Search results for: vector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1079

Search results for: vector

479 Finite Element Modeling of Global Ti-6Al-4V Mechanical Behavior in Relationship with Microstructural Parameters

Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vedal, Farhad Rezai-Aria, Christine Boher

Abstract:

The global mechanical behavior of materials is strongly linked to their microstructure, especially their crystallographic texture and their grains morphology. These material aspects determine the mechanical fields character (heterogeneous or homogeneous), thus, they give to the global behavior a degree of anisotropy according the initial microstructure. For these reasons, the prediction of global behavior of materials in relationship with the microstructure must be performed with a multi-scale approach. Therefore, multi-scale modeling in the context of crystal plasticity is widely used. In this present contribution, a phenomenological elasto-viscoplastic model developed in the crystal plasticity context and finite element method are used to investigate the effects of crystallographic texture and grains sizes on global behavior of a polycrystalline equiaxed Ti-6Al-4V alloy. The constitutive equations of this model are written on local scale for each slip system within each grain while the strain and stress mechanical fields are investigated at the global scale via finite element scale transition. The beta phase of Ti-6Al-4V alloy modeled is negligible; its percent is less than 10%. Three families of slip systems of alpha phase are considered: basal and prismatic families with a burgers vector and pyramidal family with a burgers vector. The twinning mechanism of plastic strain is not observed in Ti-6Al-4V, therefore, it is not considered in the present modeling. Nine representative elementary volumes (REV) are generated with Voronoi tessellations. For each individual equiaxed grain, the own crystallographic orientation vis-à-vis the loading is taken into account. The meshing strategy is optimized in a way to eliminate the meshing effects and at the same time to allow calculating the individual grain size. The stress and strain fields are determined in each Gauss point of the mesh element. A post-treatment is used to calculate the local behavior (in each grain) and then by appropriate homogenization, the macroscopic behavior is calculated. The developed model is validated by comparing the numerical simulation results with an experimental data reported in the literature. It is observed that the present model is able to predict the global mechanical behavior of Ti-6Al-4V alloy and investigate the microstructural parameters' effects. According to the simulations performed on the generated volumes (REV), the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior. The average grains size influences also the Ti-6Al-4V mechanical proprieties, especially the yield stress; by decreasing of the average grains size, the yield strength increases according to Hall-Petch relationship. The grains sizes' distribution gives to the strain fields considerable heterogeneity. By increasing grain sizes, the scattering in the localization of plastic strain is observed, thus, in certain areas the stress concentrations are stronger than other regions.

Keywords: microstructural parameters, multi-scale modeling, crystal plasticity, Ti-6Al-4V alloy

Procedia PDF Downloads 106
478 Lentiviral-Based Novel Bicistronic Therapeutic Vaccine against Chronic Hepatitis B Induces Robust Immune Response

Authors: Mohamad F. Jamiluddin, Emeline Sarry, Ana Bejanariu, Cécile Bauche

Abstract:

Introduction: Over 360 million people are chronically infected with hepatitis B virus (HBV), of whom 1 million die each year from HBV-associated liver cirrhosis or hepatocellular carcinoma. Current treatment options for chronic hepatitis B depend on interferon-α (IFNα) or nucleos(t)ide analogs, which control virus replication but rarely eliminate the virus. Treatment with PEG-IFNα leads to a sustained antiviral response in only one third of patients. After withdrawal of the drugs, the rebound of viremia is observed in the majority of patients. Furthermore, the long-term treatment is subsequently associated with the appearance of drug resistant HBV strains that is often the cause of the therapy failure. Among the new therapeutic avenues being developed, therapeutic vaccine aimed at inducing immune responses similar to those found in resolvers is of growing interest. The high prevalence of chronic hepatitis B necessitates the design of better vaccination strategies capable of eliciting broad-spectrum of cell-mediated immunity(CMI) and humoral immune response that can control chronic hepatitis B. Induction of HBV-specific T cells and B cells by therapeutic vaccination may be an innovative strategy to overcome virus persistence. Lentiviral vectors developed and optimized by THERAVECTYS, due to their ability to transduce non-dividing cells, including dendritic cells, and induce CMI response, have demonstrated their effectiveness as vaccination tools. Method: To develop a HBV therapeutic vaccine that can induce a broad but specific immune response, we generated recombinant lentiviral vector carrying IRES(Internal Ribosome Entry Site)-containing bicistronic constructs which allow the coexpression of two vaccine products, namely HBV T- cell epitope vaccine and HBV virus like particle (VLP) vaccine. HBV T-cell epitope vaccine consists of immunodominant cluster of CD4 and CD8 epitopes with spacer in between them and epitopes are derived from HBV surface protein, HBV core, HBV X and polymerase. While HBV VLP vaccine is a HBV core protein based chimeric VLP with surface protein B-cell epitopes displayed. In order to evaluate the immunogenicity, mice were immunized with lentiviral constructs by intramuscular injection. The T cell and antibody immune responses of the two vaccine products were analyzed using IFN-γ ELISpot assay and ELISA respectively to quantify the adaptive response to HBV antigens. Results: Following a single administration in mice, lentiviral construct elicited robust antigen-specific IFN-γ responses to the encoded antigens. The HBV T- cell epitope vaccine demonstrated significantly higher T cell immunogenicity than HBV VLP vaccine. Importantly, we demonstrated by ELISA that antibodies are induced against both HBV surface protein and HBV core protein when mice injected with vaccine construct (p < 0.05). Conclusion: Our results highlight that THERAVECTYS lentiviral vectors may represent a powerful platform for immunization strategy against chronic hepatitis B. Our data suggests the likely importance of Lentiviral vector based novel bicistronic construct for further study, in combination with drugs or as standalone antigens, as a therapeutic lentiviral based HBV vaccines. THERAVECTYS bicistronic HBV vaccine will be further evaluated in animal efficacy studies.

Keywords: chronic hepatitis B, lentiviral vectors, therapeutic vaccine, virus-like particle

Procedia PDF Downloads 313
477 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum

Authors: Abdulrahman Sumayli, Saad M. AlShahrani

Abstract:

For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectively

Keywords: temperature, pressure variations, machine learning, oil treatment

Procedia PDF Downloads 49
476 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids

Authors: Priya Arora, Ashutosh Mishra

Abstract:

Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.

Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences

Procedia PDF Downloads 118
475 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 68
474 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey

Authors: Lavanya Madhuri Bollipo, K. V. Kadambari

Abstract:

Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.

Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)

Procedia PDF Downloads 372
473 Detecting Paraphrases in Arabic Text

Authors: Amal Alshahrani, Allan Ramsay

Abstract:

Paraphrasing is one of the important tasks in natural language processing; i.e. alternative ways to express the same concept by using different words or phrases. Paraphrases can be used in many natural language applications, such as Information Retrieval, Machine Translation, Question Answering, Text Summarization, or Information Extraction. To obtain pairs of sentences that are paraphrases we create a system that automatically extracts paraphrases from a corpus, which is built from different sources of news article since these are likely to contain paraphrases when they report the same event on the same day. There are existing simple standard approaches (e.g. TF-IDF vector space, cosine similarity) and alignment technique (e.g. Dynamic Time Warping (DTW)) for extracting paraphrase which have been applied to the English. However, the performance of these approaches could be affected when they are applied to another language, for instance Arabic language, due to the presence of phenomena which are not present in English, such as Free Word Order, Zero copula, and Pro-dropping. These phenomena will affect the performance of these algorithms. Thus, if we can analysis how the existing algorithms for English fail for Arabic then we can find a solution for Arabic. The results are promising.

Keywords: natural language processing, TF-IDF, cosine similarity, dynamic time warping (DTW)

Procedia PDF Downloads 358
472 Classification of Political Affiliations by Reduced Number of Features

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

By the evolvement in technology, the way of expressing opinions switched the direction to the digital world. The domain of politics as one of the hottest topics of opinion mining research merged together with the behavior analysis for affiliation determination in text which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 are constituted by Linguistic Inquiry and Word Count (LIWC) features are tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that Decision Tree, Rule Induction and M5 Rule classifiers when used with SVM and IGR feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “function” as an aggregate feature of the linguistic category, is obtained as the most differentiating feature among the 68 features with 81% accuracy by itself in classifying articles either as Republican or Democrat.

Keywords: feature selection, LIWC, machine learning, politics

Procedia PDF Downloads 365
471 New Isolate of Cucumber Mosaic Virus Infecting Banana

Authors: Abdelsabour G. A. Khaled, Ahmed W. A. Abdalla And Sabry Y. M. Mahmoud

Abstract:

Banana plants showing typical mosaic and yellow stripes on leaves as symptoms were collected from Assiut Governorate in Egypt. The causal agent was identified as Cucumber mosaic virus (CMV) on the basis of symptoms, transmission, serology, transmission electron microscopy and reverse transcription polymerase chain reaction (RT-PCR). Coat protein (CP) gene was amplified using gene specific primers for coat protein (CP), followed by cloning into desired cloning vector for sequencing. In this study the CMV was transmitted into propagation host either by aphid or mechanically. The transmission was confirmed through Direct Antigen Coating Enzyme Linked Immuno Sorbent Assay (DAC-ELISA). Analysis of the 120 deduced amino acid sequence of the coat protein gene revealed that the EG-A strain of CMV shared from 97.50 to 98.33% with those strains belonging to subgroup IA. The cluster analysis grouped the Egyptian isolate with strains Fny and Ri8 belonging sub-group IA. It appears that there occurs a high incidence of CMV infecting banana belonging to IA subgroup in most parts of Egypt.

Keywords: banana, CMV, transmission, CP gene, RT-PCR

Procedia PDF Downloads 322
470 The Impact of Foreign Direct Investment on Economic Growth of Ethiopia: Econometrics Cointegration Analysis

Authors: Dejene Gizaw Kidane

Abstract:

This study examines the impact of foreign direct investment on economic growth of Ethiopia using yearly time-series data for 1974 through 2013. Economic growth is proxies by real per capita gross domestic product and foreign direct investment proxies by the inflow of foreign direct investment. Other control variables such as gross domestic saving, trade, government consumption and inflation has been incorporated. In order to fully account for feedbacks, a vector autoregressive model is utilized. The results show that there is a stable, long-run relationship between foreign direct investment and economic growth. The variance decomposition results show that the main sources of Ethiopia economic growth variations are due largely own shocks. The pairwise Granger causality results show that there is a unidirectional causality that runs from FDI to economic growth of Ethiopia. Hence, the researcher therefore recommends that, FDI facilitate economic growth, so the government has to exert much effort in order to attract more FDI into the country.

Keywords: real per capita GDP, FDI, co-integration, VECM, Granger causality

Procedia PDF Downloads 402
469 Detection of Leishmania Mixed Infection from Phlebotomus papatasi in Central Iran

Authors: Nassibeh Hosseini-Vasoukolaei, Amir Ahmad Akhavan, Mahmood Jeddi-Tehrani, Ali Khamesipour, Mohammad Reza Yaghoobi Ershadi, Kamhawi Shaden, Valenzuela Jesus, Hossein Mirhendi, Mohammad Hossein Arandian

Abstract:

Zoonotic cutaneous leishmaniasis (ZCL) is an endemic disease in many rural areas of Iran. Sand flies were collected from rural areas of Esfahan province and were identified using valid identification keys. DNA was extracted from sand flies and Nested PCRs were done using specific primers. In this study, 44 out of 152 (28.9 %) sand flies were infected with L. majoralone. Eight sand flies showed mixed infection: four sand flies (2.6 %) were infected with L. major, L. turanicaand L. gerbili, one sand fly (0.7 %) was infected with L. major and L. turanica and three sand flies (2 %) were infected with L. turanicaand L. gerbili. Our results demonstrate the natural infection of P. papatasi sand fly with three species of L. major, L. turanica and L. gerbili which are circulating among R. opimusreservoir host and P. papatasi sand fly vector in central Iran.

Keywords: Phlebotomus papatasi, Leishmania major, Leishmania turanica, Leishmania gerbili, mixed infection, Iran

Procedia PDF Downloads 449
468 DNA Vaccine Study against Vaccinia Virus Using In vivo Electroporation

Authors: Jai Myung Yang, Na Young Kim, Sung Ho Shin

Abstract:

The adverse reactions of current live smallpox vaccines and potential use of smallpox as a bioterror weapon have heightened the development of new effective vaccine for this infectious disease. In the present study, DNA vaccine vector was produced which was optimized for expression of the vaccinia virus L1 antigen in the mouse model. A plasmid IgM-tL1R, which contains codon-optimized L1R gene, was constructed and fused with an IgM signal sequence under the regulation of a SV40 enhancer. The expression and secretion of recombinant L1 protein was confirmed in vitro 293 T cell. Mice were administered the DNA vaccine by electroporation and challenged with vaccinia virus. We observed that immunization with IgM-tL1R induced potent neutralizing antibody responses and provided complete protection against lethal vaccinia virus challenge. Isotyping studies reveal that immunoglobulin G2 (IgG2) antibody predominated after the immunization, indicative of a T helper type 1 response. Our results suggest that an optimized DNA vaccine, IgM-tL1R, can be effective in stimulating anti-vaccinia virus immune response and provide protection against lethal orthopoxvirus challenge.

Keywords: DNA vaccine, electroporation, L1R, vaccinia virus

Procedia PDF Downloads 236
467 Non-Autonomous Seasonal Variation Model for Vector-Borne Disease Transferral in Kampala of Uganda

Authors: Benjamin Aina Peter, Amos Wale Ogunsola

Abstract:

In this paper, a mathematical model of malaria transmission was presented with the effect of seasonal shift, due to global fluctuation in temperature, on the increase of conveyor of the infectious disease, which probably alters the region transmission potential of malaria. A deterministic compartmental model was proposed and analyzed qualitatively. Both qualitative and quantitative approaches of the model were considered. The next-generation matrix is employed to determine the basic reproduction number of the model. Equilibrium points of the model were determined and analyzed. The numerical simulation is carried out using Excel Micro Software to validate and support the qualitative results. From the analysis of the result, the optimal temperature for the transmission of malaria is between and . The result also shows that an increase in temperature due to seasonal shift gives rise to the development of parasites which consequently leads to an increase in the widespread of malaria transmission in Kampala. It is also seen from the results that an increase in temperature leads to an increase in the number of infectious human hosts and mosquitoes.

Keywords: seasonal variation, indoor residual spray, efficacy of spray, temperature-dependent model

Procedia PDF Downloads 149
466 The Stability Study of Large-Scale Grid-Tied Photovoltaic System Containing Different Types of Inverter

Authors: Chen Zheng, Lin Zhou, Bao Xie, Xiao Du, Nianbin Shao

Abstract:

Power generated by large-scale photovoltaic plants (LSPVPs) is usually transmitted to the grid through several transformers and long distance overhead lines. Impedance of transformers and transmission lines results in complex interactions between the plant and the grid and among different inverters. In accordance with the topological structure of LSPV in reality, an equivalent model containing different inverters was built and then interactions between the plant and the grid and among different inverters were studied. Based on the vector composition principle of voltage at the point of common coupling (PCC), the mathematic function of PCC voltage in regard to the total power and grid impedance was deduced, from which the uttermost total power to guarantee the system stable is obtained. Taking the influence of different inverters numbers and the length of transmission lines to the system stability into account, the stability criterion of LSPV containing different inverters was derived. The result of simulation validated the theory analysis in the paper.

Keywords: LSPVPs, stability analysis, grid impedance, different types of inverter, PCC voltage

Procedia PDF Downloads 285
465 Autonomous Rendezvous for Underactuated Spacecraft

Authors: Espen Oland

Abstract:

This paper presents a solution to the problem of autonomous rendezvous for spacecraft equipped with one main thruster for translational control and three reaction wheels for rotational control. With fewer actuators than degrees of freedom, this constitutes an underactuated control problem, requiring a coupling between the translational and rotational dynamics to facilitate control. This paper shows how to obtain this coupling, and applies the results to autonomous rendezvous between a follower spacecraft and a leader spacecraft. Additionally, since the thrust is constrained between zero and an upper bound, no negative forces can be generated to slow down the speed of the spacecraft. A combined speed and attitude control logic is therefore created that can be divided into three main phases: 1) The orbital velocity vector is pointed towards the desired position and the thrust is used to obtain the desired speed, 2) during the coasting phase, the attitude is changed to facilitate deceleration using the main thruster, 3) the speed is decreased as the spacecraft reaches its desired position. The results are validated through simulations, showing the capabilities of the proposed approach.

Keywords: attitude control, spacecraft rendezvous, translational control, underactuated rigid body

Procedia PDF Downloads 276
464 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph

Authors: Youhang Zhou, Weimin Zeng, Qi Xie

Abstract:

Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.

Keywords: guide surface, wear defects, feature extraction, data visualization

Procedia PDF Downloads 493
463 Super-ellipsoidal Potential Function for Autonomous Collision Avoidance of a Teleoperated UAV

Authors: Mohammed Qasim, Kyoung-Dae Kim

Abstract:

In this paper, we present the design of the super-ellipsoidal potential function (SEPF), that can be used for autonomous collision avoidance of an unmanned aerial vehicle (UAV) in a 3-dimensional space. In the design of SEPF, we have the full control over the shape and size of the potential function. In particular, we can adjust the length, width, height, and the amount of flattening at the tips of the potential function so that the collision avoidance motion vector generated from the potential function can be adjusted accordingly. Based on the idea of the SEPF, we also propose an approach for the local autonomy of a UAV for its collision avoidance when the UAV is teleoperated by a human operator. In our proposed approach, a teleoperated UAV can not only avoid collision autonomously with other surrounding objects but also track the operator’s control input as closely as possible. As a result, an operator can always be in control of the UAV for his/her high-level guidance and navigation task without worrying too much about the UAVs collision avoidance while it is being teleoperated. The effectiveness of the proposed approach is demonstrated through a human-in-the-loop simulation of quadrotor UAV teleoperation using virtual robot experimentation platform (v-rep) and Matlab programs.

Keywords: artificial potential function, autonomous collision avoidance, teleoperation, quadrotor

Procedia PDF Downloads 381
462 An Enhanced AODV Routing Protocol for Wireless Sensor and Actuator Networks

Authors: Apidet Booranawong, Wiklom Teerapabkajorndet

Abstract:

An enhanced ad-hoc on-demand distance vector routing (E-AODV) protocol for control system applications in wireless sensor and actuator networks (WSANs) is proposed. Our routing algorithm is designed by considering both wireless network communication and the control system aspects. Control system error and network delay are the main selection criteria in our routing protocol. The control and communication performance is evaluated on multi-hop IEEE 802.15.4 networks for building-temperature control systems. The Gilbert-Elliott error model is employed to simulate packet loss in wireless networks. The simulation results demonstrate that the E-AODV routing approach can significantly improve the communication performance better than an original AODV routing under various packet loss rates. However, the control performance result by our approach is not much improved compared with the AODV routing solution.

Keywords: WSANs, building temperature control, AODV routing protocol, control system error, settling time, delay, delivery ratio

Procedia PDF Downloads 316
461 Interfacing Photovoltaic Systems to the Utility Grid: A Comparative Simulation Study to Mitigate the Impact of Unbalanced Voltage Dips

Authors: Badr M. Alshammari, A. Rabeh, A. K. Mohamed

Abstract:

This paper presents the modeling and the control of a grid-connected photovoltaic system (PVS). Firstly, the MPPT control of the PVS and its associated DC/DC converter has been analyzed in order to extract the maximum of available power. Secondly, the control system of the grid side converter (GSC) which is a three-phase voltage source inverter (VSI) has been presented. A special attention has been paid to the control algorithms of the GSC converter during grid voltages imbalances. Especially, three different control objectives are to achieve; the mitigation of the grid imbalance adverse effects, at the point of common coupling (PCC), on the injected currents, the elimination of double frequency oscillations in active power flow, and the elimination of double frequency oscillations in reactive power flow. Simulation results of two control strategies have been performed via MATLAB software in order to demonstrate the particularities of each control strategy according to power quality standards.

Keywords: renewable energies, photovoltaic systems, dc link, voltage source inverter, space vector SVPWM, unbalanced voltage dips, symmetrical components

Procedia PDF Downloads 356
460 A Nonlinear Dynamical System with Application

Authors: Abdullah Eqal Al Mazrooei

Abstract:

In this paper, a nonlinear dynamical system is presented. This system is a bilinear class. The bilinear systems are very important kind of nonlinear systems because they have many applications in real life. They are used in biology, chemistry, manufacturing, engineering, and economics where linear models are ineffective or inadequate. They have also been recently used to analyze and forecast weather conditions. Bilinear systems have three advantages: First, they define many problems which have a great applied importance. Second, they give us approximations to nonlinear systems. Thirdly, they have a rich geometric and algebraic structures, which promises to be a fruitful field of research for scientists and applications. The type of nonlinearity that is treated and analyzed consists of bilinear interaction between the states vectors and the system input. By using some properties of the tensor product, these systems can be transformed to linear systems. But, here we discuss the nonlinearity when the state vector is multiplied by itself. So, this model will be able to handle evolutions according to the Lotka-Volterra models or the Lorenz weather models, thus enabling a wider and more flexible application of such models. Here we apply by using an estimator to estimate temperatures. The results prove the efficiency of the proposed system.

Keywords: Lorenz models, nonlinear systems, nonlinear estimator, state-space model

Procedia PDF Downloads 236
459 Performences of Type-2 Fuzzy Logic Control and Neuro-Fuzzy Control Based on DPC for Grid Connected DFIG with Fixed Switching Frequency

Authors: Fayssal Amrane, Azeddine Chaiba

Abstract:

In this paper, type-2 fuzzy logic control (T2FLC) and neuro-fuzzy control (NFC) for a doubly fed induction generator (DFIG) based on direct power control (DPC) with a fixed switching frequency is proposed for wind generation application. First, a mathematical model of the doubly-fed induction generator implemented in d-q reference frame is achieved. Then, a DPC algorithm approach for controlling active and reactive power of DFIG via fixed switching frequency is incorporated using PID. The performance of T2FLC and NFC, which is based on the DPC algorithm, are investigated and compared to those obtained from the PID controller. Finally, simulation results demonstrate that the NFC is more robust, superior dynamic performance for wind power generation system applications.

Keywords: doubly fed induction generator (DFIG), direct power control (DPC), neuro-fuzzy control (NFC), maximum power point tracking (MPPT), space vector modulation (SVM), type 2 fuzzy logic control (T2FLC)

Procedia PDF Downloads 394
458 Robust Numerical Scheme for Pricing American Options under Jump Diffusion Models

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. However, most of the option pricing models have no analytical solution. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, we solve the American option under jump diffusion models by using efficient time-dependent numerical methods. several techniques are integrated to reduced the overcome the computational complexity. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). Partial fraction decomposition technique is applied to rational approximation schemes to overcome the complexity of inverting polynomial of matrices. The proposed method is easy to implement on serial or parallel versions. Numerical results are presented to prove the accuracy and efficiency of the proposed method.

Keywords: integral differential equations, jump–diffusion model, American options, rational approximation

Procedia PDF Downloads 94
457 Discrete Group Search Optimizer for the Travelling Salesman Problem

Authors: Raed Alnajjar, Mohd Zakree, Ahmad Nazri

Abstract:

In this study, we apply Discrete Group Search Optimizer (DGSO) for solving Traveling Salesman Problem (TSP). The DGSO is a nature inspired optimization algorithm that imitates the animal behavior, especially animal searching behavior. The proposed DGSO uses a vector representation and some discrete operators, such as destruction, construction, differential evolution, swap and insert. The TSP is a well-known hard combinatorial optimization problem, which seeks to find the shortest path among numbers of cities. The performance of the proposed DGSO is evaluated and tested on benchmark instances which listed in LIBTSP dataset. The experimental results show that the performance of the proposed DGSO is comparable with the other methods in the state of the art for some instances. The results show that DGSO outperform Ant Colony System (ACS) in some instances whilst outperform other metaheuristic in most instances. In addition to that, the new results obtained a number of optimal solutions and some best known results. DGSO was able to obtain feasible and good quality solution across all dataset.

Keywords: discrete group search optimizer (DGSO); Travelling salesman problem (TSP); Variable neighborhood search(VNS)

Procedia PDF Downloads 304
456 Bag of Words Representation Based on Fusing Two Color Local Descriptors and Building Multiple Dictionaries

Authors: Fatma Abdedayem

Abstract:

We propose an extension to the famous method called Bag of words (BOW) which proved a successful role in the field of image categorization. Practically, this method based on representing image with visual words. In this work, firstly, we extract features from images using Spatial Pyramid Representation (SPR) and two dissimilar color descriptors which are opponent-SIFT and transformed-color-SIFT. Secondly, we fuse color local features by joining the two histograms coming from these descriptors. Thirdly, after collecting of all features, we generate multi-dictionaries coming from n random feature subsets that obtained by dividing all features into n random groups. Then, by using these dictionaries separately each image can be represented by n histograms which are lately concatenated horizontally and form the final histogram, that allows to combine Multiple Dictionaries (MDBoW). In the final step, in order to classify image we have applied Support Vector Machine (SVM) on the generated histograms. Experimentally, we have used two dissimilar image datasets in order to test our proposition: Caltech 256 and PASCAL VOC 2007.

Keywords: bag of words (BOW), color descriptors, multi-dictionaries, MDBoW

Procedia PDF Downloads 281
455 MindFlow: A Collective Intelligence-Based System for Helping Stress Pattern Diagnosis

Authors: Andres Frederic

Abstract:

We present the MindFlow system supporting the detection and the diagnosis of stresses. The heart of the system is a knowledge synthesis engine allowing occupational health stakeholders (psychologists, occupational therapists and human resource managers) to formulate queries related to stress and responding to users requests by recommending a pattern of stress if one exists. The stress pattern diagnosis is based on expert knowledge stored in the MindFlow stress ontology including stress feature vector. The query processing may involve direct access to the MindFlow system by occupational health stakeholders, online communication between the MindFlow system and the MindFlow domain experts, or direct dialog between a occupational health stakeholder and a MindFlow domain expert. The MindFlow knowledge model is generic in the sense that it supports the needs of psychologists, occupational therapists and human resource managers. The system presented in this paper is currently under development as part of a Dutch-Japanese project and aims to assist organisation in the quick diagnosis of stress patterns.

Keywords: occupational stress, stress management, physiological measurement, accident prevention

Procedia PDF Downloads 403
454 Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems

Authors: Rajamani Doraiswami, Lahouari Cheded

Abstract:

Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system.

Keywords: identification, linear parameter-varying systems, least-squares estimation, fault diagnosis, Kalman filter, emulators

Procedia PDF Downloads 478
453 Development of Fake News Model Using Machine Learning through Natural Language Processing

Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini

Abstract:

Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.

Keywords: fake news detection, natural language processing, machine learning, classification techniques.

Procedia PDF Downloads 137
452 Temperature Dependence of Relative Permittivity: A Measurement Technique Using Split Ring Resonators

Authors: Sreedevi P. Chakyar, Jolly Andrews, V. P. Joseph

Abstract:

A compact method for measuring the relative permittivity of a dielectric material at different temperatures using a single circular Split Ring Resonator (SRR) metamaterial unit working as a test probe is presented in this paper. The dielectric constant of a material is dependent upon its temperature and the LC resonance of the SRR depends on its dielectric environment. Hence, the temperature of the dielectric material in contact with the resonator influences its resonant frequency. A single SRR placed between transmitting and receiving probes connected to a Vector Network Analyser (VNA) is used as a test probe. The dependence of temperature between 30 oC and 60 oC on resonant frequency of SRR is analysed. Relative permittivities ‘ε’ of test samples for different temperatures are extracted from a calibration graph drawn between the relative permittivity of samples of known dielectric constant and their corresponding resonant frequencies. This method is found to be an easy and efficient technique for analysing the temperature dependent permittivity of different materials.

Keywords: metamaterials, negative permeability, permittivity measurement techniques, split ring resonators, temperature dependent dielectric constant

Procedia PDF Downloads 382
451 Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma

Authors: A. Abdikian

Abstract:

Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc.

Keywords: bifurcation theory, phase portrait, magnetized electron-positron plasma, the Zakharov-Kuznetsov equation

Procedia PDF Downloads 222
450 Generalized Approach to Linear Data Transformation

Authors: Abhijith Asok

Abstract:

This paper presents a generalized approach for the simple linear data transformation, Y=bX, through an integration of multidimensional coordinate geometry, vector space theory and polygonal geometry. The scaling is performed by adding an additional ’Dummy Dimension’ to the n-dimensional data, which helps plot two dimensional component-wise straight lines on pairs of dimensions. The end result is a set of scaled extensions of observations in any of the 2n spatial divisions, where n is the total number of applicable dimensions/dataset variables, created by shifting the n-dimensional plane along the ’Dummy Axis’. The derived scaling factor was found to be dependent on the coordinates of the common point of origin for diverging straight lines and the plane of extension, chosen on and perpendicular to the ’Dummy Axis’, respectively. This result indicates the geometrical interpretation of a linear data transformation and hence, opportunities for a more informed choice of the factor ’b’, based on a better choice of these coordinate values. The paper follows on to identify the effect of this transformation on certain popular distance metrics, wherein for many, the distance metric retained the same scaling factor as that of the features.

Keywords: data transformation, dummy dimension, linear transformation, scaling

Procedia PDF Downloads 283