Search results for: time series representation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20805

Search results for: time series representation

20205 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network

Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy

Abstract:

The properties of memory representations in artificial neural networks have cognitive implications. Distributed representations that encode instances as a pattern of activity across layers of nodes afford memory compression and enforce the selection of a single point in instance space. These encoding schemes also appear to distort the representational space, as well as trading off the ability to validate that input information is within the bounds of past experience. In contrast, a localist representation which encodes some meaningful information into individual nodes in a network layer affords less memory compression while retaining the integrity of the representational space. This allows the validity of an input to be determined. The validity (or familiarity) of input along with the capacity of localist representation for multiple instance selections affords a memory sampling approach that dynamically balances the bias-variance trade-off. When the input is familiar, bias may be high by referring only to the most similar instances in memory. When the input is less familiar, variance can be increased by referring to more instances that capture a broader range of features. Using this approach in a localist instance memory network, an experiment demonstrates a relationship between representational conflict, generalization performance, and memorization demand. Relatively small sampling ranges produce the best performance on a classic machine learning dataset of visual objects. Combining memory validity with conflict detection produces a reliable confidence judgement that can separate responses with high and low error rates. Confidence can also be used to signal the need for supervisory input. Using this judgement, the need for supervised learning as well as memory encoding can be substantially reduced with only a trivial detriment to classification performance.

Keywords: artificial neural networks, representation, memory, conflict monitoring, confidence

Procedia PDF Downloads 129
20204 The Temporal Implications of Spatial Prospects

Authors: Zhuo Job Chen, Kevin Nute

Abstract:

The work reported examines potential linkages between spatial and temporal prospects, and more specifically, between variations in the spatial depth and foreground obstruction of window views, and observers’ sense of connection to the future. It was found that external views from indoor spaces were strongly associated with a sense of the future, that partially obstructing such a view with foreground objects significantly reduced its association with the future, and replacing it with a pictorial representation of the same scene (with no real actual depth) removed most of its temporal association. A lesser change in the spatial depth of the view, however, had no apparent effect on association with the future. While the role of spatial depth has still to be confirmed, the results suggest that spatial prospects directly affect temporal ones. The word “prospect” typifies the overlapping of the spatial and temporal in most human languages. It originated in classical times as a purely spatial term, but in the 16th century took on the additional temporal implication of an imagined view ahead, of the future. The psychological notion of prospection, then, has its distant origins in a spatial analogue. While it is not yet proven that space directly structures our processing of time at a physiological level, it is generally agreed that it commonly does so conceptually. The mental representation of possible futures has been a central part of human survival as a species (Boyer, 2008; Suddendorf & Corballis, 2007). A sense of the future seems critical not only practically, but also psychologically. It has been suggested, for example, that lack of a positive image of the future may be an important contributing cause of depression (Beck, 1974; Seligman, 2016). Most people in the developed world now spend more than 90% of their lives indoors. So any direct link between external views and temporal prospects could have important implications for both human well-being and building design. We found that the ability to see what lies in front of us spatially was strongly associated with a sense of what lies ahead temporally. Partial obstruction of a view was found to significantly reduce that sense connection to the future. Replacing a view with a flat pictorial representation of the same scene removed almost all of its connection with the future, but changing the spatial depth of a real view appeared to have no significant effect. While foreground obstructions were found to reduce subjects’ sense of connection to the future, they increased their sense of refuge and security. Consistent with Prospect and Refuge theory, an ideal environment, then, would seem to be one in which we can “see without being seen” (Lorenz, 1952), specifically one that conceals us frontally from others, without restricting our own view. It is suggested that these optimal conditions might be translated architecturally as screens, the apertures of which are large enough for a building occupant to see through unobstructed from close by, but small enough to conceal them from the view of someone looking from a distance outside.

Keywords: foreground obstructions, prospection, spatial depth, window views

Procedia PDF Downloads 126
20203 Probing Syntax Information in Word Representations with Deep Metric Learning

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce.

Keywords: deep metric learning, syntax tree probing, natural language processing, word representations

Procedia PDF Downloads 68
20202 Passivization: as Syntactic Argument Decreasing Parameter in Boro

Authors: Ganga Brahma

Abstract:

Boro employs verbs hooked up with morphemes which lead verbs to adjust with their arguments and hence, affecting the whole of sentence structures. This paper is based on few such syntactic parameters which are usually considered as argument decreasing parameters in linguistic works. Passivizing of few transitive clauses which are usually construed from the verbs occurring with certain morphemes and representation in middle constructions are few of such strategies which lead to conceptualizing of decreasing of syntactic arguments from a sentence. This paper focuses on the mentioned linguistic strategies and attempts to describe the linguistic processes as for how these parameters work in languages especially by concentrating on a particular Tibeto-Burman language i.e. Boro. Boro is a Tibeto-Burman language widely spoken in parts of the north-eastern regions of India. It has an agglutinative nature in forming words as well as clauses. There is a morpheme ‘za’ which means ‘to happen, become’ in Boro whose appearances with verb roots denotes an idea of the subject being passivized. Passivization, usually has notions that it is a reversed representation of its active sentence forms in the terms of argument placements. (However, it is not accountably true as passives and actives have some distinct features of their own and independent of one and the other.) This particular work will concentrate on the semantics of passivization at the same time along with its syntactic reality. The verb khɑo meaning ‘to steal’ offers a sense of passivization with the appearance of the morpheme zɑ which means ‘to happen, become’ (e.g Zunu-ɑ lama-ɑo phɯisɑ khɑo-zɑ-bɑi; Junu-NOM road-LOC money steal-PASS-PRES: Junu got her money stolen on the road). The focus, here, is more on the argument placed at the subject position (i.e. Zunu) and the event taken place. The semantics of such construction asks for the agent because without an agent the event could not have taken place. However, the syntactic elements fill the slots of relegated or temporarily deleted agent which, infact, is the actual subject cum agent in its active representation. Due to the event marker ‘zɑ’ in this presentation it affords to reduce one participant from such a situation which in actual is made up of three participants. Hence, the structure of di-transitive construction here reduces to mono-transitive structure. Unlike passivization, middle construction does not allow relegation of the agents. It permanently deletes agents. However, it also focuses on the fore-grounded subject and highlighting on the changed states on the subjects which happens to be the underlying objects of their respective transitive structures (with agents). This work intends to describe how these two parameters which are different at their semantic realization can meet together at a syntactic level in order to create a linguistic parameter that decreases participants from their actual structures which are with more than one participant.

Keywords: argument-decrease, middle-construction, passivization, transitivity-intransitivity

Procedia PDF Downloads 237
20201 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement

Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu

Abstract:

The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.

Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain

Procedia PDF Downloads 124
20200 Emotion Recognition with Occlusions Based on Facial Expression Reconstruction and Weber Local Descriptor

Authors: Jadisha Cornejo, Helio Pedrini

Abstract:

Recognition of emotions based on facial expressions has received increasing attention from the scientific community over the last years. Several fields of applications can benefit from facial emotion recognition, such as behavior prediction, interpersonal relations, human-computer interactions, recommendation systems. In this work, we develop and analyze an emotion recognition framework based on facial expressions robust to occlusions through the Weber Local Descriptor (WLD). Initially, the occluded facial expressions are reconstructed following an extension approach of Robust Principal Component Analysis (RPCA). Then, WLD features are extracted from the facial expression representation, as well as Local Binary Patterns (LBP) and Histogram of Oriented Gradients (HOG). The feature vector space is reduced using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Finally, K-Nearest Neighbor (K-NN) and Support Vector Machine (SVM) classifiers are used to recognize the expressions. Experimental results on three public datasets demonstrated that the WLD representation achieved competitive accuracy rates for occluded and non-occluded facial expressions compared to other approaches available in the literature.

Keywords: emotion recognition, facial expression, occlusion, fiducial landmarks

Procedia PDF Downloads 183
20199 A Survey on Linear Time Invariant Multivariable Positive Real Systems

Authors: Mojtaba Hakimi-Moghaddam

Abstract:

Positive realness as the most important property of driving point impedance of passive electrical networks appears in the control systems stability theory in 1960’s. There are three important subsets of positive real (PR) systems are introduced by researchers, that is, loos-less positive real (LLPR) systems, weakly strictly positive real (WSPR) systems and strictly positive real (SPR) systems. In this paper, definitions, properties, lemmas, and theorems related to family of positive real systems are summarized. Properties in both frequency domain and state space representation of system are explained. Also, several illustrative examples are presented.

Keywords: real rational matrix transfer functions, positive realness property, strictly positive realness property, Hermitian form asymptotic property, pole-zero properties

Procedia PDF Downloads 275
20198 Four-Electron Auger Process for Hollow Ions

Authors: Shahin A. Abdel-Naby, James P. Colgan, Michael S. Pindzola

Abstract:

A time-dependent close-coupling method is developed to calculate a total, double and triple autoionization rates for hollow atomic ions of four-electron systems. This work was motivated by recent observations of the four-electron Auger process in near K-edge photoionization of C+ ions. The time-dependent close-coupled equations are solved using lattice techniques to obtain a discrete representation of radial wave functions and all operators on a four-dimensional grid with uniform spacing. Initial excited states are obtained by relaxation of the Schrodinger equation in imaginary time using a Schmidt orthogonalization method involving interior subshells. The radial wave function grids are partitioned over the cores on a massively parallel computer, which is essential due to the large memory requirements needed to store the coupled-wave functions and the long run times needed to reach the convergence of the ionization process. Total, double, and triple autoionization rates are obtained by the propagation of the time-dependent close-coupled equations in real-time using integration over bound and continuum single-particle states. These states are generated by matrix diagonalization of one-electron Hamiltonians. The total autoionization rates for each L excited state is found to be slightly above the single autoionization rate for the excited configuration using configuration-average distorted-wave theory. As expected, we find the double and triple autoionization rates to be much smaller than the total autoionization rates. Future work can be extended to study electron-impact triple ionization of atoms or ions. The work was supported in part by grants from the American University of Sharjah and the US Department of Energy. Computational work was carried out at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California, USA.

Keywords: hollow atoms, autoionization, auger rates, time-dependent close-coupling method

Procedia PDF Downloads 154
20197 Geovisualization of Human Mobility Patterns in Los Angeles Using Twitter Data

Authors: Linna Li

Abstract:

The capability to move around places is doubtless very important for individuals to maintain good health and social functions. People’s activities in space and time have long been a research topic in behavioral and socio-economic studies, particularly focusing on the highly dynamic urban environment. By analyzing groups of people who share similar activity patterns, many socio-economic and socio-demographic problems and their relationships with individual behavior preferences can be revealed. Los Angeles, known for its large population, ethnic diversity, cultural mixing, and entertainment industry, faces great transportation challenges such as traffic congestion, parking difficulties, and long commuting. Understanding people’s travel behavior and movement patterns in this metropolis sheds light on potential solutions to complex problems regarding urban mobility. This project visualizes people’s trajectories in Greater Los Angeles (L.A.) Area over a period of two months using Twitter data. A Python script was used to collect georeferenced tweets within the Greater L.A. Area including Ventura, San Bernardino, Riverside, Los Angeles, and Orange counties. Information associated with tweets includes text, time, location, and user ID. Information associated with users includes name, the number of followers, etc. Both aggregated and individual activity patterns are demonstrated using various geovisualization techniques. Locations of individual Twitter users were aggregated to create a surface of activity hot spots at different time instants using kernel density estimation, which shows the dynamic flow of people’s movement throughout the metropolis in a twenty-four-hour cycle. In the 3D geovisualization interface, the z-axis indicates time that covers 24 hours, and the x-y plane shows the geographic space of the city. Any two points on the z axis can be selected for displaying activity density surface within a particular time period. In addition, daily trajectories of Twitter users were created using space-time paths that show the continuous movement of individuals throughout the day. When a personal trajectory is overlaid on top of ancillary layers including land use and road networks in 3D visualization, the vivid representation of a realistic view of the urban environment boosts situational awareness of the map reader. A comparison of the same individual’s paths on different days shows some regular patterns on weekdays for some Twitter users, but for some other users, their daily trajectories are more irregular and sporadic. This research makes contributions in two major areas: geovisualization of spatial footprints to understand travel behavior using the big data approach and dynamic representation of activity space in the Greater Los Angeles Area. Unlike traditional travel surveys, social media (e.g., Twitter) provides an inexpensive way of data collection on spatio-temporal footprints. The visualization techniques used in this project are also valuable for analyzing other spatio-temporal data in the exploratory stage, thus leading to informed decisions about generating and testing hypotheses for further investigation. The next step of this research is to separate users into different groups based on gender/ethnic origin and compare their daily trajectory patterns.

Keywords: geovisualization, human mobility pattern, Los Angeles, social media

Procedia PDF Downloads 121
20196 The Impact of CO2 on Learning and Memory Duration of Bombus terrestris

Authors: Gholizadeh F. F., Goldansaz S. H., Bandani A. R., A. Ashouri

Abstract:

This study aimed to investigate the direct effects of increasing carbon dioxide (CO₂) concentration on the behavior of Bombus terrestris bumblebees in laboratory conditions to understand the outcomes of the augmentation of this gas in the Earth's atmosphere on the decline of populations of these pollinators. Learning and memory duration of bumblebees were evaluated as two main behavioral factors in social insects at different concentrations of CO₂. In both series of experiments, the behavior of bees under the influence of CO₂ changes compared to the control. Insects kept at high CO₂ concentrations learn less than control bees and spend more time identifying and navigating to discover their food source and access time (nectar consumption). These results showed that bees maybe lose some of their food resources due to poorer identification and act weaker on searching due to less memory and avoiding the enemy in higher CO₂ concentration. Therefore, CO₂ increasing concentration can be one of the reasons for the decline of these pollinating insects' populations by negatively affecting their fitness.

Keywords: Bombus terrestris, CO₂, learning, memory duration

Procedia PDF Downloads 180
20195 From Name-Calling to Insidious Rhetoric: Construction and Evolution of the Transgender Imagery in News Discourse, 1953-2016

Authors: Hsiao-Yung Wang

Abstract:

This essay aims to examine how the transgender imagery has been constructed in the Taiwanese news media and its evolution from 1953 to 2016. It also explores the discourse patterns and rhetorical strategies in the transgender-related issues which contributed to levels of evaluation in forming ‘social deviance.’ Samples for analysis were selected from mainstream newspapers, including China Times, United Daily and Apple Daily. The time frame for sample selection is from August 1953 (when the first transgender case was reported in Taiwan) to June 2016. To enhance understanding of media representation as nominalistic-based, the author refers to the representative of critical rhetoric Raymie McKerrow for his study on remembrance and forgetfulness in public discourse (especially in his model of ‘critique of domination’); thereby categorizing the 64 years of transgender discourse into five periods: (1) transgender as ‘intersex’ of surgical-reparative medical treatment; (2) transgender as ‘freak gender-bender’ with criminal behaviors; (3) transgender as ‘ladyboy’ (‘katoey in a Thai term) of bar girls or sex workers; (4) transgender as ‘cross dresser’ of transvestite performance; and (5) transgender as ‘life-style or human right’ of spontaneous gender identification. Based on the research findings, this essay argues that the characterization of transgender reporting as a site for the production of compulsory sexism and gender stereotype by the specific forms of name-calling. Besides, the evolution of word-image addressing to transgender issues also pinpoints media as a reflection of fashion of the day. While the transgender imagery might be crystallized as ‘still social problems’ or ‘gender transgression’ in insidious rhetoric; and while the so-called ‘phobia’ persistently embodies in media discourse to exercise name-calling in an ambiguous (rather than in a bullying) way or under the cover of humanist-liberalist rationales, these emergent rhetorical dilemma should be resolved without any delay.

Keywords: critical rhetoric, media representation, McKerrow, nominalistic, social deviance, transgender

Procedia PDF Downloads 313
20194 Forming Form, Motivation and Their Biolinguistic Hypothesis: The Case of Consonant Iconicity in Tashelhiyt Amazigh and English

Authors: Noury Bakrim

Abstract:

When dealing with motivation/arbitrariness, forming form (Forma Formans) and morphodynamics are to be grasped as relevant implications of enunciation/enactment, schematization within the specificity of language as sound/meaning articulation. Thus, the fact that a language is a form does not contradict stasis/dynamic enunciation (reflexivity vs double articulation). Moreover, some languages exemplify the role of the forming form, uttering, and schematization (roots in Semitic languages, the Chinese case). Beyond the evolutionary biosemiotic process (form/substance bifurcation, the split between realization/representation), non-isomorphism/asymmetry between linguistic form/norm and linguistic realization (phonetics for instance) opens up a new horizon problematizing the role of Brain – sensorimotor contribution in the continuous forming form. Therefore, we hypothesize biotization as both process/trace co-constructing motivation/forming form. Henceforth, referring to our findings concerning distribution and motivation patterns within Berber written texts (pulse based obstruents and nasal-lateral levels in poetry) and oral storytelling (consonant intensity clustering in quantitative and semantic/prosodic motivation), we understand consonant clustering, motivation and schematization as a complex phenomenon partaking in patterns of oral/written iconic prosody and reflexive metalinguistic representation opening the stable form. We focus our inquiry on both Amazigh and English clusters (/spl/, /spr/) and iconic consonant iteration in [gnunnuy] (to roll/tumble), [smummuy] (to moan sadly or crankily). For instance, the syllabic structures of /splaeʃ/ and /splaet/ imply an anamorphic representation of the state of the world: splash, impact on aquatic surfaces/splat impact on the ground. The pair has stridency and distribution as distinctive features which specify its phonetic realization (and a part of its meaning) /ʃ/ is [+ strident] and /t/ is [+ distributed] on the vocal tract. Schematization is then a process relating both physiology/code as an arthron vocal/bodily, vocal/practical shaping of the motor-articulatory system, leading to syntactic/semantic thematization (agent/patient roles in /spl/, /sm/ and other clusters or the tense uvular /qq/ at the initial position in Berber). Furthermore, the productivity of serial syllable sequencing in Berber points out different expressivity forms. We postulate two Components of motivated formalization: i) the process of memory paradigmatization relating to sequence modeling under sensorimotor/verbal specific categories (production/perception), ii) the process of phonotactic selection - prosodic unconscious/subconscious distribution by virtue of iconicity. Basing on multiple tests including a questionnaire, phonotactic/visual recognition and oral/written reproduction, we aim at patterning/conceptualizing consonant schematization and motivation among EFL and Amazigh (Berber) learners and speakers integrating biolinguistic hypotheses.

Keywords: consonant motivation and prosody, language and order of life, anamorphic representation, represented representation, biotization, sensori-motor and brain representation, form, formalization and schematization

Procedia PDF Downloads 146
20193 Approximation of Periodic Functions Belonging to Lipschitz Classes by Product Matrix Means of Fourier Series

Authors: Smita Sonker, Uaday Singh

Abstract:

Various investigators have determined the degree of approximation of functions belonging to the classes W(L r , ξ(t)), Lip(ξ(t), r), Lip(α, r), and Lipα using different summability methods with monotonocity conditions. Recently, Lal has determined the degree of approximation of the functions belonging to Lipα and W(L r , ξ(t)) classes by using Ces`aro-N¨orlund (C 1 .Np)- summability with non-increasing weights {pn}. In this paper, we shall determine the degree of approximation of 2π - periodic functions f belonging to the function classes Lipα and W(L r , ξ(t)) by C 1 .T - means of Fourier series of f. Our theorems generalize the results of Lal and we also improve these results in the light off. From our results, we also derive some corollaries.

Keywords: Lipschitz classes, product matrix operator, signals, trigonometric Fourier approximation

Procedia PDF Downloads 478
20192 Continuous Land Cover Change Detection in Subtropical Thicket Ecosystems

Authors: Craig Mahlasi

Abstract:

The Subtropical Thicket Biome has been in peril of transformation. Estimates indicate that as much as 63% of the Subtropical Thicket Biome is severely degraded. Agricultural expansion is the main driver of transformation. While several studies have sought to document and map the long term transformations, there is a lack of information on disturbance events that allow for timely intervention by authorities. Furthermore, tools that seek to perform continuous land cover change detection are often developed for forests and thus tend to perform poorly in thicket ecosystems. This study investigates the utility of Earth Observation data for continuous land cover change detection in Subtropical Thicket ecosystems. Temporal Neural Networks are implemented on a time series of Sentinel-2 observations. The model obtained 0.93 accuracy, a recall score of 0.93, and a precision score of 0.91 in detecting Thicket disturbances. The study demonstrates the potential of continuous land cover change in Subtropical Thicket ecosystems.

Keywords: remote sensing, land cover change detection, subtropical thickets, near-real time

Procedia PDF Downloads 164
20191 Let’s Make Waves – Changing the Landscape for the Solent’s Film Industry

Authors: Roy Hanney

Abstract:

This research study aims to develop an evidential basis to inform strategic development of the film industry in the Solent (south central) region of the UK. The density of the creative industries around the region is driving the growth of jobs. Yet, film production in particular, appears to struggle with field configuration, lacks ecological cohesion, and suffers from underdeveloped ecosystems when compared to other areas bordering the region. Though thriving, a lack of coordinated leadership results in the continued reproduction of an ill-configured, constricted and socio-economically filtered workforce. One that struggles to seize strategic opportunities arising as a consequence of the ongoing investment in UK film production around the west of London. Taking a participatory approach, the study seeks to avoid the universalism of place marketing and focus on the situatedness of the region and its specific cultural, social, and economic contexts. The staging of a series of high profile networking events provided a much needed field configuring activity and enabled the capture of voices of those currently working in the sector. It will also provided the opportunity for an exploratory network mapping of the regional creative industries as a value exchange ecosystem. It is understood that a focus on production is not in itself a solution to the challenges faced in the region. There is a need to address issues of access as a counterbalance to skewed representation among the creative workforces thus the study also aims to report on opportunities for embedding diversity and inclusion in any strategic solutions.

Keywords: creative, industries, ecosystem, ecology

Procedia PDF Downloads 99
20190 Statistical Models and Time Series Forecasting on Crime Data in Nepal

Authors: Dila Ram Bhandari

Abstract:

Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.

Keywords: time series analysis, forecasting, ARIMA, machine learning

Procedia PDF Downloads 166
20189 Unified Power Quality Conditioner Presentation and Dimensioning

Authors: Abderrahmane Kechich, Othmane Abdelkhalek

Abstract:

Static converters behave as nonlinear loads that inject harmonic currents into the grid and increase the consumption of the inactive power. On the other hand, the increased use of sensitive equipment requires the application of sinusoidal voltages. As a result, the electrical power quality control has become a major concern in the field of power electronics. In this context, the active power conditioner (UPQC) was developed. It combines both serial and parallel structures; the series filter can protect sensitive loads and compensate for voltage disturbances such as voltage harmonics, voltage dips or flicker when the shunt filter compensates for current disturbances such as current harmonics, reactive currents and imbalance. This double feature is that it is one of the most appropriate devices. Calculating parameters is an important step and in the same time it’s not easy for that reason several researchers based on trial and error method for calculating parameters but this method is not easy for beginners researchers especially what about the controller’s parameters, for that reason this paper gives a mathematical way to calculate of almost all of UPQC parameters away from trial and error method. This paper gives also a new approach for calculating of PI regulators parameters for purpose to have a stable UPQC able to compensate for disturbances acting on the waveform of line voltage and load current in order to improve the electrical power quality.

Keywords: UPQC, Shunt active filer, series active filer, PI controller, PWM control, dual-loop control

Procedia PDF Downloads 403
20188 Inverse Heat Conduction Analysis of Cooling on Run-Out Tables

Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi

Abstract:

In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.

Keywords: inverse analysis, function specification, neural net works, particle swarm, run-out table

Procedia PDF Downloads 241
20187 Fossil Health: Causes and Consequences of Hegemonic Health Paradigms

Authors: Laila Vivas

Abstract:

Fossil Health is proposed as a value-concept to describe the hegemonic health paradigms that underpin health enactment. Such representation is justified by Foucaldian and related ideas on biopower and biosocialities, calling for the politicization of health and signalling the importance of narratives. This approach, hence, enables contemplating health paradigms as reflexive or co-constitutive of health itself or, in other words, conceiving health as a verb. Fossil health is a symbolic representation, influenced by Andreas Malm’s concept of fossil capitalism, that integrates environment and health as non-dichotomic areas. Fossil Health sustains that current notions of human and non-human health revolve around fossil fuel dependencies. Moreover, addressing disequilibria from established health ideals involves fossil-fixes. Fossil Health, therefore, represents causes and consequences of a health conception that has the agency to contribute to the functioning of a particular structural eco-social model. Moreover, within current capitalist relations, Fossil Health expands its meaning to cover not only fossil implications but also other dominant paradigms of the capitalist system that are (re)produced through health paradigms, such as the burgeoning of technoscience and biomedicalization, privatization of health, expertization of health, or the imposing of standards of uniformity. Overall, Fossil Health is a comprehensive approach to environment and health, where understanding hegemonic health paradigms means understanding our (human-non-human) nature paradigms and the structuring effect these narratives convey.

Keywords: fossil health, environment, paradigm, capitalism

Procedia PDF Downloads 124
20186 A Decadal Flood Assessment Using Time-Series Satellite Data in Cambodia

Authors: Nguyen-Thanh Son

Abstract:

Flood is among the most frequent and costliest natural hazards. The flood disasters especially affect the poor people in rural areas, who are heavily dependent on agriculture and have lower incomes. Cambodia is identified as one of the most climate-vulnerable countries in the world, ranked 13th out of 181 countries most affected by the impacts of climate change. Flood monitoring is thus a strategic priority at national and regional levels because policymakers need reliable spatial and temporal information on flood-prone areas to form successful monitoring programs to reduce possible impacts on the country’s economy and people’s likelihood. This study aims to develop methods for flood mapping and assessment from MODIS data in Cambodia. We processed the data for the period from 2000 to 2017, following three main steps: (1) data pre-processing to construct smooth time-series vegetation and water surface indices, (2) delineation of flood-prone areas, and (3) accuracy assessment. The results of flood mapping were verified with the ground reference data, indicating the overall accuracy of 88.7% and a Kappa coefficient of 0.77, respectively. These results were reaffirmed by close agreement between the flood-mapping area and ground reference data, with the correlation coefficient of determination (R²) of 0.94. The seasonally flooded areas observed for 2010, 2015, and 2016 were remarkably smaller than other years, mainly attributed to the El Niño weather phenomenon exacerbated by impacts of climate change. Eventually, although several sources potentially lowered the mapping accuracy of flood-prone areas, including image cloud contamination, mixed-pixel issues, and low-resolution bias between the mapping results and ground reference data, our methods indicated the satisfactory results for delineating spatiotemporal evolutions of floods. The results in the form of quantitative information on spatiotemporal flood distributions could be beneficial to policymakers in evaluating their management strategies for mitigating the negative effects of floods on agriculture and people’s likelihood in the country.

Keywords: MODIS, flood, mapping, Cambodia

Procedia PDF Downloads 128
20185 Simulation of Photovoltaic Array for Specified Ratings of Converter

Authors: Smita Pareek, Ratna Dahiya

Abstract:

The power generated by solar photovoltaic (PV) module depends on surrounding irradiance, temperature, shading conditions, and shading pattern. This paper presents a simulation of photovoltaic module using Matlab/Simulink. PV Array is also simulated by series and parallel connections of modules and their characteristics curves are given. Further PV module topology/configuration are proposed for 5.5kW inverter available in the literature. Shading of a PV array either complete or partial can have a significant impact on its power output and energy yield; therefore, the simulated model characteristics curves (I-V and P-V) are drawn for uniform shading conditions (USC) and then output power, voltage and current are calculated for variation in insolation for shading conditions. Additionally the characteristics curves are also given for a predetermined shadowing condition.

Keywords: array, series, parallel, photovoltaic, partial shading

Procedia PDF Downloads 566
20184 Consumption of Fat Burners Leads to Acute Liver Failure: A Systematic Review protocol

Authors: Anjana Aggarwal, Sheilja Walia

Abstract:

Prevalence of obesity and overweight is increasing due to sedentary lifestyles and busy schedules of people that spend less time on physical exercise. To reduce weight, people are finding easier and more convenient ways. The easiest solution is the use of dietary supplements and fat burners. These are products that decrease body weight by increasing the basal metabolic rate. Various reports have been published on the consumption of fat burners leading to heart palpitations, seizures, anxiety, depression, psychosis, bradycardia, insomnia, muscle contractions, hepatotoxicity, and even liver failure. Case reports and series are reporting that the ingredients present in the fat burners caused acute liver failure (ALF) and hepatic toxicity in many cases. Another contributing factor is the absence of regulations from the Food and Drug Administration on these products, leading to increased consumption and a higher risk of liver diseases among the population. This systematic review aims to attain a better understanding of the dietary supplements used globally to reduce weight and document the case reports/series of acute liver failure caused by the consumption of fat burners. Electronic databases like PubMed, Cochrane, Google Scholar, etc., will be systematically searched for relevant articles. Various websites of dietary products and brands that sell such supplements, Journals of Hepatology, National and international projects launched for ALF, and their reports, along with the review of grey literature, will also be done to get a better understanding of the topic. After discussing with the co-author, the selection and screening of the articles will be performed by the author. The studies will be selected based on the predefined inclusion and exclusion criteria. The case reports and case series that will be included in the final list of the studies will be assessed for methodological quality using the CARE guidelines. The results from this study will provide insights and a better understanding of fat burners. Since the supplements are easily available in the market without any restrictions on their sale, people are unaware of their adverse effects. The consumption of these supplements causes acute liver failure. Thus, this review will provide a platform for future larger studies to be conducted.

Keywords: acute liver failure, dietary supplements, fat burners, weight loss supplements

Procedia PDF Downloads 85
20183 Confidence Envelopes for Parametric Model Selection Inference and Post-Model Selection Inference

Authors: I. M. L. Nadeesha Jayaweera, Adao Alex Trindade

Abstract:

In choosing a candidate model in likelihood-based modeling via an information criterion, the practitioner is often faced with the difficult task of deciding just how far up the ranked list to look. Motivated by this pragmatic necessity, we construct an uncertainty band for a generalized (model selection) information criterion (GIC), defined as a criterion for which the limit in probability is identical to that of the normalized log-likelihood. This includes common special cases such as AIC & BIC. The method starts from the asymptotic normality of the GIC for the joint distribution of the candidate models in an independent and identically distributed (IID) data framework and proceeds by deriving the (asymptotically) exact distribution of the minimum. The calculation of an upper quantile for its distribution then involves the computation of multivariate Gaussian integrals, which is amenable to efficient implementation via the R package "mvtnorm". The performance of the methodology is tested on simulated data by checking the coverage probability of nominal upper quantiles and compared to the bootstrap. Both methods give coverages close to nominal for large samples, but the bootstrap is two orders of magnitude slower. The methodology is subsequently extended to two other commonly used model structures: regression and time series. In the regression case, we derive the corresponding asymptotically exact distribution of the minimum GIC invoking Lindeberg-Feller type conditions for triangular arrays and are thus able to similarly calculate upper quantiles for its distribution via multivariate Gaussian integration. The bootstrap once again provides a default competing procedure, and we find that similar comparison performance metrics hold as for the IID case. The time series case is complicated by far more intricate asymptotic regime for the joint distribution of the model GIC statistics. Under a Gaussian likelihood, the default in most packages, one needs to derive the limiting distribution of a normalized quadratic form for a realization from a stationary series. Under conditions on the process satisfied by ARMA models, a multivariate normal limit is once again achieved. The bootstrap can, however, be employed for its computation, whence we are once again in the multivariate Gaussian integration paradigm for upper quantile evaluation. Comparisons of this bootstrap-aided semi-exact method with the full-blown bootstrap once again reveal a similar performance but faster computation speeds. One of the most difficult problems in contemporary statistical methodological research is to be able to account for the extra variability introduced by model selection uncertainty, the so-called post-model selection inference (PMSI). We explore ways in which the GIC uncertainty band can be inverted to make inferences on the parameters. This is being attempted in the IID case by pivoting the CDF of the asymptotically exact distribution of the minimum GIC. For inference one parameter at a time and a small number of candidate models, this works well, whence the attained PMSI confidence intervals are wider than the MLE-based Wald, as expected.

Keywords: model selection inference, generalized information criteria, post model selection, Asymptotic Theory

Procedia PDF Downloads 90
20182 3D Model Completion Based on Similarity Search with Slim-Tree

Authors: Alexis Aldo Mendoza Villarroel, Ademir Clemente Villena Zevallos, Cristian Jose Lopez Del Alamo

Abstract:

With the advancement of technology it is now possible to scan entire objects and obtain their digital representation by using point clouds or polygon meshes. However, some objects may be broken or have missing parts; thus, several methods focused on this problem have been proposed based on Geometric Deep Learning, such as GCNN, ACNN, PointNet, among others. In this article an approach from a different paradigm is proposed, using metric data structures to index global descriptors in the spectral domain and allow the recovery of a set of similar models in polynomial time; to later use the Iterative Close Point algorithm and recover the parts of the incomplete model using the geometry and topology of the model with less Hausdorff distance.

Keywords: 3D reconstruction method, point cloud completion, shape completion, similarity search

Procedia PDF Downloads 122
20181 Research of Interaction between Layers of Compressed Composite Columns

Authors: Daumantas Zidanavicius

Abstract:

In order to investigate the bond between concrete and steel in the circular steel tube column filled with concrete, the 7 series of specimens were tested with the same geometrical parameters but different concrete properties. Two types of specimens were chosen. For the first type, the expansive additives to the concrete mixture were taken to increase internal forces. And for the second type, mechanical components were used. All 7 series of the short columns were modeled by FEM and tested experimentally. In the work, big attention was taken to the bond-slip models between steel and concrete. Results show that additives to concrete let increase the bond strength up to two times and the mechanical anchorage –up to 6 times compared to control specimens without additives and anchorage.

Keywords: concrete filled steel tube, push-out test, bond slip relationship, bond stress distribution

Procedia PDF Downloads 124
20180 Dalit Struggle in Nepal: From Invoking Dalit to Becoming Part of the Nepalese Power

Authors: Mom Bishwakarma

Abstract:

This research traces out how the Dalit in Nepal evolved from the early 1950s to the current day, from invoking Dalit against caste discrimination through to the asserting proportional representation in state structures. The research focused most closely on the formation of Dalit association and resistance, as well as on the different struggles throughout this period. It then discusses the expansion of Dalit movement in NGOs, its internationalization and responses. The research sees that Dalit movement has been influenced by its network with the national and international civil rights movement particularly Dalit movement in India and argues that Dalit movement in Nepal have in many ways, challenged the orthodox based caste stratification for Dalit equality and justice. It can be seen that at the same time as Dalit participation was increasing, divisions by caste line also emerged. Rather reshaping the power structures, Dalit movement encircled into division and contentious politics.

Keywords: Dalit, equality, justice, movements, Nepal

Procedia PDF Downloads 228
20179 The Representation of Migrants in the UK and Saudi Arabia Press: A Cross-Linguistic Discourse Analysis Study

Authors: Eman Alatawi

Abstract:

The world is currently experiencing an upsurge in the number of international migrants, which has reached 281 million worldwide; in particular, both the UK and Saudi Arabia have recently been faced with an unprecedented number of immigrants. As a result, the media in these two countries is constantly posting news about the issue, and newspapers, in particular, play a vital role in shaping the public’s view of immigration issues. Because the media is an influential tool in society, it has the ability to construct a specific image of migrants and influence public opinion concerning immigrant groups. However, most of the existing studies have addressed the plight of migrants in the UK, Europe, and the US, and few have considered the Middle East; specifically, there is a pressing need for studies that focus on the press in Saudi Arabia, which is one of the main countries that is experiencing immigration at a tremendous rate. This paper employs critical discourse analysis (CDA) to examine the depiction of migrants in the British and Saudi Arabian media in order to explore the involvement of three linguistic features in the media’s representation of migrant-related topics. These linguistic features are the names, metaphors, and collocations that the press in the UK and in Saudi Arabia uses to describe migrants; the impact of these depictions is also considered. This comparative study could create a better understanding of how the Saudi Arabian press presents the topic of migrants and immigration, which will assist in extending the understanding of migration discourses beyond an Anglo-centric viewpoint. The main finding of this study was that both British and Saudi Arabian newspapers tended to represent migrants’ issues by painting migrants in a negative light through the use of negative references or names, metaphors, and collocations; furthermore, the media’s negative stereotyping of migrants was found to be consistent, which could have an influence on the public’s opinion of these minority groups. Such observations show that the issue is not as simple as individuals, press systems, or political affiliations.

Keywords: representation, migrants, the UK press, Saudi Arabia press, cross-linguistic, discourse analysis

Procedia PDF Downloads 81
20178 Smartphone-Based Human Activity Recognition by Machine Learning Methods

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.

Keywords: smart sensors, human activity recognition, artificial intelligence, SVM

Procedia PDF Downloads 144
20177 Flow Transformation: An Investigation on Theoretical Aspects and Numerical Computation

Authors: Abhisek Sarkar, Abhimanyu Gaur

Abstract:

In this report we have discussed the theoretical aspects of the flow transformation, occurring through a series of bifurcations. The parameters and their continuous diversion, the intermittent bursts in the transition zone, variation of velocity and pressure with time, effect of roughness in turbulent zone, and changes in friction factor and head loss coefficient as a function of Reynolds number for a transverse flow across a cylinder have been discussed. An analysis of the variation in the wake length with Reynolds number was done in FORTRAN.

Keywords: bifurcation, attractor, intermittence, energy cascade, energy spectra, vortex stretching

Procedia PDF Downloads 400
20176 Exposing Latent Fingermarks on Problematic Metal Surfaces Using Time of Flight Secondary Ion Mass Spectroscopy

Authors: Tshaiya Devi Thandauthapani, Adam J. Reeve, Adam S. Long, Ian J. Turner, James S. Sharp

Abstract:

Fingermarks are a crucial form of evidence for identifying a person at a crime scene. However, visualising latent (hidden) fingermarks can be difficult, and the correct choice of techniques is essential to develop and preserve any fingermarks that might be present. Knives, firearms and other metal weapons have proven to be challenging substrates (stainless steel in particular) from which to reliably obtain fingermarks. In this study, time of flight secondary ion mass spectroscopy (ToF-SIMS) was used to image fingermarks on metal surfaces. This technique was compared to a conventional superglue based fuming technique that was accompanied by a series of contrast enhancing dyes (basic yellow 40 (BY40), crystal violet (CV) and Sudan black (SB)) on three different metal surfaces. The conventional techniques showed little to no evidence of fingermarks being present on the metal surfaces after a few days. However, ToF-SIMS images revealed fingermarks on the same and similar substrates with an exceptional level of detail demonstrating clear ridge definition as well as detail about sweat pore position and shape, that persist for over 26 days after deposition when the samples were stored under ambient conditions.

Keywords: conventional techniques, latent fingermarks, metal substrates, time of flight secondary ion mass spectroscopy

Procedia PDF Downloads 164