Search results for: unidirectional estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2011

Search results for: unidirectional estimation

1411 Government Size and Economic Growth: Testing the Non-Linear Hypothesis for Nigeria

Authors: R. Santos Alimi

Abstract:

Using time-series techniques, this study empirically tested the validity of existing theory which stipulates there is a nonlinear relationship between government size and economic growth; such that government spending is growth-enhancing at low levels but growth-retarding at high levels, with the optimal size occurring somewhere in between. This study employed three estimation equations. First, for the size of government, two measures are considered as follows: (i) share of total expenditures to gross domestic product, (ii) share of recurrent expenditures to gross domestic product. Second, the study adopted real GDP (without government expenditure component), as a variant measure of economic growth other than the real total GDP, in estimating the optimal level of government expenditure. The study is based on annual Nigeria country-level data for the period 1970 to 2012. Estimation results show that the inverted U-shaped curve exists for the two measures of government size and the estimated optimum shares are 19.81% and 10.98%, respectively. Finally, with the adoption of real GDP (without government expenditure component), the optimum government size was found to be 12.58% of GDP. Our analysis shows that the actual share of government spending on average (2000 - 2012) is about 13.4%.This study adds to the literature confirming that the optimal government size exists not only for developed economies but also for developing economy like Nigeria. Thus, a public intervention threshold level that fosters economic growth is a reality; beyond this point economic growth should be left in the hands of the private sector. This finding has a significant implication for the appraisal of government spending and budgetary policy design.

Keywords: public expenditure, economic growth, optimum level, fully modified OLS

Procedia PDF Downloads 420
1410 Estimation of Endogenous Brain Noise from Brain Response to Flickering Visual Stimulation Magnetoencephalography Visual Perception Speed

Authors: Alexander N. Pisarchik, Parth Chholak

Abstract:

Intrinsic brain noise was estimated via magneto-encephalograms (MEG) recorded during perception of flickering visual stimuli with frequencies of 6.67 and 8.57 Hz. First, we measured the mean phase difference between the flicker signal and steady-state event-related field (SSERF) in the occipital area where the brain response at the flicker frequencies and their harmonics appeared in the power spectrum. Then, we calculated the probability distribution of the phase fluctuations in the regions of frequency locking and computed its kurtosis. Since kurtosis is a measure of the distribution’s sharpness, we suppose that inverse kurtosis is related to intrinsic brain noise. In our experiments, the kurtosis value varied among subjects from K = 3 to K = 5 for 6.67 Hz and from 2.6 to 4 for 8.57 Hz. The majority of subjects demonstrated leptokurtic kurtosis (K < 3), i.e., the distribution tails approached zero more slowly than Gaussian. In addition, we found a strong correlation between kurtosis and brain complexity measured as the correlation dimension, so that the MEGs of subjects with higher kurtosis exhibited lower complexity. The obtained results are discussed in the framework of nonlinear dynamics and complex network theories. Specifically, in a network of coupled oscillators, phase synchronization is mainly determined by two antagonistic factors, noise, and the coupling strength. While noise worsens phase synchronization, the coupling improves it. If we assume that each neuron and each synapse contribute to brain noise, the larger neuronal network should have stronger noise, and therefore phase synchronization should be worse, that results in smaller kurtosis. The described method for brain noise estimation can be useful for diagnostics of some brain pathologies associated with abnormal brain noise.

Keywords: brain, flickering, magnetoencephalography, MEG, visual perception, perception time

Procedia PDF Downloads 148
1409 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering

Procedia PDF Downloads 338
1408 Don't Just Guess and Slip: Estimating Bayesian Knowledge Tracing Parameters When Observations Are Scant

Authors: Michael Smalenberger

Abstract:

Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate and even exceed some benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. A common facet of many ITS is their use of Bayesian Knowledge Tracing (BKT) to estimate parameters necessary for the implementation of the artificial intelligence component, and for the probability of mastery of a knowledge component relevant to the ITS. While various techniques exist to estimate these parameters and probability of mastery, none directly and reliably ask the user to self-assess these. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course for which detailed transaction-level observations were recorded, and users were also routinely asked direct questions that would lead to such a self-assessment. Comparisons were made between these self-assessed values and those obtained using commonly used estimation techniques. Our findings show that such self-assessments are particularly relevant at the early stages of ITS usage while transaction level data are scant. Once a user’s transaction level data become available after sufficient ITS usage, these can replace the self-assessments in order to eliminate the identifiability problem in BKT. We discuss how these findings are relevant to the number of exercises necessary to lead to mastery of a knowledge component, the associated implications on learning curves, and its relevance to instruction time.

Keywords: Bayesian Knowledge Tracing, Intelligent Tutoring System, in vivo study, parameter estimation

Procedia PDF Downloads 172
1407 Effect of Fiber Orientation on the Mechanical Properties of Fabricated Plate Using Basalt Fiber

Authors: Sharmili Routray, Kishor Chandra Biswal

Abstract:

The use of corrosion resistant fiber reinforced polymer (FRP) reinforcement is beneficial in structures particularly those exposed to deicing salts, and/or located in highly corrosive environment. Generally Glass, Carbon and Aramid fibers are used for the strengthening purpose of the structures. Due to the necessities of low weight and high strength materials, it is required to find out the suitable substitute with low cost. Recent developments in fiber production technology allow the strengthening of structures using Basalt fiber which is made from basalt rock. Basalt fiber has good range of thermal performance, high tensile strength, resistance to acids, good electro‐magnetic properties, inert nature, resistance to corrosion, radiation and UV light, vibration and impact loading. This investigation focuses on the effect of fibre content and fiber orientation of basalt fibre on mechanical properties of the fabricated composites. Specimen prepared with unidirectional Basalt fabric as reinforcing materials and epoxy resin as a matrix in polymer composite. In this investigation different fiber orientation are taken and the fabrication is done by hand lay-up process. The variation of the properties with the increasing number of plies of fiber in the composites is also studied. Specimens are subjected to tensile strength test and the failure of the composite is examined with the help of INSTRON universal testing Machine (SATEC) of 600 kN capacities. The average tensile strength and modulus of elasticity of BFRP plates are determined from the test Program.

Keywords: BFRP, fabrication, Fiber Reinforced Polymer (FRP), strengthening

Procedia PDF Downloads 292
1406 Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model

Authors: Aid Abdelkrim

Abstract:

A method of fatigue damage accumulation based upon application of energy parameters of the fatigue process is proposed in the paper. Using this model is simple, it has no parameter to be determined, it requires only the knowledge of the curve W–N (W: strain energy density N: number of cycles at failure) determined from the experimental Wöhler curve. To examine the performance of nonlinear models proposed in the estimation of fatigue damage and fatigue life of components under random loading, a batch of specimens made of 6082 T 6 aluminium alloy has been studied and some of the results are reported in the present paper. The paper describes an algorithm and suggests a fatigue cumulative damage model, especially when random loading is considered. This work contains the results of uni-axial random load fatigue tests with different mean and amplitude values performed on 6082T6 aluminium alloy specimens. The proposed model has been formulated to take into account the damage evolution at different load levels and it allows the effect of the loading sequence to be included by means of a recurrence formula derived for multilevel loading, considering complex load sequences. It is concluded that a ‘damaged stress interaction damage rule’ proposed here allows a better fatigue damage prediction than the widely used Palmgren–Miner rule, and a formula derived in random fatigue could be used to predict the fatigue damage and fatigue lifetime very easily. The results obtained by the model are compared with the experimental results and those calculated by the most fatigue damage model used in fatigue (Miner’s model). The comparison shows that the proposed model, presents a good estimation of the experimental results. Moreover, the error is minimized in comparison to the Miner’s model.

Keywords: damage accumulation, energy model, damage indicator, variable loading, random loading

Procedia PDF Downloads 396
1405 Foreign Direct Investment on Economic Growth by Industries in Central and Eastern European Countries

Authors: Shorena Pharjiani

Abstract:

The Present empirical paper investigates the relationship between FDI and economic growth by 10 selected industries in 10 Central and Eastern European countries from the period 1995 to 2012. Different estimation approaches were used to explore the connection between FDI and economic growth, for example OLS, RE, FE with and without time dummies. Obtained empirical results leads to some main consequences: First, the Central and East European countries (CEEC) attracted foreign direct investment, which raised the productivity of industries they entered in. It should be concluded that the linkage between FDI and output growth by industries is positive and significant enough to suggest that foreign firm’s participation enhanced the productivity of the industries they occupied. There had been an endogeneity problem in the regression and fixed effects estimation approach was used which partially corrected the regression analysis in order to make the results less biased. Second, it should be stressed that the results show that time has an important role in making FDI operational for enhancing output growth by industries via total factor productivity. Third, R&D positively affected economic growth and at the same time, it should take some time for research and development to influence economic growth. Fourth, the general trends masked crucial differences at the country level: over the last 20 years, the analysis of the tables and figures at the country level show that the main recipients of FDI of the 11 Central and Eastern European countries were Hungary, Poland and the Czech Republic. The main reason was that these countries had more open door policies for attracting the FDI. Fifth, according to the graphical analysis, while Hungary had the highest FDI inflow in this region, it was not reflected in the GDP growth as much as in other Central and Eastern European countries.

Keywords: central and East European countries (CEEC), economic growth, FDI, panel data

Procedia PDF Downloads 237
1404 Nonlinear Estimation Model for Rail Track Deterioration

Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami

Abstract:

Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.

Keywords: ANFIS, MGT, prediction modeling, rail track degradation

Procedia PDF Downloads 335
1403 Multiscale Cohesive Zone Modeling of Composite Microstructure

Authors: Vincent Iacobellis, Kamran Behdinan

Abstract:

A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation.

Keywords: cohesive zone model, fiber-matrix interface, microscale damage, multiscale modeling

Procedia PDF Downloads 487
1402 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP per capita for Oman: Time Series Analysis, 1980–2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfil the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption, carbon dioxide (CO2) emissions and gross domestic product (GDP) for Oman using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey Fuller (ADF) test for stationary, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in the VECM suggests positive long-run causalities from CO2 emissions to GDP. Conversely, negative impacts of energy consumption on GDP are found to be significant in Oman during the period. In the short run, there exist negative unidirectional causalities among GDP, CO2 emissions and energy consumption running from GDP to CO2 emissions and from energy consumption to CO2 emissions. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output in Oman over of period 1980-2010.

Keywords: CO2 emissions, energy consumption, GDP, Oman, time series analysis

Procedia PDF Downloads 462
1401 Railway Ballast Volumes Automated Estimation Based on LiDAR Data

Authors: Bahar Salavati Vie Le Sage, Ismaïl Ben Hariz, Flavien Viguier, Sirine Noura Kahil, Audrey Jacquin, Maxime Convert

Abstract:

The ballast layer plays a key role in railroad maintenance and the geometry of the track structure. Ballast also holds the track in place as the trains roll over it. Track ballast is packed between the sleepers and on the sides of railway tracks. An imbalance in ballast volume on the tracks can lead to safety issues as well as a quick degradation of the overall quality of the railway segment. If there is a lack of ballast in the track bed during the summer, there is a risk that the rails will expand and buckle slightly due to the high temperatures. Furthermore, the knowledge of the ballast quantities that will be excavated during renewal works is important for efficient ballast management. The volume of excavated ballast per meter of track can be calculated based on excavation depth, excavation width, volume of track skeleton (sleeper and rail) and sleeper spacing. Since 2012, SNCF has been collecting 3D points cloud data covering its entire railway network by using 3D laser scanning technology (LiDAR). This vast amount of data represents a modelization of the entire railway infrastructure, allowing to conduct various simulations for maintenance purposes. This paper aims to present an automated method for ballast volume estimation based on the processing of LiDAR data. The estimation of abnormal volumes in ballast on the tracks is performed by analyzing the cross-section of the track. Further, since the amount of ballast required varies depending on the track configuration, the knowledge of the ballast profile is required. Prior to track rehabilitation, excess ballast is often present in the ballast shoulders. Based on 3D laser scans, a Digital Terrain Model (DTM) was generated and automatic extraction of the ballast profiles from this data is carried out. The surplus in ballast is then estimated by performing a comparison between this ballast profile obtained empirically, and a geometric modelization of the theoretical ballast profile thresholds as dictated by maintenance standards. Ideally, this excess should be removed prior to renewal works and recycled to optimize the output of the ballast renewal machine. Based on these parameters, an application has been developed to allow the automatic measurement of ballast profiles. We evaluated the method on a 108 kilometers segment of railroad LiDAR scans, and the results show that the proposed algorithm detects ballast surplus that amounts to values close to the total quantities of spoil ballast excavated.

Keywords: ballast, railroad, LiDAR , cloud point, track ballast, 3D point

Procedia PDF Downloads 109
1400 Band Characterization and Development of Hyperspectral Indices for Retrieving Chlorophyll Content

Authors: Ramandeep Kaur M. Malhi, Prashant K. Srivastava, G.Sandhya Kiran

Abstract:

Quantitative estimates of foliar biochemicals, namely chlorophyll content (CC), serve as key information for the assessment of plant productivity, stress, and the availability of nutrients. This also plays a critical role in predicting the dynamic response of any vegetation to altering climate conditions. The advent of hyperspectral data with an enhanced number of available wavelengths has increased the possibility of acquiring improved information on CC. Retrieval of CC is extensively carried through well known spectral indices derived from hyperspectral data. In the present study, an attempt is made to develop hyperspectral indices by identifying optimum bands for CC estimation in Butea monosperma (Lam.) Taub growing in forests of Shoolpaneshwar Wildlife Sanctuary, Narmada district, Gujarat State, India. 196 narrow bands of EO-1 Hyperion images were screened, and the best optimum wavelength from blue, green, red, and near infrared (NIR) regions were identified based on the coefficient of determination (R²) between band reflectance and laboratory estimated CC. The identified optimum wavelengths were then employed for developing 12 hyperspectral indices. These spectral index values and CC values were then correlated to investigate the relation between laboratory measured CC and spectral indices. Band 15 of blue range and Band 22 of green range, Band 40 of the red region, and Band 79 of NIR region were found to be optimum bands for estimating CC. The optimum band based combinations on hyperspectral data proved to be the most effective indices for quantifying Butea CC with NDVI and TVI identified as the best (R² > 0.7, p < 0.01). The study demonstrated the significance of band characterization in the development of the best hyperspectral indices for the chlorophyll estimation, which can aid in monitoring the vitality of forests.

Keywords: band, characterization, chlorophyll, hyperspectral, indices

Procedia PDF Downloads 153
1399 Estimating Age in Deceased Persons from the North Indian Population Using Ossification of the Sternoclavicular Joint

Authors: Balaji Devanathan, Gokul G., Raveena Divya, Abhishek Yadav, Sudhir K. Gupta

Abstract:

Background: Age estimation is a common problem in administrative settings, medico legal cases, and among athletes competing in different sports. Age estimation is a problem in medico legal problems that arise in hospitals when there has been a criminal abortion, when consenting to surgery or a general physical examination, when there has been infanticide, impotence, sterility, etc. Medical imaging progress has benefited forensic anthropology in various ways, most notably in the area of determining bone age. An efficient method for researching the epiphyseal union and other differences in the body's bones and joints is multi-slice computed tomography. There isn't a significant database on Indians available. So to obtain an Indian based database author has performed this original study. Methodologies: The appearance and fusion of ossification centre of sternoclavicular joint is evaluated, and grades were assigned accordingly. Using MSCT scans, we examined the relationship between the age of the deceased and alterations in the sternoclavicular joint during the appearance and union in 500 instances, 327 men and 173 females, in the age range of 0 to 25 years. Results: According to our research in both the male and female groups, the ossification centre for the medial end of the clavicle first appeared between the ages of 18.5 and 17.1 respectively. The age range of the partial union was 20.4 and 20.2 years old. The earliest age of complete fusion was 23 years for males and 22 years for females. For fusion of their sternebrae into one, age range is 11–24 years for females and 17–24 years. The fusion of the third and fourth sternebrae was completed by 11 years. The fusions of the first and second and second and third sternebrae occur by the age of 17 years. Furthermore, correlation and reliability were carried out which yielded significant results. Conclusion: With numerous exceptions, the projected values are consistent with a large number of the previously developed age charts. These variations may be caused by the ethnic or regional heterogeneity in the ossification pattern among the population under study. The pattern of bone maturation did not significantly differ between the sexes, according to the study. The study's age range was 0 to 25 years, and for obvious reasons, the majority of the occurrences occurred in the last five years, or between 20 and 25 years of age. This resulted in a comparatively smaller study population for the 12–18 age group, where age estimate is crucial because of current legal requirements. It will require specialized PMCT research in this age range to produce population standard charts for age estimate. The medial end of the clavicle is one of several ossification foci that are being thoroughly investigated since they are challenging to assess with a traditional X-ray examination. Combining the two has been shown to be a valid result when it comes to raising the age beyond eighteen.

Keywords: age estimation, sternoclavicular joint, medial clavicle, computed tomography

Procedia PDF Downloads 44
1398 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Turkey: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Turkey using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests no effects of the CO2 emissions and energy use on the GDP in Turkey. There exists a short-run bidirectional relationship between the electricity and natural gas consumption, and also there is a negative unidirectional causality running from the GDP to electricity use. Overall, the results partly support arguments that there are relationships between energy use and economic output; however, the effects may differ due to the source of energy such as in the case of Turkey for the period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term.

Keywords: CO2 emissions, energy consumption, GDP, Turkey, time series analysis

Procedia PDF Downloads 504
1397 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.

Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement

Procedia PDF Downloads 123
1396 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures

Authors: Milad Abbasi

Abstract:

Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.

Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network

Procedia PDF Downloads 153
1395 Regression Analysis in Estimating Stream-Flow and the Effect of Hierarchical Clustering Analysis: A Case Study in Euphrates-Tigris Basin

Authors: Goksel Ezgi Guzey, Bihrat Onoz

Abstract:

The scarcity of streamflow gauging stations and the increasing effects of global warming cause designing water management systems to be very difficult. This study is a significant contribution to assessing regional regression models for estimating streamflow. In this study, simulated meteorological data was related to the observed streamflow data from 1971 to 2020 for 33 stream gauging stations of the Euphrates-Tigris Basin. Ordinary least squares regression was used to predict flow for 2020-2100 with the simulated meteorological data. CORDEX- EURO and CORDEX-MENA domains were used with 0.11 and 0.22 grids, respectively, to estimate climate conditions under certain climate scenarios. Twelve meteorological variables simulated by two regional climate models, RCA4 and RegCM4, were used as independent variables in the ordinary least squares regression, where the observed streamflow was the dependent variable. The variability of streamflow was then calculated with 5-6 meteorological variables and watershed characteristics such as area and height prior to the application. Of the regression analysis of 31 stream gauging stations' data, the stations were subjected to a clustering analysis, which grouped the stations in two clusters in terms of their hydrometeorological properties. Two streamflow equations were found for the two clusters of stream gauging stations for every domain and every regional climate model, which increased the efficiency of streamflow estimation by a range of 10-15% for all the models. This study underlines the importance of homogeneity of a region in estimating streamflow not only in terms of the geographical location but also in terms of the meteorological characteristics of that region.

Keywords: hydrology, streamflow estimation, climate change, hydrologic modeling, HBV, hydropower

Procedia PDF Downloads 129
1394 Sensor Registration in Multi-Static Sonar Fusion Detection

Authors: Longxiang Guo, Haoyan Hao, Xueli Sheng, Hanjun Yu, Jingwei Yin

Abstract:

In order to prevent target splitting and ensure the accuracy of fusion, system error registration is an important step in multi-static sonar fusion detection system. To eliminate the inherent system errors including distance error and angle error of each sonar in detection, this paper uses offline estimation method for error registration. Suppose several sonars from different platforms work together to detect a target. The target position detected by each sonar is based on each sonar’s own reference coordinate system. Based on the two-dimensional stereo projection method, this paper uses real-time quality control (RTQC) method and least squares (LS) method to estimate sensor biases. The RTQC method takes the average value of each sonar’s data as the observation value and the LS method makes the least square processing of each sonar’s data to get the observation value. In the underwater acoustic environment, matlab simulation is carried out and the simulation results show that both algorithms can estimate the distance and angle error of sonar system. The performance of the two algorithms is also compared through the root mean square error and the influence of measurement noise on registration accuracy is explored by simulation. The system error convergence of RTQC method is rapid, but the distribution of targets has a serious impact on its performance. LS method can not be affected by target distribution, but the increase of random noise will slow down the convergence rate. LS method is an improvement of RTQC method, which is widely used in two-dimensional registration. The improved method can be used for underwater multi-target detection registration.

Keywords: data fusion, multi-static sonar detection, offline estimation, sensor registration problem

Procedia PDF Downloads 169
1393 Big Data Applications for the Transport Sector

Authors: Antonella Falanga, Armando Cartenì

Abstract:

Today, an unprecedented amount of data coming from several sources, including mobile devices, sensors, tracking systems, and online platforms, characterizes our lives. The term “big data” not only refers to the quantity of data but also to the variety and speed of data generation. These data hold valuable insights that, when extracted and analyzed, facilitate informed decision-making. The 4Vs of big data - velocity, volume, variety, and value - highlight essential aspects, showcasing the rapid generation, vast quantities, diverse sources, and potential value addition of these kinds of data. This surge of information has revolutionized many sectors, such as business for improving decision-making processes, healthcare for clinical record analysis and medical research, education for enhancing teaching methodologies, agriculture for optimizing crop management, finance for risk assessment and fraud detection, media and entertainment for personalized content recommendations, emergency for a real-time response during crisis/events, and also mobility for the urban planning and for the design/management of public and private transport services. Big data's pervasive impact enhances societal aspects, elevating the quality of life, service efficiency, and problem-solving capacities. However, during this transformative era, new challenges arise, including data quality, privacy, data security, cybersecurity, interoperability, the need for advanced infrastructures, and staff training. Within the transportation sector (the one investigated in this research), applications span planning, designing, and managing systems and mobility services. Among the most common big data applications within the transport sector are, for example, real-time traffic monitoring, bus/freight vehicle route optimization, vehicle maintenance, road safety and all the autonomous and connected vehicles applications. Benefits include a reduction in travel times, road accidents and pollutant emissions. Within these issues, the proper transport demand estimation is crucial for sustainable transportation planning. Evaluating the impact of sustainable mobility policies starts with a quantitative analysis of travel demand. Achieving transportation decarbonization goals hinges on precise estimations of demand for individual transport modes. Emerging technologies, offering substantial big data at lower costs than traditional methods, play a pivotal role in this context. Starting from these considerations, this study explores the usefulness impact of big data within transport demand estimation. This research focuses on leveraging (big) data collected during the COVID-19 pandemic to estimate the evolution of the mobility demand in Italy. Estimation results reveal in the post-COVID-19 era, more than 96 million national daily trips, about 2.6 trips per capita, with a mobile population of more than 37.6 million Italian travelers per day. Overall, this research allows us to conclude that big data better enhances rational decision-making for mobility demand estimation, which is imperative for adeptly planning and allocating investments in transportation infrastructures and services.

Keywords: big data, cloud computing, decision-making, mobility demand, transportation

Procedia PDF Downloads 62
1392 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals

Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou

Abstract:

In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.

Keywords: continuous wavelet transform, convolution neural net-work, gated recurrent unit, health indicators, remaining useful life

Procedia PDF Downloads 133
1391 An Experimental Approach to the Influence of Tipping Points and Scientific Uncertainties in the Success of International Fisheries Management

Authors: Jules Selles

Abstract:

The Atlantic and Mediterranean bluefin tuna fishery have been considered as the archetype of an overfished and mismanaged fishery. This crisis has demonstrated the role of public awareness and the importance of the interactions between science and management about scientific uncertainties. This work aims at investigating the policy making process associated with a regional fisheries management organization. We propose a contextualized computer-based experimental approach, in order to explore the effects of key factors on the cooperation process in a complex straddling stock management setting. Namely, we analyze the effects of the introduction of a socio-economic tipping point and the uncertainty surrounding the estimation of the resource level. Our approach is based on a Gordon-Schaefer bio-economic model which explicitly represents the decision making process. Each participant plays the role of a stakeholder of ICCAT and represents a coalition of fishing nations involved in the fishery and decide unilaterally a harvest policy for the coming year. The context of the experiment induces the incentives for exploitation and collaboration to achieve common sustainable harvest plans at the Atlantic bluefin tuna stock scale. Our rigorous framework allows testing how stakeholders who plan the exploitation of a fish stock (a common pool resource) respond to two kinds of effects: i) the inclusion of a drastic shift in the management constraints (beyond a socio-economic tipping point) and ii) an increasing uncertainty in the scientific estimation of the resource level.

Keywords: economic experiment, fisheries management, game theory, policy making, Atlantic Bluefin tuna

Procedia PDF Downloads 253
1390 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health

Procedia PDF Downloads 242
1389 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes

Authors: V. Churkin, M. Lopatin

Abstract:

The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second –95,3%.

Keywords: bass model, generalized bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States

Procedia PDF Downloads 348
1388 Numerical Study of Elastic Performances of Sandwich Beam with Carbon-Fibre Reinforced Skins

Authors: Soukaina Ounss, Hamid Mounir, Abdellatif El Marjani

Abstract:

Sandwich materials with composite reinforced skins are mostly required in advanced construction applications with a view to ensure resistant structures. Their lightweight, their high flexural stiffness and their optimal thermal insulation make them a suitable solution to obtain efficient structures with performing rigidity and optimal energy safety. In this paper, the mechanical behavior of a sandwich beam with composite skins reinforced by unidirectional carbon fibers is investigated numerically through analyzing the impact of reinforcements specifications on the longitudinal elastic modulus in order to select the adequate sandwich configuration that has an interesting rigidity and an accurate convergence to the analytical approach which is proposed to verify performed numerical simulations. Therefore, concerned study starts by testing flexion performances of skins with various fibers orientations and volume fractions to determine those to use in sandwich beam. For that, the combination of a reinforcement inclination of 30° and a volume ratio of 60% is selected with the one with 60° of fibers orientation and 40% of volume fraction, this last guarantees to chosen skins an important rigidity with an optimal fibers concentration and a great enhance in convergence to analytical results in the sandwich model for the reason of the crucial core role as transverse shear absorber. Thus, a resistant sandwich beam is elaborated from a face-sheet constituted from two layers of previous skins with fibers oriented in 60° and an epoxy core; concerned beam has a longitudinal elastic modulus of 54 Gpa (gigapascal) that equals to the analytical value by a negligible error of 2%.

Keywords: fibers orientation, fibers volume ratio, longitudinal elastic modulus, sandwich beam

Procedia PDF Downloads 168
1387 Estimation of Soil Erosion Potential in Herat Province, Afghanistan

Authors: M. E. Razipoor, T. Masunaga, K. Sato, M. S. Saboory

Abstract:

Estimation of soil erosion is economically and environmentally important in Herat, Afghanistan. Degradation of soil has negative impact (decreased soil fertility, destroyed soil structure, and consequently soil sealing and crusting) on life of Herat residents. Water and wind are the main erosive factors causing soil erosion in Herat. Furthermore, scarce vegetation cover, exacerbated by socioeconomic constraint, and steep slopes accelerate soil erosion. To sustain soil productivity and reduce soil erosion impact on human life, due to sustaining agricultural production and auditing the environment, it is needed to quantify the magnitude and extent of soil erosion in a spatial domain. Thus, this study aims to estimate soil loss potential and its spatial distribution in Herat, Afghanistan by applying RUSLE in GIS environment. The rainfall erosivity factor ranged between values of 125 and 612 (MJ mm ha-1 h-1 year-1). Soil erodibility factor varied from 0.036 to 0.073 (Mg h MJ-1 mm-1). Slope length and steepness factor (LS) values were between 0.03 and 31.4. The vegetation cover factor (C), derived from NDVI analysis of Landsat-8 OLI scenes, resulting in range of 0.03 to 1. Support practice factor (P) were assigned to a value of 1, since there is not significant mitigation practices in the study area. Soil erosion potential map was the product of these factors. Mean soil erosion rate of Herat Province was 29 Mg ha-1 year-1 that ranged from 0.024 Mg ha-1 year-1 in flat areas with dense vegetation cover to 778 Mg ha-1 year-1 in sharp slopes with high rainfall but least vegetation cover. Based on land cover map of Afghanistan, areas with soil loss rate higher than soil loss tolerance (8 Mg ha-1 year-1) occupies 98% of Forests, 81% rangelands, 64% barren lands, 60% rainfed lands, 28% urban area and 18% irrigated Lands.

Keywords: Afghanistan, erosion, GIS, Herat, RUSLE

Procedia PDF Downloads 434
1386 Institutional and Economic Determinants of Foreign Direct Investment: Comparative Analysis of Three Clusters of Countries

Authors: Ismatilla Mardanov

Abstract:

There are three types of countries, the first of which is willing to attract foreign direct investment (FDI) in enormous amounts and do whatever it takes to make this happen. Therefore, FDI pours into such countries. In the second cluster of countries, even if the country is suffering tremendously from the shortage of investments, the governments are hesitant to attract investments because they are at the hands of local oligarchs/cartels. Therefore, FDI inflows are moderate to low in such countries. The third type is countries whose companies prefer investing in the most efficient locations globally and are hesitant to invest in the homeland. Sorting countries into such clusters, the present study examines the essential institutions and economic factors that make these countries different. Past literature has discussed various determinants of FDI in all kinds of countries. However, it did not classify countries based on government motivation, institutional setup, and economic factors. A specific approach to each target country is vital for corporate foreign direct investment risk analysis and decisions. The research questions are 1. What specific institutional and economic factors paint the pictures of the three clusters; 2. What specific institutional and economic factors are determinants of FDI; 3. Which of the determinants are endogenous and exogenous variables? 4. How can institutions and economic and political variables impact corporate investment decisions Hypothesis 1: In the first type, country institutions and economic factors will be favorable for FDI. Hypothesis 2: In the second type, even if country economic factors favor FDI, institutions will not. Hypothesis 3: In the third type, even if country institutions favorFDI, economic factors will not favor domestic investments. Therefore, FDI outflows occur in large amounts. Methods: Data come from open sources of the World Bank, the Fraser Institute, the Heritage Foundation, and other reliable sources. The dependent variable is FDI inflows. The independent variables are institutions (economic and political freedom indices) and economic factors (natural, material, and labor resources, government consumption, infrastructure, minimum wage, education, unemployment, tax rates, consumer price index, inflation, and others), the endogeneity or exogeneity of which are tested in the instrumental variable estimation. Political rights and civil liberties are used as instrumental variables. Results indicate that in the first type, both country institutions and economic factors, specifically labor and logistics/infrastructure/energy intensity, are favorable for potential investors. In the second category of countries, the risk of loss of assets is very high due to governmentshijacked by local oligarchs/cartels/special interest groups. In the third category of countries, the local economic factors are unfavorable for domestic investment even if the institutions are well acceptable. Cluster analysis and instrumental variable estimation were used to reveal cause-effect patterns in each of the clusters.

Keywords: foreign direct investment, economy, institutions, instrumental variable estimation

Procedia PDF Downloads 159
1385 Estimation of Exhaust and Non-Exhaust Particulate Matter Emissions’ Share from On-Road Vehicles in Addis Ababa City

Authors: Solomon Neway Jida, Jean-Francois Hetet, Pascal Chesse

Abstract:

Vehicular emission is the key source of air pollution in the urban environment. This includes both fine particles (PM2.5) and coarse particulate matters (PM10). However, particulate matter emissions from road traffic comprise emissions from exhaust tailpipe and emissions due to wear and tear of the vehicle part such as brake, tire and clutch and re-suspension of dust (non-exhaust emission). This study estimates the share of the two sources of pollutant particle emissions from on-roadside vehicles in the Addis Ababa municipality, Ethiopia. To calculate its share, two methods were applied; the exhaust-tailpipe emissions were calculated using the Europeans emission inventory Tier II method and Tier I for the non-exhaust emissions (like vehicle tire wear, brake, and road surface wear). The results show that of the total traffic-related particulate emissions in the city, 63% emitted from vehicle exhaust and the remaining 37% from non-exhaust sources. The annual roads transport exhaust emission shares around 2394 tons of particles from all vehicle categories. However, from the total yearly non-exhaust particulate matter emissions’ contribution, tire and brake wear shared around 65% and 35% emanated by road-surface wear. Furthermore, vehicle tire and brake wear were responsible for annual 584.8 tons of coarse particles (PM10) and 314.4 tons of fine particle matter (PM2.5) emissions in the city whereas surface wear emissions were responsible for around 313.7 tons of PM10 and 169.9 tons of PM2.5 pollutant emissions in the city. This suggests that non-exhaust sources might be as significant as exhaust sources and have a considerable contribution to the impact on air quality.

Keywords: Addis Ababa, automotive emission, emission estimation, particulate matters

Procedia PDF Downloads 130
1384 Weight Estimation Using the K-Means Method in Steelmaking’s Overhead Cranes in Order to Reduce Swing Error

Authors: Seyedamir Makinejadsanij

Abstract:

One of the most important factors in the production of quality steel is to know the exact weight of steel in the steelmaking area. In this study, a calculation method is presented to estimate the exact weight of the melt as well as the objects transported by the overhead crane. Iran Alloy Steel Company's steelmaking area has three 90-ton cranes, which are responsible for transferring the ladles and ladle caps between 34 areas in the melt shop. Each crane is equipped with a Disomat Tersus weighing system that calculates and displays real-time weight. The moving object has a variable weight due to swinging, and the weighing system has an error of about +-5%. This means that when the object is moving by a crane, which weighs about 80 tons, the device (Disomat Tersus system) calculates about 4 tons more or 4 tons less, and this is the biggest problem in calculating a real weight. The k-means algorithm is an unsupervised clustering method that was used here. The best result was obtained by considering 3 centers. Compared to the normal average(one) or two, four, five, and six centers, the best answer is with 3 centers, which is logically due to the elimination of noise above and below the real weight. Every day, the standard weight is moved with working cranes to test and calibrate cranes. The results are shown that the accuracy is about 40 kilos per 60 tons (standard weight). As a result, with this method, the accuracy of moving weight is calculated as 99.95%. K-means is used to calculate the exact mean of objects. The stopping criterion of the algorithm is also the number of 1000 repetitions or not moving the points between the clusters. As a result of the implementation of this system, the crane operator does not stop while moving objects and continues his activity regardless of weight calculations. Also, production speed increased, and human error decreased.

Keywords: k-means, overhead crane, melt weight, weight estimation, swing problem

Procedia PDF Downloads 90
1383 Discrimination and Classification of Vestibular Neuritis Using Combined Fisher and Support Vector Machine Model

Authors: Amine Ben Slama, Aymen Mouelhi, Sondes Manoubi, Chiraz Mbarek, Hedi Trabelsi, Mounir Sayadi, Farhat Fnaiech

Abstract:

Vertigo is a sensation of feeling off balance; the cause of this symptom is very difficult to interpret and needs a complementary exam. Generally, vertigo is caused by an ear problem. Some of the most common causes include: benign paroxysmal positional vertigo (BPPV), Meniere's disease and vestibular neuritis (VN). In clinical practice, different tests of videonystagmographic (VNG) technique are used to detect the presence of vestibular neuritis (VN). The topographical diagnosis of this disease presents a large diversity in its characteristics that confirm a mixture of problems for usual etiological analysis methods. In this study, a vestibular neuritis analysis method is proposed with videonystagmography (VNG) applications using an estimation of pupil movements in the case of an uncontrolled motion to obtain an efficient and reliable diagnosis results. First, an estimation of the pupil displacement vectors using with Hough Transform (HT) is performed to approximate the location of pupil region. Then, temporal and frequency features are computed from the rotation angle variation of the pupil motion. Finally, optimized features are selected using Fisher criterion evaluation for discrimination and classification of the VN disease.Experimental results are analyzed using two categories: normal and pathologic. By classifying the reduced features using the Support Vector Machine (SVM), 94% is achieved as classification accuracy. Compared to recent studies, the proposed expert system is extremely helpful and highly effective to resolve the problem of VNG analysis and provide an accurate diagnostic for medical devices.

Keywords: nystagmus, vestibular neuritis, videonystagmographic system, VNG, Fisher criterion, support vector machine, SVM

Procedia PDF Downloads 136
1382 Energy Consumption Estimation for Hybrid Marine Power Systems: Comparing Modeling Methodologies

Authors: Kamyar Maleki Bagherabadi, Torstein Aarseth Bø, Truls Flatberg, Olve Mo

Abstract:

Hydrogen fuel cells and batteries are one of the promising solutions aligned with carbon emission reduction goals for the marine sector. However, the higher installation and operation costs of hydrogen-based systems compared to conventional diesel gensets raise questions about the appropriate hydrogen tank size, energy, and fuel consumption estimations. Ship designers need methodologies and tools to calculate energy and fuel consumption for different component sizes to facilitate decision-making regarding feasibility and performance for retrofits and design cases. The aim of this work is to compare three alternative modeling approaches for the estimation of energy and fuel consumption with various hydrogen tank sizes, battery capacities, and load-sharing strategies. A fishery vessel is selected as an example, using logged load demand data over a year of operations. The modeled power system consists of a PEM fuel cell, a diesel genset, and a battery. The methodologies used are: first, an energy-based model; second, considering load variations during the time domain with a rule-based Power Management System (PMS); and third, a load variations model and dynamic PMS strategy based on optimization with perfect foresight. The errors and potentials of the methods are discussed, and design sensitivity studies for this case are conducted. The results show that the energy-based method can estimate fuel and energy consumption with acceptable accuracy. However, models that consider time variation of the load provide more realistic estimations of energy and fuel consumption regarding hydrogen tank and battery size, still within low computational time.

Keywords: fuel cell, battery, hydrogen, hybrid power system, power management system

Procedia PDF Downloads 36