterized by higher levels of family cohesion and social support, and Asian American families with greater family cohesion exhibit lower levels of help seeking behaviors. While both are broadly considered collectivist communities, within-culture variability is also significant. Therefore, this study aims to investigate the relationship between help seeking behaviors in the two cultures with levels of family cohesion and strength of social network. We also consider such relationships in light of previous traumatic events and diagnoses, particularly post-traumatic stress disorder (PTSD), to understand whether clinically diagnosed individuals differ in their strength of network and help seeking behaviors. Method: An adult sample (N = 2,990) from the National Latino and Asian American Study (NLAAS) provided data on participants’ social network, family cohesion, likelihood of seeking professional help, and DSM-IV diagnoses. T-tests compared Latino American (n = 1,576) and Asian American respondents (n = 1,414) in strength of social network, level of family cohesion, and likelihood of seeking professional help. Linear regression models were used to identify the probability of help-seeking behavior based on ethnicity, PTSD diagnosis, and strength of social network. Results: Help-seeking behavior was significantly associated with family cohesion and strength of social network. It was found that higher frequency of expressing one’s feelings with family significantly predicted lower levels of help-seeking behaviors (β = [-.072], p = .017), while higher frequency of spending free time with family significantly predicted higher levels of help-seeking behaviors (β = [.129], p = .002) in the Asian American sample. Subjective importance of family relations compared to that of one’s peers also significantly predict higher levels of help-seeking behaviors (β = [.095], p = .011) in the Asian American sample. Frequency of sharing one’s problems with relatives significantly predicted higher levels of help-seeking behaviors (β = [.113], p < .01) in the Latino American sample. A PTSD diagnosis did not have any significant moderating effect. Conclusion: Considering the underutilization of mental health services in Latino and Asian American minority groups, it is crucial to understand ways in which help seeking behavior can be encouraged. Our findings suggest that different dimensions within family cohesion and social networks have differential impacts on help-seeking behavior. Given the multifaceted nature of family cohesion and cultural relevance, the implications of our findings for theory and practice will be discussed.Keywords: family cohesion, social networks, Asian American, Latino American, help-seeking behavior
Procedia PDF Downloads 68384 Social and Educational AI for Diversity: Research on Democratic Values to Develop Artificial Intelligence Tools to Guarantee Access for all to Educational Tools and Public Services
Authors: Roberto Feltrero, Sara Osuna-Acedo
Abstract:
Responsible Research and Innovation have to accomplish one fundamental aim: everybody has to participate in the benefits of innovation, but also innovation has to be democratic; that is to say, everybody may have the possibility to participate in the decisions in the innovation process. Particularly, a democratic and inclusive model of social participation and innovation includes persons with disabilities and people at risk of discrimination. Innovations on Artificial Intelligence for social development have to accomplish the same dual goal: improving equality for accessing fields of public interest like education, training and public services, as well as improving civic and democratic participation in the process of developing such innovations for all. This research aims to develop innovations, policies and policy recommendations to apply and disseminate such artificial intelligence and social model for making educational and administrative processes more accessible. First, designing a citizen participation process to engage citizens in the designing and use of artificial intelligence tools for public services. This will result in improving trust in democratic institutions contributing to enhancing the transparency, effectiveness, accountability and legitimacy of public policy-making and allowing people to participate in the development of ethical standards for the use of such technologies. Second, improving educational tools for lifelong learning with AI models to improve accountability and educational data management. Dissemination, education and social participation will be integrated, measured and evaluated in innovative educational processes to make accessible all the educational technologies and content developed on AI about responsible and social innovation. A particular case will be presented regarding access for all to educational tools and public services. This accessibility requires cognitive adaptability because, many times, legal or administrative language is very complex. Not only for people with cognitive disabilities but also for old people or citizens at risk of educational or social discrimination. Artificial Intelligence natural language processing technologies can provide tools to translate legal, administrative, or educational texts to a more simple language that can be accessible to everybody. Despite technological advances in language processing and machine learning, this becomes a huge project if we really want to respect ethical and legal consequences because that kinds of consequences can only be achieved with civil and democratic engagement in two realms: 1) to democratically select texts that need and can be translated and 2) to involved citizens, experts and nonexperts, to produce and validate real examples of legal texts with cognitive adaptations to feed artificial intelligence algorithms for learning how to translate those texts to a more simple and accessible language, adapted to any kind of population.Keywords: responsible research and innovation, AI social innovations, cognitive accessibility, public participation
Procedia PDF Downloads 88383 Skull Extraction for Quantification of Brain Volume in Magnetic Resonance Imaging of Multiple Sclerosis Patients
Authors: Marcela De Oliveira, Marina P. Da Silva, Fernando C. G. Da Rocha, Jorge M. Santos, Jaime S. Cardoso, Paulo N. Lisboa-Filho
Abstract:
Multiple Sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by neurodegeneration, inflammation, demyelination, and axonal loss. Magnetic resonance imaging (MRI), due to the richness in the information details provided, is the gold standard exam for diagnosis and follow-up of neurodegenerative diseases, such as MS. Brain atrophy, the gradual loss of brain volume, is quite extensive in multiple sclerosis, nearly 0.5-1.35% per year, far off the limits of normal aging. Thus, the brain volume quantification becomes an essential task for future analysis of the occurrence atrophy. The analysis of MRI has become a tedious and complex task for clinicians, who have to manually extract important information. This manual analysis is prone to errors and is time consuming due to various intra- and inter-operator variability. Nowadays, computerized methods for MRI segmentation have been extensively used to assist doctors in quantitative analyzes for disease diagnosis and monitoring. Thus, the purpose of this work was to evaluate the brain volume in MRI of MS patients. We used MRI scans with 30 slices of the five patients diagnosed with multiple sclerosis according to the McDonald criteria. The computational methods for the analysis of images were carried out in two steps: segmentation of the brain and brain volume quantification. The first image processing step was to perform brain extraction by skull stripping from the original image. In the skull stripper for MRI images of the brain, the algorithm registers a grayscale atlas image to the grayscale patient image. The associated brain mask is propagated using the registration transformation. Then this mask is eroded and used for a refined brain extraction based on level-sets (edge of the brain-skull border with dedicated expansion, curvature, and advection terms). In the second step, the brain volume quantification was performed by counting the voxels belonging to the segmentation mask and converted in cc. We observed an average brain volume of 1469.5 cc. We concluded that the automatic method applied in this work can be used for the brain extraction process and brain volume quantification in MRI. The development and use of computer programs can contribute to assist health professionals in the diagnosis and monitoring of patients with neurodegenerative diseases. In future works, we expect to implement more automated methods for the assessment of cerebral atrophy and brain lesions quantification, including machine-learning approaches. Acknowledgements: This work was supported by a grant from Brazilian agency Fundação de Amparo à Pesquisa do Estado de São Paulo (number 2019/16362-5).Keywords: brain volume, magnetic resonance imaging, multiple sclerosis, skull stripper
Procedia PDF Downloads 146382 The Impact of HKUST-1 Metal-Organic Framework Pretreatment on Dynamic Acetaldehyde Adsorption
Authors: M. François, L. Sigot, C. Vallières
Abstract:
Volatile Organic Compounds (VOCs) are a real health issue, particularly in domestic indoor environments. Among these VOCs, acetaldehyde is frequently monitored in dwellings ‘air, especially due to smoking and spontaneous emissions from the new wall and soil coverings. It is responsible for respiratory complaints and is classified as possibly carcinogenic to humans. Adsorption processes are commonly used to remove VOCs from the air. Metal-Organic Frameworks (MOFs) are a promising type of material for high adsorption performance. These hybrid porous materials composed of metal inorganic clusters and organic ligands are interesting thanks to their high porosity and surface area. The HKUST-1 (also referred to as MOF-199) is a copper-based MOF with the formula [Cu₃(BTC)₂(H₂O)₃]n (BTC = benzene-1,3,5-tricarboxylate) and exhibits unsaturated metal sites that can be attractive sites for adsorption. The objective of this study is to investigate the impact of HKUST-1 pretreatment on acetaldehyde adsorption. Thus, dynamic adsorption experiments were conducted in 1 cm diameter glass column packed with 2 cm MOF bed height. MOF were sieved to 630 µm - 1 mm. The feed gas (Co = 460 ppmv ± 5 ppmv) was obtained by diluting a 1000 ppmv acetaldehyde gas cylinder in air. The gas flow rate was set to 0.7 L/min (to guarantee a suitable linear velocity). Acetaldehyde concentration was monitored online by gas chromatography coupled with a flame ionization detector (GC-FID). Breakthrough curves must allow to understand the interactions between the MOF and the pollutant as well as the impact of the HKUST-1 humidity in the adsorption process. Consequently, different MOF water content conditions were tested, from a dry material with 7 % water content (dark blue color) to water saturated state with approximately 35 % water content (turquoise color). The rough material – without any pretreatment – containing 30 % water serves as a reference. First, conclusions can be drawn from the comparison of the evolution of the ratio of the column outlet concentration (C) on the inlet concentration (Co) as a function of time for different HKUST-1 pretreatments. The shape of the breakthrough curves is significantly different. The saturation of the rough material is slower (20 h to reach saturation) than that of the dried material (2 h). However, the breakthrough time defined for C/Co = 10 % appears earlier in the case of the rough material (0.75 h) compared to the dried HKUST-1 (1.4 h). Another notable difference is the shape of the curve before the breakthrough at 10 %. An abrupt increase of the outlet concentration is observed for the material with the lower humidity in comparison to a smooth increase for the rough material. Thus, the water content plays a significant role on the breakthrough kinetics. This study aims to understand what can explain the shape of the breakthrough curves associated to the pretreatments of HKUST-1 and which mechanisms take place in the adsorption process between the MOF, the pollutant, and the water.Keywords: acetaldehyde, dynamic adsorption, HKUST-1, pretreatment influence
Procedia PDF Downloads 237381 USBware: A Trusted and Multidisciplinary Framework for Enhanced Detection of USB-Based Attacks
Authors: Nir Nissim, Ran Yahalom, Tomer Lancewiki, Yuval Elovici, Boaz Lerner
Abstract:
Background: Attackers increasingly take advantage of innocent users who tend to use USB devices casually, assuming these devices benign when in fact they may carry an embedded malicious behavior or hidden malware. USB devices have many properties and capabilities that have become the subject of malicious operations. Many of the recent attacks targeting individuals, and especially organizations, utilize popular and widely used USB devices, such as mice, keyboards, flash drives, printers, and smartphones. However, current detection tools, techniques, and solutions generally fail to detect both the known and unknown attacks launched via USB devices. Significance: We propose USBWARE, a project that focuses on the vulnerabilities of USB devices and centers on the development of a comprehensive detection framework that relies upon a crucial attack repository. USBWARE will allow researchers and companies to better understand the vulnerabilities and attacks associated with USB devices as well as providing a comprehensive platform for developing detection solutions. Methodology: The framework of USBWARE is aimed at accurate detection of both known and unknown USB-based attacks by a process that efficiently enhances the framework's detection capabilities over time. The framework will integrate two main security approaches in order to enhance the detection of USB-based attacks associated with a variety of USB devices. The first approach is aimed at the detection of known attacks and their variants, whereas the second approach focuses on the detection of unknown attacks. USBWARE will consist of six independent but complimentary detection modules, each detecting attacks based on a different approach or discipline. These modules include novel ideas and algorithms inspired from or already developed within our team's domains of expertise, including cyber security, electrical and signal processing, machine learning, and computational biology. The establishment and maintenance of the USBWARE’s dynamic and up-to-date attack repository will strengthen the capabilities of the USBWARE detection framework. The attack repository’s infrastructure will enable researchers to record, document, create, and simulate existing and new USB-based attacks. This data will be used to maintain the detection framework’s updatability by incorporating knowledge regarding new attacks. Based on our experience in the cyber security domain, we aim to design the USBWARE framework so that it will have several characteristics that are crucial for this type of cyber-security detection solution. Specifically, the USBWARE framework should be: Novel, Multidisciplinary, Trusted, Lightweight, Extendable, Modular and Updatable and Adaptable. Major Findings: Based on our initial survey, we have already found more than 23 types of USB-based attacks, divided into six major categories. Our preliminary evaluation and proof of concepts showed that our detection modules can be used for efficient detection of several basic known USB attacks. Further research, development, and enhancements are required so that USBWARE will be capable to cover all of the major known USB attacks and to detect unknown attacks. Conclusion: USBWARE is a crucial detection framework that must be further enhanced and developed.Keywords: USB, device, cyber security, attack, detection
Procedia PDF Downloads 397380 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments
Authors: Skyler Kim
Abstract:
An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning
Procedia PDF Downloads 187379 Characterization of New Sources of Maize (Zea mays L.) Resistance to Sitophilus zeamais (Coleoptera: Curculionidae) Infestation in Stored Maize
Authors: L. C. Nwosu, C. O. Adedire, M. O. Ashamo, E. O. Ogunwolu
Abstract:
The maize weevil, Sitophilus zeamais Motschulsky is a notorious pest of stored maize (Zea mays L.). The development of resistant maize varieties to manage weevils is a major breeding objective. The study investigated the parameters and mechanisms that confer resistance on a maize variety to S. zeamais infestation using twenty elite maize varieties. Detailed morphological, physical and chemical studies were conducted on whole-maize grain and the grain pericarp. Resistance was assessed at 33, 56, and 90 days post infestation using weevil mortality rate, weevil survival rate, percent grain damage, percent grain weight loss, weight of grain powder, oviposition rate and index of susceptibility as indices rated on a scale developed by the present study and on Dobie’s modified scale. Linear regression models that can predict maize grain damage in relation to the duration of storage were developed and applied. The resistant varieties identified particularly 2000 SYNEE-WSTR and TZBRELD3C5 with very high degree of resistance should be used singly or best in an integrated pest management system for the control of S. zeamais infestation in stored maize. Though increases in the physical properties of grain hardness, weight, length, and width increased varietal resistance, it was found that the bases of resistance were increased chemical attributes of phenolic acid, trypsin inhibitor and crude fibre while the bases of susceptibility were increased protein, starch, magnesium, calcium, sodium, phosphorus, manganese, iron, cobalt and zinc, the role of potassium requiring further investigation. Characters that conferred resistance on the test varieties were found distributed in the pericarp and the endosperm of the grains. Increases in grain phenolic acid, crude fibre, and trypsin inhibitor adversely and significantly affected the bionomics of the weevil on further assessment. The flat side of a maize grain at the point of penetration was significantly preferred by the weevil. Why the south area of the flattened side of a maize grain was significantly preferred by the weevil is clearly unknown, even though grain-face-type seemed to be a contributor in the study. The preference shown to the south area of the grain flat side has implications for seed viability. The study identified antibiosis, preference, antixenosis, and host evasion as the mechanisms of maize post harvest resistance to Sitophilus zeamais infestation.Keywords: maize weevil, resistant, parameters, mechanisms, preference
Procedia PDF Downloads 307378 A Text in Movement in the Totonac Flyers’ Dance: A Performance-Linguistic Theory
Authors: Luisa Villani
Abstract:
The proposal aims to express concerns about the connection between mind, body, society, and environment in the Flyers’ dance, a very well-known rotatory dance in Mexico, to create meanings and to make the apprehension of the world possible. The interaction among the brain, mind, body, and environment, and the intersubjective relation among them, means the world creates and recreates a social interaction. The purpose of this methodology, based on the embodied cognition theory, which was named “A Performance-Embodied Theory” is to find the principles and patterns that organize the culture and the rules of the apprehension of the environment by Totonac people while the dance is being performed. The analysis started by questioning how anthropologists can interpret how Totonacs transform their unconscious knowledge into conscious knowledge and how the scheme formation of imagination and their collective imagery is understood in the context of public-facing rituals, such as Flyers’ dance. The problem is that most of the time, researchers interpret elements in a separate way and not as a complex ritual dancing whole, which is the original contribution of this study. This theory, which accepts the fact that people are body-mind agents, wants to interpret the dance as a whole, where the different elements are joined to an integral interpretation. To understand incorporation, data was recollected in prolonged periods of fieldwork, with participant observation and linguistic and extralinguistic data analysis. Laban’s notation for the description and analysis of gestures and movements in the space was first used, but it was later transformed and gone beyond this method, which is still a linear and compositional one. Performance in a ritual is the actualization of a potential complex of meanings or cognitive domains among many others in a culture: one potential dimension becomes probable and then real because of the activation of specific meanings in a context. It can only be thought what language permits thinking, and the lexicon that is used depends on the individual culture. Only some parts of this knowledge can be activated at once, and these parts of knowledge are connected. Only in this way, the world can be understood. It can be recognized that as languages geometrize the physical world thanks to the body, also ritual does. In conclusion, the ritual behaves as an embodied grammar or a text in movement, which, depending on the ritual phases and the words and sentences pronounced in the ritual, activates bits of encyclopedic knowledge that people have about the world. Gestures are not given by the performer but emerge from the intentional perception in which gestures are “understood” by the audio-spectator in an inter-corporeal way. The impact of this study regards the possibility not only to disseminate knowledge effectively but also to generate a balance between different parts of the world where knowledge is shared, rather than being received by academic institutions alone. This knowledge can be exchanged, so indigenous communities and academies could be together as part of the activation and the sharing of this knowledge with the world.Keywords: dance, flyers, performance, embodied, cognition
Procedia PDF Downloads 58377 Measuring Biobased Content of Building Materials Using Carbon-14 Testing
Authors: Haley Gershon
Abstract:
The transition from using fossil fuel-based building material to formulating eco-friendly and biobased building materials plays a key role in sustainable building. The growing demand on a global level for biobased materials in the building and construction industries heightens the importance of carbon-14 testing, an analytical method used to determine the percentage of biobased content that comprises a material’s ingredients. This presentation will focus on the use of carbon-14 analysis within the building materials sector. Carbon-14, also known as radiocarbon, is a weakly radioactive isotope present in all living organisms. Any fossil material older than 50,000 years will not contain any carbon-14 content. The radiocarbon method is thus used to determine the amount of carbon-14 content present in a given sample. Carbon-14 testing is performed according to ASTM D6866, a standard test method developed specifically for biobased content determination of material in solid, liquid, or gaseous form, which requires radiocarbon dating. Samples are combusted and converted into a solid graphite form and then pressed onto a metal disc and mounted onto a wheel of an accelerator mass spectrometer (AMS) machine for the analysis. The AMS instrument is used in order to count the amount of carbon-14 present. By submitting samples for carbon-14 analysis, manufacturers of building materials can confirm the biobased content of ingredients used. Biobased testing through carbon-14 analysis reports results as percent biobased content, indicating the percentage of ingredients coming from biomass sourced carbon versus fossil carbon. The analysis is performed according to standardized methods such as ASTM D6866, ISO 16620, and EN 16640. Products 100% sourced from plants, animals, or microbiological material are therefore 100% biobased, while products sourced only from fossil fuel material are 0% biobased. Any result in between 0% and 100% biobased indicates that there is a mixture of both biomass-derived and fossil fuel-derived sources. Furthermore, biobased testing for building materials allows manufacturers to submit eligible material for certification and eco-label programs such as the United States Department of Agriculture (USDA) BioPreferred Program. This program includes a voluntary labeling initiative for biobased products, in which companies may apply to receive and display the USDA Certified Biobased Product label, stating third-party verification and displaying a product’s percentage of biobased content. The USDA program includes a specific category for Building Materials. In order to qualify for the biobased certification under this product category, examples of product criteria that must be met include minimum 62% biobased content for wall coverings, minimum 25% biobased content for lumber, and a minimum 91% biobased content for floor coverings (non-carpet). As a result, consumers can easily identify plant-based products in the marketplace.Keywords: carbon-14 testing, biobased, biobased content, radiocarbon dating, accelerator mass spectrometry, AMS, materials
Procedia PDF Downloads 158376 Insights into Child Malnutrition Dynamics with the Lens of Women’s Empowerment in India
Authors: Bharti Singh, Shri K. Singh
Abstract:
Child malnutrition is a multifaceted issue that transcends geographical boundaries. Malnutrition not only stunts physical growth but also leads to a spectrum of morbidities and child mortality. It is one of the leading causes of death (~50 %) among children under age five. Despite economic progress and advancements in healthcare, child malnutrition remains a formidable challenge for India. The objective is to investigate the impact of women's empowerment on child nutrition outcomes in India from 2006 to 2021. A composite index of women's empowerment was constructed using Confirmatory Factor Analysis (CFA), a rigorous technique that validates the measurement model by assessing how well-observed variables represent latent constructs. This approach ensures the reliability and validity of the empowerment index. Secondly, kernel density plots were utilised to visualise the distribution of key nutritional indicators, such as stunting, wasting, and overweight. These plots offer insights into the shape and spread of data distributions, aiding in understanding the prevalence and severity of malnutrition. Thirdly, linear polynomial graphs were employed to analyse how nutritional parameters evolved with the child's age. This technique enables the visualisation of trends and patterns over time, allowing for a deeper understanding of nutritional dynamics during different stages of childhood. Lastly, multilevel analysis was conducted to identify vulnerable levels, including State-level, PSU-level, and household-level factors impacting undernutrition. This approach accounts for hierarchical data structures and allows for the examination of factors at multiple levels, providing a comprehensive understanding of the determinants of child malnutrition. Overall, the utilisation of these statistical methodologies enhances the transparency and replicability of the study by providing clear and robust analytical frameworks for data analysis and interpretation. Our study reveals that NFHS-4 and NFHS-5 exhibit an equal density of severely stunted cases. NFHS-5 indicates a limited decline in wasting among children aged five, while the density of severely wasted children remains consistent across NFHS-3, 4, and 5. In 2019-21, women with higher empowerment had a lower risk of their children being undernourished (Regression coefficient= -0.10***; Confidence Interval [-0.18, -0.04]). Gender dynamics also play a significant role, with male children exhibiting a higher susceptibility to undernourishment. Multilevel analysis suggests household-level vulnerability (intra-class correlation=0.21), highlighting the need to address child undernutrition at the household level.Keywords: child nutrition, India, NFHS, women’s empowerment
Procedia PDF Downloads 33375 Direct Assessment of Cellular Immune Responses to Ovalbumin with a Secreted Luciferase Transgenic Reporter Mouse Strain IFNγ-Lucia
Authors: Martyna Chotomska, Aleksandra Studzinska, Marta Lisowska, Justyna Szubert, Aleksandra Tabis, Jacek Bania, Arkadiusz Miazek
Abstract:
Objectives: Assessing antigen-specific T cell responses is of utmost importance for the pre-clinical testing of prototype vaccines against intracellular pathogens and tumor antigens. Mainly two types of in vitro assays are used for this purpose 1) enzyme-linked immunospot (ELISpot) and 2) intracellular cytokine staining (ICS). Both are time-consuming, relatively expensive, and require manual dexterity. Here, we assess if a straightforward detection of luciferase activity in blood samples of transgenic reporter mice expressing a secreted Lucia luciferase under the transcriptional control of IFN-γ promoter parallels the sensitivity of IFNγ ELISpot assay. Methods: IFN-γ-LUCIA mouse strain carrying multiple copies of Lucia luciferase transgene under the transcriptional control of IFNγ minimal promoter were generated by pronuclear injection of linear DNA. The specificity of transgene expression and mobilization was assessed in vitro using transgenic splenocytes exposed to various mitogens. The IFN-γ-LUCIA mice were immunized with 50mg of ovalbumin (OVA) emulsified in incomplete Freund’s adjuvant three times every two weeks by subcutaneous injections. Blood samples were collected before and five days after each immunization. Luciferase activity was assessed in blood serum. Peripheral blood mononuclear cells were separated and assessed for frequencies of OVA-specific IFNγ-secreting T cells. Results: We show that in vitro cultured splenocytes of IFN-γ-LUCIA mice respond by 2 and 3 fold increase in secreted luciferase activity to T cell mitogens concanavalin A and phorbol myristate acetate, respectively but fail to respond to B cell-stimulating E.coli lipopolysaccharide. Immunization of IFN-γ-LUCIA mice with OVA leads to over 4 fold increase in luciferase activity in blood serum five days post-immunization with a barely detectable increase in OVA-specific, IFNγ-secreting T cells by ELISpot. Second and third immunizations, further increase the luciferase activity and coincidently also increase the frequencies of OVA-specific T cells by ELISpot. Conclusions: We conclude that minimally invasive monitoring of luciferase secretions in blood serum of IFN-γ-LUCIA mice constitutes a sensitive method for evaluating primary and memory Th1 responses to protein antigens. As such, this method may complement existing methods for rapid immunogenicity assessment of prototype vaccines.Keywords: ELISpot, immunogenicity, interferon-gamma, reporter mice, vaccines
Procedia PDF Downloads 170374 A Geochemical Perspective on A-Type Granites of Khanak and Devsar Areas, Haryana, India: Implications for Petrogenesis
Authors: Naresh Kumar, Radhika Sharma, A. K. Singh
Abstract:
Granites from Khanak and Devsar areas, a part of Malani Igneous Suite (MIS) were investigated for their geochemical characteristics to understand the petrogenetic aspect of the research area. Neoproterozoic rocks of MIS are well exposed in Jhunjhunu, Jodhpur, Pali, Barmer, Jalor, Jaisalmer districts of Rajasthan and Bhiwani district of Haryana and also occur at Kirana hills of Pakistan. The MIS predominantly consists of acidic volcanic with acidic plutonic (granite of various types), mafic volcanic, mafic intrusive and minor amount of pyroclasts. Based on the field and petrographical studies, 28 samples were selected and analyzed for geochemical analysis of major, trace and rare earth elements at the Wadia Institute of Himalayan Geology, Dehradun by X-Ray Fluorescence Spectrometer (XRF) and ICP-MS (Inductively Coupled Plasma- Mass Spectrometry). Granites from the studied areas are categorized as grey, green and pink. Khanak granites consist of quartz, k-feldspar, plagioclase, and biotite as essential minerals and hematite, zircon, annite, monazite & rutile as accessory minerals. In Devsar granites, plagioclase is replaced by perthite and occurs as dominantly. Geochemically, granites from Khanak and Devsar areas exhibit typical A-type granites characteristics with their enrichment in SiO2, Na2O+K2O, Fe/Mg, Rb, Zr, Y, Th, U, REE (except Eu) and significant depletion in MgO, CaO, Sr, P, Ti, Ni, Cr, V and Eu suggested about A-type affinities in Northwestern Peninsular India. The amount of heat production (HP) in green and grey granites of Devsar area varies upto 9.68 & 11.70 μWm-3 and total heat generation unit (HGU) i.e. 23.04 & 27.86 respectively. Pink granites of Khanak area display a higher enrichment of HP (16.53 μWm-3) and HGU (39.37) than the granites from Devsar area. Overall, they have much higher values of HP and HGU than the average value of continental crust (3.8 HGU), which imply a possible linear relationship among the surface heat flow and crustal heat generation in the rocks of MIS. Chondrite-normalized REE patterns show enriched LREE, moderate to strong negative Eu anomalies and more or less flat heavy REE. In primitive mantle-normalized multi-element variation diagrams, the granites show pronounced depletions in the high-field-strength elements (HFSE) Nb, Zr, Sr, P, and Ti. Geochemical characteristics (major, trace and REE) along with the use of various discrimination schemes revealed their probable correspondence to magma derived from the crustal origin by a different degree of partial melting.Keywords: A-type granite, neoproterozoic, Malani igneous suite, Khanak, Devsar
Procedia PDF Downloads 272373 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition
Authors: M. Beusink, E. W. C. Coenen
Abstract:
The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures
Procedia PDF Downloads 233372 Analysis of Digital Transformation in Banking: The Hungarian Case
Authors: Éva Pintér, Péter Bagó, Nikolett Deutsch, Miklós Hetényi
Abstract:
The process of digital transformation has a profound influence on all sectors of the worldwide economy and the business environment. The influence of blockchain technology can be observed in the digital economy and e-government, rendering it an essential element of a nation's growth strategy. The banking industry is experiencing significant expansion and development of financial technology firms. Utilizing developing technologies such as artificial intelligence (AI), machine learning (ML), and big data (BD), these entrants are offering more streamlined financial solutions, promptly addressing client demands, and presenting a challenge to incumbent institutions. The advantages of digital transformation are evident in the corporate realm, and firms that resist its adoption put their survival at risk. The advent of digital technologies has revolutionized the business environment, streamlining processes and creating opportunities for enhanced communication and collaboration. Thanks to the aid of digital technologies, businesses can now swiftly and effortlessly retrieve vast quantities of information, all the while accelerating the process of creating new and improved products and services. Big data analytics is generally recognized as a transformative force in business, considered the fourth paradigm of science, and seen as the next frontier for innovation, competition, and productivity. Big data, an emerging technology that is shaping the future of the banking sector, offers numerous advantages to banks. It enables them to effectively track consumer behavior and make informed decisions, thereby enhancing their operational efficiency. Banks may embrace big data technologies to promptly and efficiently identify fraud, as well as gain insights into client preferences, which can then be leveraged to create better-tailored products and services. Moreover, the utilization of big data technology empowers banks to develop more intelligent and streamlined models for accurately recognizing and focusing on the suitable clientele with pertinent offers. There is a scarcity of research on big data analytics in the banking industry, with the majority of existing studies only examining the advantages and prospects associated with big data. Although big data technologies are crucial, there is a dearth of empirical evidence about the role of big data analytics (BDA) capabilities in bank performance. This research addresses a gap in the existing literature by introducing a model that combines the resource-based view (RBV), the technical organization environment framework (TOE), and dynamic capability theory (DC). This study investigates the influence of Big Data Analytics (BDA) utilization on the performance of market and risk management. This is supported by a comparative examination of Hungarian mobile banking services.Keywords: big data, digital transformation, dynamic capabilities, mobile banking
Procedia PDF Downloads 64