Search results for: safe operation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4433

Search results for: safe operation

3833 Comparative Analysis of Simulation-Based and Mixed-Integer Linear Programming Approaches for Optimizing Building Modernization Pathways Towards Decarbonization

Authors: Nico Fuchs, Fabian Wüllhorst, Laura Maier, Dirk Müller

Abstract:

The decarbonization of building stocks necessitates the modernization of existing buildings. Key measures for this include reducing energy demands through insulation of the building envelope, replacing heat generators, and installing solar systems. Given limited financial resources, it is impractical to modernize all buildings in a portfolio simultaneously; instead, prioritization of buildings and modernization measures for a given planning horizon is essential. Optimization models for modernization pathways can assist portfolio managers in this prioritization. However, modeling and solving these large-scale optimization problems, often represented as mixed-integer problems (MIP), necessitates simplifying the operation of building energy systems particularly with respect to system dynamics and transient behavior. This raises the question of which level of simplification remains sufficient to accurately account for realistic costs and emissions of building energy systems, ensuring a fair comparison of different modernization measures. This study addresses this issue by comparing a two-stage simulation-based optimization approach with a single-stage mathematical optimization in a mixed-integer linear programming (MILP) formulation. The simulation-based approach serves as a benchmark for realistic energy system operation but requires a restriction of the solution space to discrete choices of modernization measures, such as the sizing of heating systems. After calculating the operation of different energy systems in terms of the resulting final energy demands in simulation models on a first stage, the results serve as input for a second stage MILP optimization, where the design of each building in the portfolio is optimized. In contrast to the simulation-based approach, the MILP-based approach can capture a broader variety of modernization measures due to the efficiency of MILP solvers but necessitates simplifying the building energy system operation. Both approaches are employed to determine the cost-optimal design and dimensioning of several buildings in a portfolio to meet climate targets within limited yearly budgets, resulting in a modernization pathway for the entire portfolio. The comparison reveals that the MILP formulation successfully captures design decisions of building energy systems, such as the selection of heating systems and the modernization of building envelopes. However, the results regarding the optimal dimensioning of heating technologies differ from the results of the two-stage simulation-based approach, as the MILP model tends to overestimate operational efficiency, highlighting the limitations of the MILP approach.

Keywords: building energy system optimization, model accuracy in optimization, modernization pathways, building stock decarbonization

Procedia PDF Downloads 34
3832 The Implementation of Corporate Social Responsibility to Contribute the Isolated District and the Drop behind District to Overcome the Poverty, Study Cases: PT. Kaltim Prima Coal (KPC) Sanggata, East Borneo, Indonesia

Authors: Sri Suryaningsum

Abstract:

The achievement ‘Best Practice Model’ holds by the government on behalf of the success implementation corporate social responsibility program that held on PT. Kaltim Prima Coal which had operation located in the isolated district in Sanggata, it could be the reference for the other companies to improve the social welfare in surrounding area, especially for the companies that have operated in the isolated area in Indonesia. The rule of Kaltim Prima Coal as the catalyst in the development progress to push up the independence of district especially for the district which has located in surrounding mining operation from village level to the regency level, those programs had written in the 7 field program in Corporate Social Responsibility, it was doing by stakeholders. The stakeholders are village government, sub-district government, Regency and citizen. One of the best programs that implement at PT. Kaltim Prima Coal is Regarding Resettlement that was completed based on Asian Development Bank Resettlement Best Practice and International Financial Corporation Resettlement Action Plan. This program contributed on the resettlement residences to develop the isolated and the neglected district.

Keywords: CSR, isolated, neglected, poverty, mining industry

Procedia PDF Downloads 247
3831 Small and Medium Enterprises Owner-Managers/Entrepreneurs and Their Risk Perception in Songkhla Province, Thailand

Authors: Patraporn Kaewkhanitarak, Weerawan Marangkun

Abstract:

The objective of this study was to explore the establishment and to investigate the relationship between the gender (male or female) of SME owner-managers/ entrepreneurs and their risk perception in business activity. The study examines the data by interviewing 76 SME owner-managers/entrepreneurs’ responses (37 males, 39 females) in manufacturing, finance, human resources and marketing sector in the economic regions of Songkhla province, Thailand. This study found that four tools which were operation, cash flow, staff, and new market were perceived by the SME owner-managers/entrepreneurs at high level. However, male and female SME owner-managers/entrepreneurs perceived some factors such as the age of SME owner-managers/entrepreneurs, the duration of firm operation, type of firm, and type of business without significant differences. In contrast, the gender affected the risk perception about increasing cost, fierce competition, leapfrog development of firm, substandard staff, namely that male and female perceived these factors with significant differences. According to the research, SME owner-managers/entrepreneurs should develop their risk management competency to deal with the risk efficiently. Secondly, SME firms should gather into groups. Furthermore, it was shown that the five key tools used to manage these risky situations were the use of managerial competencies and clustering.

Keywords: risk perception, owner-managers/entrepreneurs, SME, Songkhla, Thailand

Procedia PDF Downloads 435
3830 Design of a Lumbar Interspinous Process Fixation Device for Minimizing Soft Tissue Removal and Operation Time

Authors: Minhyuk Heo, Jihwan Yun, Seonghun Park

Abstract:

It has been reported that intervertebral fusion surgery, which removes most of the ligaments and muscles of the spine, increases the degenerative disease in adjacent spinal segments. Therefore, it is required to develop a lumbar interspinous process fixation device that minimizes the risks and side effects from the surgery. The objective of the current study is to design an interspinous process fixation device with simple structures in order to minimize soft tissue removal and operation time during intervertebral fusion surgery. For the design concepts of a lumbar fixation device, the principle of the ratchet was first applied on the joining parts of the device in order to shorten the operation time. The coil spring structure was selected for connecting parts between the spinous processes so that a normal range of motion in spinal segments is preserved and degenerative spinal diseases are not developed in the adjacent spinal segments. The stiffness of the spring was determined not to interrupt the motion of a lumbar spine. The designed value of the spring stiffness allows the upper part of the spring to move ~10° which is higher than the range of flexion and extension for normal lumbar spine (6°-8°), when a moment of 10Nm is applied on the upper face of L1. A finite element (FE) model composed of L1 to L5 lumbar spines was generated to verify the mechanical integrity and the dynamic stability of the designed lumbar fixation device and to further optimize the lumbar fixation device. The FE model generated above produced the same pressure value on intervertebral disc and dynamic behavior as the normal intact model reported in the literature. The consistent results from this comparison validates the accuracy in the modeling of the current FE model. Currently, we are trying to generate an abnormal model with defects in one or more components of the normal FE model above. Then, the mechanical integrity and the dynamic stability of the designed lumbar fixation device will be analyzed after being installed in the abnormal model and then the lumbar fixation device will be further optimized.

Keywords: lumbar interspinous process fixation device, finite element method, lumbar spine, kinematics

Procedia PDF Downloads 228
3829 Comparison of Sourcing Process in Supply Chain Operation References Model and Business Information Systems

Authors: Batuhan Kocaoglu

Abstract:

Although using powerful systems like ERP (Enterprise Resource Planning), companies still cannot benchmark their processes and measure their process performance easily based on predefined SCOR (Supply Chain Operation References) terms. The purpose of this research is to identify common and corresponding processes to present a conceptual model to model and measure the purchasing process of an organization. The main steps for the research study are: Literature review related to 'procure to pay' process in ERP system; Literature review related to 'sourcing' process in SCOR model; To develop a conceptual model integrating 'sourcing' of SCOR model and 'procure to pay' of ERP model. In this study, we examined the similarities and differences between these two models. The proposed framework is based on the assumptions that are drawn from (1) the body of literature, (2) the authors’ experience by working in the field of enterprise and logistics information systems. The modeling framework provides a structured and systematic way to model and decompose necessary information from conceptual representation to process element specification. This conceptual model will help the organizations to make quality purchasing system measurement instruments and tools. And offered adaptation issues for ERP systems and SCOR model will provide a more benchmarkable and worldwide standard business process.

Keywords: SCOR, ERP, procure to pay, sourcing, reference model

Procedia PDF Downloads 362
3828 Empirical Investigation of Gender Differences in Information Processing Style, Tinkering, and Self-Efficacy for Robot Tele-Operation

Authors: Dilruba Showkat, Cindy Grimm

Abstract:

As robots become more ubiquitous, it is significant for us to understand how different groups of people respond to possible ways of interacting with the robot. In this study, we focused on gender differences while users were tele-operating a humanoid robot that was physically co-located with them. We investigated three factors during the human-robot interaction (1) information processing strategy (2) self-efficacy and (3) tinkering or exploratory behavior. The experimental results show that the information on how to use the robot was processed comprehensively by the female participants whereas males processed them selectively (p < 0.001). Males were more confident when using the robot than females (p = 0.0002). Males tinkered more with the robot than females (p = 0.0021). We found that tinkering was positively correlated (p = 0.0068) with task success and negatively correlated (p = 0.0032) with task completion time. Tinkering might have resulted in greater task success and lower task completion time for males. Findings from this research can be used for making design decisions for robots and open new research directions. Our results show the importance of accounting for gender differences when developing interfaces for interacting with robots and open new research directions.

Keywords: humanoid robots, tele-operation, gender differences, human-robot interaction

Procedia PDF Downloads 167
3827 Preventing Discharge to No Fixed Address-Youth (NFA-Y)

Authors: Cheryl Forchuk, Sandra Fisman, Steve Cordes, Dan Catunto, Katherine Krakowski, Melissa Jeffrey, John D’Oria

Abstract:

The discharge of youth aged 16-25 from hospital into homelessness is a prevalent issue despite research indicating social, safety, health and economic detriments on both the individual and community. Lack of stable housing for youth discharged into homelessness results in long-term consequences, including exacerbation of health problems and costly health care service use and hospital readmission. People experiencing homelessness are four times more likely to be readmitted within one month of discharge and hospitals must spend $2,559 more per client. Finding safe housing for these individuals is imperative to their recovery and transition back to the community. People discharged from hospital to homelessness experience challenges, including poor health outcomes and increased hospital readmissions. Youth are the fastest-growing subgroup of people experiencing homelessness in Canada. The needs of youth are unique and include supports related to education, employment opportunities, and age-related service barriers. This study aims to identify the needs of youth at risk of homelessness by evaluating the efficacy of the “Preventing Discharge to No Fixed Address – Youth” (NFA-Y) program, which aims to prevent youth from being discharged from hospital into homelessness. The program connects youth aged 16-25 who are inpatients at London Health Sciences Centre and St. Joseph’s Health Care London to housing and financial support. Supports are offered through collaboration with community partners: Youth Opportunities Unlimited, Canadian Mental Health Association Elgin Middlesex, City of London Coordinated Access, Ontario Works, and Salvation Army’s Housing Stability Bank. This study was reviewed and approved by Western University’s Research Ethics Board. A series of interviews are being conducted with approximately ninety-three youth participants at three time points: baseline (pre-discharge), six, and twelve months post-discharge. Focus groups with participants, health care providers, and community partners are being conducted at three-time points. In addition, administrative data from service providers will be collected and analyzed. Since homelessness has a detrimental effect on recovery, client and community safety, and healthcare expenditure, locating safe housing for psychiatric patients has had a positive impact on treatment, rehabilitation, and the system as a whole. If successful, the findings of this project will offer safe policy alternatives for the prevention of homelessness for at-risk youth, help set them up for success in their future years, and mitigate the rise of the homeless youth population in Canada.

Keywords: youth homelessness, no-fixed address, mental health, homelessness prevention, hospital discharge

Procedia PDF Downloads 103
3826 Effect of Local Processing Techniques on the Nutrients and Anti-Nutrients Content of Bitter Cassava (Manihot Esculenta Crantz)

Authors: J. S. Alakali, A. R. Ismaila, T. G. Atume

Abstract:

The effects of local processing techniques on the nutrients and anti-nutrients content of bitter cassava were investigated. Raw bitter cassava tubers were boiled, sundried, roasted, fried to produce Kuese, partially fermented and sun dried to produce Alubo, fermented by submersion to produce Akpu and fermented by solid state to produce yellow and white gari. These locally processed cassava products were subjected to proximate, mineral analysis and anti-nutrient analysis using standard methods. The result of the proximate analysis showed that, raw bitter cassava is composed of 1.85% ash, 20.38% moisture, 4.11% crude fibre, 1.03% crude protein, 0.66% lipids and 71.88% total carbohydrate. For the mineral analysis, the raw bitter cassava tuber contained 32.00% Calcium, 12.55% Magnesium, 1.38% Iron and 80.17% Phosphorous. Even though all processing techniques significantly increased the mineral content, fermentation had higher mineral increment effect. The anti-nutrients analysis showed that the raw tuber contained 98.16mg/100g cyanide, 44.00mg/100g oxalate 304.20mg/100g phytate and 73.00mg/100g saponin. In general all the processing techniques showed a significant reduction of the phytate, oxalate and saponin content of the cassava. However, only fermentation, sun drying and gasification were able to reduce the cyanide content of bitter cassava below the safe level (10mg/100g) recommended by Standard Organization of Nigeria. Yellow gari(with the addition of palm oil) showed low cyanide content (1.10 mg/100g) than white gari (3.51 mg/100g). Processing methods involving fermentation reduce cyanide and other anti-nutrients in the cassava to levels that are safe for consumption and should be widely practiced.

Keywords: bitter cassava, local processing, fermentation, anti-nutrient.

Procedia PDF Downloads 303
3825 Animal Welfare Assessment Method through Stockmanship Competence: The Context of Backyard Goat Production in the Philippines

Authors: M. J. Alcedo, K. Ito, K. Maeda

Abstract:

Measuring animal welfare is a newly emerging area of research and it needs multi-disciplinary way to do it. Due to the diversity of what constitutes the definition of animal welfare, different methods and models were developed and mostly conducted in semi and commercial farms in developed countries. Few studies have been conducted in developing countries and in backyard livestock operation. Recognizing that majority of livestock operations are categorized as backyard in developing countries, it is crucial to come up with parameters that can assess the welfare of the animal in the backyard level. This research had made use of stockmanship competence as the proxy indicator to assess animal welfare. Stockmanship competence in this study refers to the capacity of the animal owner to ensure the welfare of their animal by providing their needs for growth and reproduction. The Philippine recommend on goat production, tips on goat raising and goat scientific literatures were used as references to come up with indicators that are known to be important in meeting the needs of the animal and ensuring its welfare. Scores from -1 to +2 were assigned depending on how close it is of satisfying the animal’s need. It is hoped that this assessment method could contribute to the growing body of knowledge on animal welfare and can be utilized as logical and scientific framework in assessing welfare in backyard goat operation. It is suggested that further study needs to be conducted to refine and standardize indicators and identify other indicators for goat welfare assessment.

Keywords: backyard goat production, stockmanship competence, animal welfare, Philippines

Procedia PDF Downloads 440
3824 Prospective Cohort Study on Sequential Use of Catheter with Misoprostol vs Misoprostol Alone for Second Trimester Medical Abortion

Authors: Hanna Teklu Gebregziabher

Abstract:

Background: A variety of techniques for medical termination of second-trimester pregnancy can be used, but there is no consensus about which is the best. Even though most evidence suggests the combined use of intracervical Foley catheter and vaginal misoprostol is safe, effective, and acceptable method for termination of second-trimester pregnancy, which is comparable to mifepristone-misoprostol combination regimen with lower cost and no additional maternal risks. The use of mifepristone and misoprostol alone with no other procedure is still the most common procedure in different institutions for 2nd-trimester pregnancy. Methods: A cross-sectional comparative prospective study design is employed on women who were admitted for 2nd-trimester medical abortion and medical abortion failed or if there was no change in cervical status after 24 hours of 1st dose of misoprostol. The study was conducted at St. Paulose Hospital Millennium Medical College. A sample of 44 participants in each arm was necessary to give a two-tailed test, a type 1 error of 5%, 80% statistical power, and a 1:1 ratio among groups. Thus, a total of 94 cases, 47 from each arm, were recruited. Data was entered and cleaned by using Epi-info and analyzed using SPSS version 29.0 statistical software and was presented in descriptive and tabular forms. Different variables were cross-tabulated and compared for significant differences and statistical analysis using the chi-square test and independent t-test, to conclude. Result: There was a significant difference between the two groups on induction to expulsion time and number of doses used. The mean ± SD of induction to expulsion time for those used misoprostol alone was 48.09 ± 11.86 and those who used trans-cervical catheter sequentially with misoprostol were 36.7 ±6.772. Conclusion: The use of a trans-cervical Foley catheter in conjunction with misoprostol in a sequential manner is a more effective, safe, and easily accessible procedure. In addition, the cost of utilizing the catheter is less compared to the cost of misoprostol and is readily available. As a good substitute, we advised using Trans-cervical Catether even for medical abortions performed in the second trimester.

Keywords: second trimester, medical abortion, catheter, misoprostol

Procedia PDF Downloads 45
3823 Collocation Assessment between GEO and GSO Satellites

Authors: A. E. Emam, M. Abd Elghany

Abstract:

The change in orbit evolution between collocated satellites (X, Y) inside +/-0.09 ° E/W and +/- 0.07 ° N/S cluster, after one of these satellites is placed in an inclined orbit (satellite X) and the effect of this change in the collocation safety inside the cluster window has been studied and evaluated. Several collocation scenarios had been studied in order to adjust the location of both satellites inside their cluster to maximize the separation between them and safe the mission.

Keywords: satellite, GEO, collocation, risk assessment

Procedia PDF Downloads 396
3822 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation

Authors: Joseph C. Chen, Venkata Mohan Kudapa

Abstract:

Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.

Keywords: surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations

Procedia PDF Downloads 145
3821 Simulation: A Tool for Stabilization of Welding Processes in Lean Production Concepts

Authors: Ola Jon Mork, Lars Andre Giske, Emil Bjørlykhaug

Abstract:

Stabilization of critical processes in order to have the right quality of the products, more efficient production and smoother flow is a key issue in lean production. This paper presents how simulation of key welding processes can stabilize complicated welding processes in small scale production, and how simulation can impact the entire production concept seen from the perspective of lean production. First, a field study was made to learn the production processes in the factory, and subsequently the field study was transformed into a value stream map to get insight into each operation, the quality issues, operation times, lead times and flow of materials. Valuable practical knowledge of how the welding operations were done by operators, appropriate tools and jigs, and type of robots that could be used, was collected. All available information was then implemented into a simulation environment for further elaboration and development. Three researchers, the management of the company and skilled operators at the work floor where working on the project over a period of eight months, and a detailed description of the process was made by the researchers. The simulation showed that simulation could solve a number of technical challenges, the robot program can be tuned in off line mode, and the design and testing of the robot cell could be made in the simulator. Further on the design of the product could be optimized for robot welding and the jigs could be designed and tested in simulation environment. This means that a key issue of lean production can be solved; the welding operation will work with almost 100% performance when it is put into real production. Stabilizing of one key process is critical to gain control of the entire value chain, then a Takt Time can be established and the focus can be directed towards the next process in the production which should be stabilized. Results show that industrial parameters like welding time, welding cost and welding quality can be defined on the simulation stage. Further on, this gives valuable information for calculation of the factories business performance, like manufacturing volume and manufacturing efficiency. Industrial impact from simulation is more efficient implementation of lean manufacturing, since the welding process can be stabilized. More research should be done to gain more knowledge about simulation as a tool for implementation of lean, especially where there complex processes.

Keywords: simulation, lean, stabilization, welding process

Procedia PDF Downloads 321
3820 Energy Conservation Strategies of Buildings in Hot, Arid Region: Al-Khobar, Saudi Arabia

Authors: M. H. Shwehdi, S. Raja Mohammad

Abstract:

Recently energy savings have become more pronounced as a result of the world financial crises as well the unstable oil prices. Certainly all entities needs to adapt Energy Conservation and Management Strategies due to high monthly consumption of their spread locations and advancements of its telecom systems. These system improvements necessitate the establishment of more exchange centers as well provide energy savings. This paper investigates the impact of HVAC System Characteristics, Operational Strategies, the impact of Envelope Thermal Characteristics, and energy conservation measures. These are classified under three types of measures i.e. Zero-Investment; Low-Investment and High-Investment Energy Conservation Measures. The study shows that the Energy Conservation Measures (ECMs) pertaining to the HVAC system characteristics and operation represent the highest potential for energy reduction, attention should be given to window thermal and solar radiation characteristics when large window areas are used. The type of glazing system needs to be carefully considered in the early design phase of future buildings. Paper will present the thermal optimization of different size centers in the two hot-dry and hot-humid Saudi Arabian city of Al Khobar, East province.

Keywords: energy conservation, optimization, thermal design, intermittent operation, exchange centers, hot-humid climate, Saudi Arabia

Procedia PDF Downloads 451
3819 The Use of Geographic Information System Technologies for Geotechnical Monitoring of Pipeline Systems

Authors: A. G. Akhundov

Abstract:

Issues of obtaining unbiased data on the status of pipeline systems of oil- and oil product transportation become especially important when laying and operating pipelines under severe nature and climatic conditions. The essential attention is paid here to researching exogenous processes and their impact on linear facilities of the pipeline system. Reliable operation of pipelines under severe nature and climatic conditions, timely planning and implementation of compensating measures are only possible if operation conditions of pipeline systems are regularly monitored, and changes of permafrost soil and hydrological operation conditions are accounted for. One of the main reasons for emergency situations to appear is the geodynamic factor. Emergency situations are proved by the experience to occur within areas characterized by certain conditions of the environment and to develop according to similar scenarios depending on active processes. The analysis of natural and technical systems of main pipelines at different stages of monitoring gives a possibility of making a forecast of the change dynamics. The integration of GIS technologies, traditional means of geotechnical monitoring (in-line inspection, geodetic methods, field observations), and remote methods (aero-visual inspection, aero photo shooting, air and ground laser scanning) provides the most efficient solution of the problem. The united environment of geo information system (GIS) is a comfortable way to implement the monitoring system on the main pipelines since it provides means to describe a complex natural and technical system and every element thereof with any set of parameters. Such GIS enables a comfortable simulation of main pipelines (both in 2D and 3D), the analysis of situations and selection of recommendations to prevent negative natural or man-made processes and to mitigate their consequences. The specifics of such systems include: a multi-dimensions simulation of facilities in the pipeline system, math modelling of the processes to be observed, and the use of efficient numeric algorithms and software packets for forecasting and analyzing. We see one of the most interesting possibilities of using the monitoring results as generating of up-to-date 3D models of a facility and the surrounding area on the basis of aero laser scanning, data of aerophotoshooting, and data of in-line inspection and instrument measurements. The resulting 3D model shall be the basis of the information system providing means to store and process data of geotechnical observations with references to the facilities of the main pipeline; to plan compensating measures, and to control their implementation. The use of GISs for geotechnical monitoring of pipeline systems is aimed at improving the reliability of their operation, reducing the probability of negative events (accidents and disasters), and at mitigation of consequences thereof if they still are to occur.

Keywords: databases, 3D GIS, geotechnical monitoring, pipelines, laser scaning

Procedia PDF Downloads 189
3818 Development of Internet of Things (IoT) with Mobile Voice Picking and Cargo Tracing Systems in Warehouse Operations of Third-Party Logistics

Authors: Eugene Y. C. Wong

Abstract:

The increased market competition, customer expectation, and warehouse operating cost in third-party logistics have motivated the continuous exploration in improving operation efficiency in warehouse logistics. Cargo tracing in ordering picking process consumes excessive time for warehouse operators when handling enormous quantities of goods flowing through the warehouse each day. Internet of Things (IoT) with mobile cargo tracing apps and database management systems are developed this research to facilitate and reduce the cargo tracing time in order picking process of a third-party logistics firm. An operation review is carried out in the firm with opportunities for improvement being identified, including inaccurate inventory record in warehouse management system, excessive tracing time on stored products, and product misdelivery. The facility layout has been improved by modifying the designated locations of various types of products. The relationship among the pick and pack processing time, cargo tracing time, delivery accuracy, inventory turnover, and inventory count operation time in the warehouse are evaluated. The correlation of the factors affecting the overall cycle time is analysed. A mobile app is developed with the use of MIT App Inventor and the Access management database to facilitate cargo tracking anytime anywhere. The information flow framework from warehouse database system to cloud computing document-sharing, and further to the mobile app device is developed. The improved performance on cargo tracing in the order processing cycle time of warehouse operators have been collected and evaluated. The developed mobile voice picking and tracking systems brings significant benefit to the third-party logistics firm, including eliminating unnecessary cargo tracing time in order picking process and reducing warehouse operators overtime cost. The mobile tracking device is further planned to enhance the picking time and cycle count of warehouse operators with voice picking system in the developed mobile apps as future development.

Keywords: warehouse, order picking process, cargo tracing, mobile app, third-party logistics

Procedia PDF Downloads 374
3817 A Self-Directed Home Yoga Program for Women with Breast Cancer during Chemotherapy

Authors: Hiroko Komatsu, Kaori Yagasaki

Abstract:

Background: Cancer-related cognitive impairment is a common problem seen in cancer patients undergoing chemotherapy. Physical activity may show beneficial effects on the cognitive function in such patients. Therefore, we have developed a self-directed home yoga program for cancer patients with cognitive symptoms during chemotherapy. This program involves a DVD presenting a combination of yoga courses based on patient preferences to be practiced at home. This study was performed to examine the feasibility of this program. In addition, we also examined changes in cognitive function and quality of life (QOL) in these patients participating in the program. Methods: This prospective feasibility study was conducted in a 500-bed general hospital in Tokyo, Japan. The study population consisted of breast cancer patients undergoing chemotherapy as the initial therapy. This feasibility study used a convenience sample with estimation of recruitment rate in a single facility with the availability of trained nurses and physicians to ensure safe yoga intervention. The aim of the intervention program was to improve cognitive function by means of both physical and mental activation via yoga, consisting of physical practice, breathing exercises, and meditation. Information on the yoga program was provided as a booklet, with an instructor-guided group yoga class during the orientation, and a self-directed home yoga program on DVD with yoga logs. Results: The recruitment rate was 44.7%, and the study population consisted of 18 women with a mean age of 43.9 years. This study showed high rates of retention, adherence, and acceptability of the yoga program. Improvements were only observed in the cognitive aspects of fatigue, and there were serious adverse events during the program. Conclusion: The self-directed home yoga program discussed here was both feasible and safe for breast cancer patients showing cognitive symptoms during chemotherapy. The patients also rated the program as useful, interesting, and satisfactory. Participation in the program was associated with improvements in cognitive fatigue but not cognitive function.

Keywords: yoga, cognition, breast cancer, chemotherapy, quality of life

Procedia PDF Downloads 257
3816 Natural and Construction/Demolition Waste Aggregates: A Comparative Study

Authors: Debora C. Mendes, Matthias Eckert, Claudia S. Moço, Helio Martins, Jean-Pierre Gonçalves, Miguel Oliveira, Jose P. Da Silva

Abstract:

Disposal of construction and demolition waste (C&DW) in embankments in the periphery of cities causes both environmental and social problems. To achieve the management of C&DW, a detailed analysis of the properties of these materials should be done. In this work we report a comparative study of the physical, chemical and environmental properties of natural and C&DW aggregates from 25 different origins. Assays were performed according to European Standards. Analysis of heavy metals and organic compounds, namely polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were performed. Finally, properties of concrete prepared with C&DW aggregates are reported. Physical analyses of C&DW aggregates indicated lower quality properties than natural aggregates, particularly for concrete preparation and unbound layers of road pavements. Chemical properties showed that most samples (80%) meet the values required by European regulations for concrete and unbound layers of road pavements. Analyses of heavy metals Cd, Cr, Cu, Pb, Ni, Mo and Zn in the C&DW leachates showed levels below the limits established by the Council Decision of 19 December 2002. Identification and quantification of PCBs and PAHs indicated that few samples shows the presence of these compounds. The measured levels of PCBs and PAHs are also below the limits. Other compounds identified in the C&DW leachates include phthalates and diphenylmethanol. The characterized C&DW aggregates show lower quality properties than natural aggregates but most samples showed to be environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds should be made to trial safe C&DW aggregates. C&DW aggregates provide a good economic and environmental alternative to natural aggregates.

Keywords: concrete preparation, construction and demolition waste, heavy metals, organic pollutants

Procedia PDF Downloads 359
3815 Addressing Microbial Contamination in East Hararghe, Oromia, Ethiopia: Improving Water Sanitation Infrastructure and Promoting Safe Water Practices for Enhanced Food Safety

Authors: Tuji Jemal Ahmed, Hussen Beker Yusuf

Abstract:

Food safety is a major concern worldwide, with microbial contamination being one of the leading causes of foodborne illnesses. In Ethiopia, drinking water and untreated groundwater are a primary source of microbial contamination, leading to significant health risks. East Hararghe, Oromia, is one of the regions in Ethiopia that has been affected by this problem. This paper provides an overview of the impact of untreated groundwater on human health in Haramaya Rural District, East Hararghe and highlights the urgent need for sustained efforts to address the water sanitation supply problem. The use of untreated groundwater for drinking and household purposes in Haramaya Rural District, East Hararghe is prevalent, leading to high rates of waterborne illnesses such as diarrhea, typhoid fever, and cholera. The impact of these illnesses on human health is significant, resulting in significant morbidity and mortality, especially among vulnerable populations such as children and the elderly. In addition to the direct health impacts, waterborne illnesses also have indirect impacts on human health, such as reduced productivity and increased healthcare costs. Groundwater sources are susceptible to microbial contamination due to the infiltration of surface water, human and animal waste, and agricultural runoff. In Haramaya Rural District, East Hararghe, poor water management practices, inadequate sanitation facilities, and limited access to clean water sources contribute to the prevalence of untreated groundwater as a primary source of drinking water. These underlying causes of microbial contamination highlight the need for improved water sanitation infrastructure, including better access to safe drinking water sources and the implementation of effective treatment methods. The paper emphasizes the need for regular water quality monitoring, especially for untreated groundwater sources, to ensure safe drinking water for the population. The implementation of effective preventive measures, such as the use of effective disinfectants, proper waste disposal methods, and regular water quality monitoring, is crucial to reducing the risk of contamination and improving public health outcomes in the region. Community education and awareness-raising campaigns can also play a critical role in promoting safe water practices and reducing the risk of contamination. These campaigns can include educating the population on the importance of boiling water before drinking, the use of water filters, and proper sanitation practices. In conclusion, the use of untreated groundwater as a primary source of drinking water in East Hararghe, Oromia, Ethiopia, has significant impacts on human health, leading to widespread waterborne illnesses and posing a significant threat to public health. Sustained efforts are urgently needed to address the root causes of contamination, such as poor sanitation and hygiene practices, improper waste management, and the water sanitation supply problem, including the implementation of effective preventive measures and community-based education programs, ultimately improving public health outcomes in the region. A comprehensive approach that involves community-based water management systems, point-of-use water treatment methods, and awareness-raising campaigns can contribute to reducing the incidence of microbial contamination in the region.

Keywords: food safety, health risks, microbial contamination, untreated groundwater

Procedia PDF Downloads 113
3814 Development and Performance of Aerobic Granular Sludge at Elevated Temperature

Authors: Mustafa M. Bob, Siti Izaidah Azmi, Mohd Hakim Ab Halim, Nur Syahida Abdul Jamal, Aznah Nor-Anuar, Zaini Ujang

Abstract:

In this research, the formation and development of aerobic granular sludge (AGS) for domestic wastewater treatment application in hot climate conditions was studied using a sequencing batch reactor (SBR). The performance of the developed AGS in the removal of organic matter and nutrients from wastewater was also investigated. The operation of the reactor was based on the sequencing batch system with a complete cycle time of 3 hours that included feeding, aeration, settling, discharging and idling. The reactor was seeded with sludge collected from the municipal wastewater treatment plant in Madinah city, Saudi Arabia and operated at a temperature of 40ºC using synthetic wastewater as influent. Results showed that granular sludge was developed after an operation period of 30 days. The developed granular sludge had a good settling ability with the average size of the granules ranging from 1.03 to 2.42 mm. The removal efficiency of chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total phosphorus (TP) were 87.31%, 91.93% and 61.25% respectively. These results show that AGS can be developed at elevated temperatures and it is a promising technique to treat domestic wastewater in hot and low humidity climate conditions such as those encountered in Saudi Arabia.

Keywords: aerobic granular sludge, hot climate, sequencing batch reactor, domestic wastewater treatment

Procedia PDF Downloads 357
3813 Training for Safe Tree Felling in the Forest with Symmetrical Collaborative Virtual Reality

Authors: Irene Capecchi, Tommaso Borghini, Iacopo Bernetti

Abstract:

One of the most common pieces of equipment still used today for pruning, felling, and processing trees is the chainsaw in forestry. However, chainsaw use highlights dangers and one of the highest rates of accidents in both professional and non-professional work. Felling is proportionally the most dangerous phase, both in severity and frequency, because of the risk of being hit by the plant the operator wants to cut down. To avoid this, a correct sequence of chainsaw cuts must be taught concerning the different conditions of the tree. Virtual reality (VR) makes it possible to virtually simulate chainsaw use without danger of injury. The limitations of the existing applications are as follow. The existing platforms are not symmetrical collaborative because the trainee is only in virtual reality, and the trainer can only see the virtual environment on a laptop or PC, and this results in an inefficient teacher-learner relationship. Therefore, most applications only involve the use of a virtual chainsaw, and the trainee thus cannot feel the real weight and inertia of a real chainsaw. Finally, existing applications simulate only a few cases of tree felling. The objectives of this research were to implement and test a symmetrical collaborative training application based on VR and mixed reality (MR) with the overlap between real and virtual chainsaws in MR. The research and training platform was developed for the Meta quest 2 head-mounted display. The research and training platform application is based on the Unity 3D engine, and Present Platform Interaction SDK (PPI-SDK) developed by Meta. PPI-SDK avoids the use of controllers and enables hand tracking and MR. With the combination of these two technologies, it was possible to overlay a virtual chainsaw with a real chainsaw in MR and synchronize their movements in VR. This ensures that the user feels the weight of the actual chainsaw, tightens the muscles, and performs the appropriate movements during the test allowing the user to learn the correct body posture. The chainsaw works only if the right sequence of cuts is made to felling the tree. Contact detection is done by Unity's physics system, which allows the interaction of objects that simulate real-world behavior. Each cut of the chainsaw is defined by a so-called collider, and the felling of the tree can only occur if the colliders are activated in the right order simulating a safe technique felling. In this way, the user can learn how to use the chainsaw safely. The system is also multiplayer, so the student and the instructor can experience VR together in a symmetrical and collaborative way. The platform simulates the following tree-felling situations with safe techniques: cutting the tree tilted forward, cutting the medium-sized tree tilted backward, cutting the large tree tilted backward, sectioning the trunk on the ground, and cutting branches. The application is being evaluated on a sample of university students through a special questionnaire. The results are expected to test both the increase in learning compared to a theoretical lecture and the immersive and telepresence of the platform.

Keywords: chainsaw, collaborative symmetric virtual reality, mixed reality, operator training

Procedia PDF Downloads 107
3812 Numerical Investigation of the Operating Parameters of the Vertical Axis Wind Turbine

Authors: Zdzislaw Kaminski, Zbigniew Czyz, Tytus Tulwin

Abstract:

This paper describes the geometrical model, algorithm and CFD simulation of an airflow around a Vertical Axis Wind Turbine rotor. A solver, ANSYS Fluent, was applied for the numerical simulation. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed to avoid a costly preparation of a model or a prototype for a bench test. This research focuses on the rotor designed according to patent no PL 219985 with its blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on a regulation of blade angle α between the top and bottom parts of blades mounted on an axis. If angle α increases, the working surface which absorbs wind kinetic energy also increases. CFD calculations enable us to compare aerodynamic characteristics of forces acting on rotor working surfaces and specify rotor operation parameters like torque or turbine assembly power output. This paper is part of the research to improve an efficiency of a rotor assembly and it contains investigation of the impact of a blade angle of wind turbine working blades on the power output as a function of rotor torque, specific rotational speed and wind speed. The simulation was made for wind speeds ranging from 3.4 m/s to 6.2 m/s and blade angles of 30°, 60°, 90°. The simulation enables us to create a mathematical model to describe how aerodynamic forces acting each of the blade of the studied rotor are generated. Also, the simulation results are compared with the wind tunnel ones. This investigation enables us to estimate the growth in turbine power output if a blade angle changes. The regulation of blade angle α enables a smooth change in turbine rotor power, which is a kind of safety measures if the wind is strong. Decreasing blade angle α reduces the risk of damaging or destroying a turbine that is still in operation and there is no complete rotor braking as it is in other Horizontal Axis Wind Turbines. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: computational fluid dynamics, mathematical model, numerical analysis, power, renewable energy, wind turbine

Procedia PDF Downloads 337
3811 Hysterectomy and Symbolic Damage: When the Desire for Motherhood is Reactivated in a Nun

Authors: Ndje Ndje Mireille

Abstract:

The improvement in the physical aspects of hysterectomy has tended to make us forget the psychological burden of this operation for many women. African women closely associate fertility and femininity, and they fear that their desire will diminish, that they will be less desirable after having undergone a hysterectomy. Medicine may be tempted to trivialize this surgical intervention by relying on the evolution of current surgery that leaves little or no marks. It is possible to think that the uterus is useless for a nun who has decided to freely disregard her motherhood. We used the clinical research method for this study. Through a semi-directive interview guide, we collected the verbatims of an hysterectomized catholic nun. The verbatims were transcribed and analyzed with the thematic content analysis. This analysis shows that the medical reality does not always correspond to the subjective experience of women, for whom hysterectomy can imply strong symbolic damage. The uterus is not essential to life, but it is essential to give life, and this lack can reactivate a desire for motherhood. The experience of hysterectomy is unique for each woman in relation to her history. This operation will eliminate all hope of pregnancy; it will be felt as intimate mutilation and an attack on femininity, it will bring up concerns about sexuality. Even if a woman has past the age of having children, has gone through menopause, or has freely decided not to have children, she still find it difficult to accept this procedure. The lack of uterus make a woman feel useless.

Keywords: hysterectomy, symbolic damage, desire for motherhood, feminity, nun

Procedia PDF Downloads 158
3810 Comprehensive Investigation of Solving Analytical of Nonlinear Differential Equations at Chemical Reactions to Design of Reactors by New Method “AGM”

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza khalili, Sara Akbari, Davood Domiri Ganji

Abstract:

In this symposium, our aims are accuracy, capabilities and power at solving of the complicate non-linear differential at the reaction chemical in the catalyst reactor (heterogeneous reaction). Our purpose is to enhance the ability of solving the mentioned nonlinear differential equations at chemical engineering and similar issues with a simple and innovative approach which entitled ‘’Akbari-Ganji's Method’’ or ‘’AGM’’. In this paper we solve many examples of nonlinear differential equations of chemical reactions and its investigate. The chemical reactor with the energy changing (non-isotherm) in two reactors of mixed and plug are separately studied and the nonlinear differential equations obtained from the reaction behavior in these systems are solved by a new method. Practically, the reactions with the energy changing (heat or cold) have an important effect on designing and function of the reactors. This means that possibility of reaching the optimal conditions of operation for the maximum conversion depending on nonlinear nature of the reaction velocity toward temperature, results in the complexity of the operation in the reactor. In this case, the differential equation set which governs the reactors can be obtained simultaneous solution of mass equilibrium and energy and temperature changing at concentration.

Keywords: new method (AGM), nonlinear differential equation, tubular and mixed reactors, catalyst bed

Procedia PDF Downloads 382
3809 Problems and Needs Help of Frozen Shrimp Industry Small and Medium in the Central Region of the Lower Three Provinces

Authors: P. Thepnarintra

Abstract:

Frozen shrimp industry plays an important role in the development of production industry of the country. There has been a continuing development to response the increasing demand; however, there have been some problems in running the enterprises. The purposes of this study are to: 1) investigate problems related to basic factors in operating frozen shrimp industry based on the entrepreneurs’ points of view. The enterprises involved in this study were small and medium industry receiving Thai Frozen Foods Association. 2) Compare the problems of the frozen shrimp industry according to their sizes of operation in 3 provinces of the central region Thailand. Population in this study consisted of 148 managers from 148 frozen shrimp enterprises Thai Frozen Foods Association, of which 77 were small size and 71 were medium size. The data were analyzed to find percentage, arithmetic mean, standard deviation, and independent sample T-test with the significant hypothesis at .05. The results revealed that the problems of the frozen shrimp industries of both size were in high level. The needs for government supporting were in high level. The comparison of the problems and the basic factors between the small and medium size enterprises showed no statistically significant level. The problems that they mentioned included raw materials, labors, production, marketing, and the need for academic supporting from the government sector.

Keywords: frozen shrimp industry, problems, related to the enterprise, operation

Procedia PDF Downloads 541
3808 Machine Learning Algorithms for Rocket Propulsion

Authors: Rômulo Eustáquio Martins de Souza, Paulo Alexandre Rodrigues de Vasconcelos Figueiredo

Abstract:

In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results.

Keywords: data analysis, modeling, machine learning, aerospace, rocket propulsion

Procedia PDF Downloads 115
3807 Root Mean Square-Based Method for Fault Diagnosis and Fault Detection and Isolation of Current Fault Sensor in an Induction Machine

Authors: Ahmad Akrad, Rabia Sehab, Fadi Alyoussef

Abstract:

Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a fault detection method is suggested using residual errors generated by the root mean square (RMS) of phase currents. The application of this method is based on an asymmetric nonlinear model of Induction Machine considering the winding fault of the three axes frame state space. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults.

Keywords: induction machine, asymmetric nonlinear model, fault diagnosis, inter-turn short-circuit fault, root mean square, current sensor fault, fault detection and isolation

Procedia PDF Downloads 198
3806 Surface Roughness of Al-Si/10% AlN MMC Material in Milling Operation Using the Taguchi Method

Authors: M. S. Said, J. A. Ghani, Izzati Osman, Z. A. Latiff, S. A .F. Syed Mohd

Abstract:

Metal matrix composites have demand for light-weight structural and functional materials. MMCs have been shown to offer improvements in strength, rigidity, temperature stability, wear resistance, reliability and control of physical properties such as density and coefficient of thermal expansion, thereby providing improved engineering performance in comparison to the un-reinforced matrix. Experiment were conducted at various cutting speed, feed rate and difference cutting tools according to Taguchi method using a standard orthogonal array L9. The volume of AlN reinforced particle was 10% in MMC. The milling process was carried out under dry cutting condition using uncoated carbide, TiN and TiCN tool insert. The parameters used were the cutting speed of (230,300,370 m/min) the federate used were (0.4, 0.6, 0.8 mm/tooth) while the depth of cut is constant (0.3 mm). The tool diameter is 20mm. From the project, the surface roughness mechanism was investigated in detail using Mitutoyo portable surface roughness measurements surftest SJ-310. This machining will be fabricated on MMC with 150mm length, 100mm width and 30mm thick. The results showed using S/N ratio, concluded that a combination of low cutting speed, medium feed rate and uncoated insert give a remarkable surface finish. From the ANOVA result showed the feed rate was major contributing factor (43.76%) following type of insert (40.89%).

Keywords: MMC, milling operation and surface roughness, Taguchi method

Procedia PDF Downloads 529
3805 Simulation IDM for Schedule Generation of Slip-Form Operations

Authors: Hesham A. Khalek, Shafik S. Khoury, Remon F. Aziz, Mohamed A. Hakam

Abstract:

Slipforming operation’s linearity is a source of planning complications, and operation is usually subjected to bottlenecks at any point, so careful planning is required in order to achieve success. On the other hand, Discrete-event simulation concepts can be applied to simulate and analyze construction operations and to efficiently support construction scheduling. Nevertheless, preparation of input data for construction simulation is very challenging, time-consuming and human prone-error source. Therefore, to enhance the benefits of using DES in construction scheduling, this study proposes an integrated module to establish a framework for automating the generation of time schedules and decision support for Slipform construction projects, particularly through the project feasibility study phase by using data exchange between project data stored in an Intermediate database, DES and Scheduling software. Using the stored information, proposed system creates construction tasks attribute [e.g. activities durations, material quantities and resources amount], then DES uses all the given information to create a proposal for the construction schedule automatically. This research is considered a demonstration of a flexible Slipform project modeling, rapid scenario-based planning and schedule generation approach that may be of interest to both practitioners and researchers.

Keywords: discrete-event simulation, modeling, construction planning, data exchange, scheduling generation, EZstrobe

Procedia PDF Downloads 376
3804 Influence of Selected Finishing Technologies on the Roughness Parameters of Stainless Steel Manufactured by Selective Laser Melting Method

Authors: J. Hajnys, M. Pagac, J. Petru, P. Stefek, J. Mesicek, J. Kratochvil

Abstract:

The new progressive method of 3D metal printing SLM (Selective Laser Melting) is increasingly expanded into the normal operation. As a result, greater demands are placed on the surface quality of the parts produced in this way. The article deals with research of selected finishing methods (tumbling, face milling, sandblasting, shot peening and brushing) and their impact on the final surface roughness. The 20 x 20 x 7 mm produced specimens using SLM additive technology on the Renishaw AM400 were subjected to testing of these finishing methods by adjusting various parameters. Surface parameters of roughness Sa, Sz were chosen as the evaluation criteria and profile parameters Ra, Rz were used as additional measurements. Optical measurement of surface roughness was performed on Alicona Infinite Focus 5. An experiment conducted to optimize the surface roughness revealed, as expected, that the best roughness parameters were achieved through a face milling operation. Tumbling is particularly suitable for 3D printing components, as tumbling media are able to reach even complex shapes and, after changing to polishing bodies, achieve a high surface gloss. Surface quality after tumbling depends on the process time. Other methods with satisfactory results are shot peening and tumbling, which should be the focus of further research.

Keywords: additive manufacturing, selective laser melting, SLM, surface roughness, stainless steel

Procedia PDF Downloads 131