Search results for: regional features
4841 Fault Detection and Isolation in Sensors and Actuators of Wind Turbines
Authors: Shahrokh Barati, Reza Ramezani
Abstract:
Due to the countries growing attention to the renewable energy producing, the demand for energy from renewable energy has gone up among the renewable energy sources; wind energy is the fastest growth in recent years. In this regard, in order to increase the availability of wind turbines, using of Fault Detection and Isolation (FDI) system is necessary. Wind turbines include of various faults such as sensors fault, actuator faults, network connection fault, mechanical faults and faults in the generator subsystem. Although, sensors and actuators have a large number of faults in wind turbine but have discussed fewer in the literature. Therefore, in this work, we focus our attention to design a sensor and actuator fault detection and isolation algorithm and Fault-tolerant control systems (FTCS) for Wind Turbine. The aim of this research is to propose a comprehensive fault detection and isolation system for sensors and actuators of wind turbine based on data-driven approaches. To achieve this goal, the features of measurable signals in real wind turbine extract in any condition. The next step is the feature selection among the extract in any condition. The next step is the feature selection among the extracted features. Features are selected that led to maximum separation networks that implemented in parallel and results of classifiers fused together. In order to maximize the reliability of decision on fault, the property of fault repeatability is used.Keywords: FDI, wind turbines, sensors and actuators faults, renewable energy
Procedia PDF Downloads 4004840 Assessment Methodology of E-government Projects for the Regions of Georgia
Authors: Tina Melkoshvili
Abstract:
Drastic development of information and communication technologies in Georgia has led to the necessity of launching conceptually new, effective, flexible, transparent and society oriented form of government that is e-government. Through applying information technologies, the electronic system enables to raise the efficacy of state governance and increase citizens’ participation in the process. Focusing on the topic of e-government allows us to analyze success stories, attributed benefits and, at the same time, observes challenges hampering the government development process. There are number of methodologies elaborated to study the conditions in the field of electronic governance. They enable us to find out if the government is ready to apply broad opportunities of information and communication technologies and if the government is apt to improve the accessibility and quality of delivering mainly social services. This article seeks to provide comparative analysis of widely spread methodologies used for Electronic government projects’ assessment. It has been concluded that applying current methods of assessment in Georgia is related to difficulties due to inaccessible data and the necessity of involving number of experts. The article presents new indicators for e-government development assessment that reflect efficacy of e-government conception realization in the regions of Georgia and enables to provide quantitative evaluation of regional e-government projects including all significant aspects of development.Keywords: development methodology, e-government in Georgia, information and communication technologies, regional government
Procedia PDF Downloads 2754839 Morphological Analysis of English L1-Persian L2 Adult Learners’ Interlanguage: From the Perspective of SLA Variation
Authors: Maassoumeh Bemani Naeini
Abstract:
Studies on interlanguage have long been engaged in describing the phenomenon of variation in SLA. Pursuing the same goal and particularly addressing the role of linguistic features, this study describes the use of Persian morphology in the interlanguage of two adult English-speaking learners of Persian L2. Taking the general approach of a combination of contrastive analysis, error analysis and interlanguage analysis, this study focuses on the identification and prediction of some possible instances of transfer from English L1 to Persian L2 across six elicitation tasks aiming to investigate whether any of contextual features may variably influence the learners’ order of morpheme accuracy in the areas of copula, possessives, articles, demonstratives, plural form, personal pronouns, and genitive cases. Results describe the existence of task variation in the interlanguage system of Persian L2 learners.Keywords: English L1, Interlanguage Analysis, Persian L2, SLA variation
Procedia PDF Downloads 3164838 Features Reduction Using Bat Algorithm for Identification and Recognition of Parkinson Disease
Authors: P. Shrivastava, A. Shukla, K. Verma, S. Rungta
Abstract:
Parkinson's disease is a chronic neurological disorder that directly affects human gait. It leads to slowness of movement, causes muscle rigidity and tremors. Gait serve as a primary outcome measure for studies aiming at early recognition of disease. Using gait techniques, this paper implements efficient binary bat algorithm for an early detection of Parkinson's disease by selecting optimal features required for classification of affected patients from others. The data of 166 people, both fit and affected is collected and optimal feature selection is done using PSO and Bat algorithm. The reduced dataset is then classified using neural network. The experiments indicate that binary bat algorithm outperforms traditional PSO and genetic algorithm and gives a fairly good recognition rate even with the reduced dataset.Keywords: parkinson, gait, feature selection, bat algorithm
Procedia PDF Downloads 5454837 Some Theoretical Approaches on the Style of Lyrical Subject of the Confessional Poetry
Authors: Lemac Tin
Abstract:
This paper deals with the lyrical subject of the confessional poetry which is the main part of her stylistic strucuture. We concluded two types of this subject in the classical confessional poetic discourse; reflexive and authentic subject. We offer the model of their genesis, textual features and appeareance realisations. Genesis is related to the theories of deriving poetry from emotion and magic and their similar position in the primitive lyrics and lyrics of the ancient civilizations. Textual features are related to the emotive and semiotic analysis of each type. Appearance realisations of these two types are I-subject, We-subject, transvocal and objectified subject. We check this approaches on some of the poems from World literature.Keywords: confessional poetry, confessional lyrical subject, magic, emotion, emotive analysis, semiotic analysis
Procedia PDF Downloads 2714836 China Global Policy through the Shanghai Cooperation Organization
Authors: Enayatollah Yazdani
Abstract:
In the post-Cold War era, the world is facing a new emerging global order with the rise of multiple actors in the international arena. China, as a rising global power, has great leverage in internal relations. In particular, during the last two decades, China has rapidly transformed its economy into a global leader in advanced technologies. As a rising power and as one of the two major founding members of the Shanghai Cooperation Organization (SCO), China has tried to use this regional organization, which has the potential to become an important political and security organization of the major states located in the vast Eurasian landmass, for its “go global” strategy. In fact, for Beijing, the SCO represents a new and unique cooperation model, reflecting its vision of a multipolar world order. China has used the SCO umbrella as a multilateral platform to address external threats posed by non-state actors on its vulnerable western border; to gain a strong economic and political foothold in Central Asia without putting the Sino-Russian strategic partnership at risk; and to enhance its energy security through large-scale infrastructure investment in, and trade with, the Central Asian member states. In other words, the SCO is one of the successful outcomes of Chines foreign policy in the post-Cold War era. The expansion of multilateral ties all over the world by dint of pursuing institutional strategies as SCO identifies China as a more constructive power. SCO became a new model of cooperation that was formed on the remains of collapsed Soviet system and predetermined China's geopolitical role in the region. As the fast developing effective regional mechanism, SCO now has more of an external impact on the international system and forms a new type of interaction for promoting China's grand strategy of 'peaceful rise.' This paper aims to answer this major question: How the Chinese government has manipulated the SCO for its foreign policy and global and regional influence? To answer this question, the main discussion is that with regard to the SCO capabilities and politico-economic potential, this organization has been used by China as a platform to expand influence beyond its borders.Keywords: China, the Shanghai Cooperation Organization (SCO), Central Asia, global policy, foreign policy
Procedia PDF Downloads 654835 Curvelet Features with Mouth and Face Edge Ratios for Facial Expression Identification
Authors: S. Kherchaoui, A. Houacine
Abstract:
This paper presents a facial expression recognition system. It performs identification and classification of the seven basic expressions; happy, surprise, fear, disgust, sadness, anger, and neutral states. It consists of three main parts. The first one is the detection of a face and the corresponding facial features to extract the most expressive portion of the face, followed by a normalization of the region of interest. Then calculus of curvelet coefficients is performed with dimensionality reduction through principal component analysis. The resulting coefficients are combined with two ratios; mouth ratio and face edge ratio to constitute the whole feature vector. The third step is the classification of the emotional state using the SVM method in the feature space.Keywords: facial expression identification, curvelet coefficient, support vector machine (SVM), recognition system
Procedia PDF Downloads 2324834 Diversity Indices as a Tool for Evaluating Quality of Water Ways
Authors: Khadra Ahmed, Khaled Kheireldin
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: planktons, diversity indices, water quality index, water ways
Procedia PDF Downloads 5184833 Air Connectivity in Promoting Association of Southeast Asian Nations Integration: The Role of Low Cost-Carriers
Authors: Gabriella Fardhiyanti, Victor Wee
Abstract:
Air connectivity is the crucial factors to boost a region economics growth. It will open the accessibility to support regional competitiveness and helps to achieve ASEAN (Association of Southeast Asian Nations) integration in term of economic integration, business investment, promote intra-regional trade, and creates the sense of belongingness among ASEAN people in the region. An increasing number of air connectivity and transportation will be benefiting the region because air transportation is a vital hub for ASEAN. The aim of this paper is to address the importance of air connectivity in promoting ASEAN Integration, by focusing on the ASEAN vision for a more integrated region. The assessment uses based on the Netscan Air connectivity model based on the flight destination and airport connectivity index, further analysis present that air connectivity significantly influence ASEAN tourism sector. Follow by the implications of open skies policy for the liberation of the aviation industry and the growth of low cost-carriers (LCCs) in the region. This paper provides recommendation and strategy for overcoming the challenges faced by ASEAN to boost ASEAN tourism integration successfully. The findings can assist in guiding policy and industry stakeholders in the future decision relating to air liberalization and more integrated system in the region.Keywords: air connectivity, ASEAN integration, low-cost carries, NetScan connectivity model, open skies policy
Procedia PDF Downloads 2154832 Automatic Segmentation of the Clean Speech Signal
Authors: M. A. Ben Messaoud, A. Bouzid, N. Ellouze
Abstract:
Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segmentation extraction. The multi-scale product is based on making the product of the speech wavelet transform coefficients at three successive dyadic scales. We have evaluated our method on the Keele database. Experimental results show the effectiveness of our method presenting a good performance. It shows that the two simple features can find word boundaries, and extracted the segments of the clean speech.Keywords: multiscale product, spectral centroid, speech segmentation, zero crossings rate
Procedia PDF Downloads 5004831 Integrated Machine Learning Framework for At-Home Patients Personalized Risk Prediction Using Activities, Biometric, and Demographic Features
Authors: Claire Xu, Welton Wang, Manasvi Pinnaka, Anqi Pan, Michael Han
Abstract:
Hospitalizations account for one-third of the total health care spending in the US. Early risk detection and intervention can reduce this high cost and increase the satisfaction of both patients and physicians. Due to the lack of awareness of the potential arising risks in home environment, the opportunities for patients to seek early actions of clinical visits are dramatically reduced. This research aims to offer a highly personalized remote patients monitoring and risk assessment AI framework to identify the potentially preventable hospitalization for both acute as well as chronic diseases. A hybrid-AI framework is trained with data from clinical setting, patients surveys, as well as online databases. 20+ risk factors are analyzed ranging from activities, biometric info, demographic info, socio-economic info, hospitalization history, medication info, lifestyle info, etc. The AI model yields high performance of 87% accuracy and 88 sensitivity with 20+ features. This hybrid-AI framework is proven to be effective in identifying the potentially preventable hospitalization. Further, the high indicative features are identified by the models which guide us to a healthy lifestyle and early intervention suggestions.Keywords: hospitalization prevention, machine learning, remote patient monitoring, risk prediction
Procedia PDF Downloads 2314830 Pachhedi: A Material Culture Study on Folk Textile of India
Authors: Shrutisingh Tomar, Madhu Sharan
Abstract:
It has been an undisputed fact that the culture of a nation has always been reflected in its practice, visual content and in forms of its oral traditions. Regional and communal costumes in India since ancient times have worked as a strong repository for its people to comprehend not only the locality but also the community of the wearer. Such a strong visual language apparently was ordained to communicate basic details about the person such as age, marital status, and socio-cultural status. Most of the fragments of this visual vocabulary have been intensively investigated, recorded, diversified and revived, while a limited range of these has died a slow death. Some of the rare existent kinds of such threads have survived as a mainstream article of clothing: simpler, apparent and a product for daily life yet unique in their own kind. The paper intends to consider and elaborate the investigated repository pertinent to the Pacchedi weaving tradition of Gujarat. The research involved field surveys across seven districts of the two states of India namely Gujarat and Rajasthan. Ethnographic interviews, observations, recording of oral histories and archival research was conducted through multi-timed and multi-cited studies between from the year 2012 to 2015. The results include varied forms of Pacchedi based on the sartorial expressions in the male costume. The characteristic features of these textiles were accorded by the sumptuous use of brocaded cross borders and weft heavy ends along with the details on the languishing fabrication procedure.Keywords: handloom weaving, material culture, sartorial expressions and vernacular textile craft
Procedia PDF Downloads 1464829 Classification of Digital Chest Radiographs Using Image Processing Techniques to Aid in Diagnosis of Pulmonary Tuberculosis
Authors: A. J. S. P. Nileema, S. Kulatunga , S. H. Palihawadana
Abstract:
Computer aided detection (CAD) system was developed for the diagnosis of pulmonary tuberculosis using digital chest X-rays with MATLAB image processing techniques using a statistical approach. The study comprised of 200 digital chest radiographs collected from the National Hospital for Respiratory Diseases - Welisara, Sri Lanka. Pre-processing was done to remove identification details. Lung fields were segmented and then divided into four quadrants; right upper quadrant, left upper quadrant, right lower quadrant, and left lower quadrant using the image processing techniques in MATLAB. Contrast, correlation, homogeneity, energy, entropy, and maximum probability texture features were extracted using the gray level co-occurrence matrix method. Descriptive statistics and normal distribution analysis were performed using SPSS. Depending on the radiologists’ interpretation, chest radiographs were classified manually into PTB - positive (PTBP) and PTB - negative (PTBN) classes. Features with standard normal distribution were analyzed using an independent sample T-test for PTBP and PTBN chest radiographs. Among the six features tested, contrast, correlation, energy, entropy, and maximum probability features showed a statistically significant difference between the two classes at 95% confidence interval; therefore, could be used in the classification of chest radiograph for PTB diagnosis. With the resulting value ranges of the five texture features with normal distribution, a classification algorithm was then defined to recognize and classify the quadrant images; if the texture feature values of the quadrant image being tested falls within the defined region, it will be identified as a PTBP – abnormal quadrant and will be labeled as ‘Abnormal’ in red color with its border being highlighted in red color whereas if the texture feature values of the quadrant image being tested falls outside of the defined value range, it will be identified as PTBN–normal and labeled as ‘Normal’ in blue color but there will be no changes to the image outline. The developed classification algorithm has shown a high sensitivity of 92% which makes it an efficient CAD system and with a modest specificity of 70%.Keywords: chest radiographs, computer aided detection, image processing, pulmonary tuberculosis
Procedia PDF Downloads 1264828 Analysis of Social Factors for Achieving Social Resilience in Communities of Indonesia Special Economic Zone as a Strategy for Developing Program Management Frameworks
Authors: Inda Annisa Fauzani, Rahayu Setyawati Arifin
Abstract:
The development of Special Economic Zones in Indonesia cannot be separated from the development of the communities in them. In accordance with the SEZ's objectives as a driver of economic growth, the focus of SEZ development does not only prioritize investment receipts and infrastructure development. The community as one of the stakeholders must also be considered. This becomes a challenge when the development of an SEZ has the potential to have an impact on the community in it. These impacts occur due to changes in the development of the area in the form of changes in the main regional industries and changes in the main livelihoods of the community. As a result, people can feel threats and disturbances. The community as the object of development is required to be able to have resilience in order to achieve a synergy between regional development and community development. A lack of resilience in the community can eliminate the ability to recover from disturbances and difficulty to adapt to changes that occur in their area. Social resilience is the ability of the community to be able to recover from disturbances and changes that occur. The achievement of social resilience occurs when the community gradually has the capacity in the form of coping capacity, adaptive capacity, and transformative capacity. It is hoped that when social resilience is achieved, the community will be able to develop linearly with regional development so that the benefits of this development can have a positive impact on these communities. This study aims to identify and analyze social factors that influence the achievement of social resilience in the community in Special Economic Zones in Indonesia and develop a program framework for achieving social resilience capacity in the community so that it can be used as a strategy to support the successful development of Special Economic Zones in Indonesia that provide benefits to the local community. This study uses a quantitative research method approach. Questionnaires are used as research instruments which are distributed to predetermined respondents. Respondents in this study were determined by using purposive sampling of the people living in areas that were developed into Special Economic Zones. Respondents were given a questionnaire containing questions about the influence of social factors on the achievement of social resilience. As x variables, 42 social factors are provided, while social resilience is used as y variables. The data collected from the respondents is analyzed in SPSS using Spearman Correlation to determine the relation between x and y variables. The correlated factors are then used as the basis for the preparation of programs to increase social resilience capacity in the community.Keywords: community development, program management, social factor, social resilience
Procedia PDF Downloads 1114827 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network
Procedia PDF Downloads 1364826 Detection of Trends and Break Points in Climatic Indices: The Case of Umbria Region in Italy
Authors: A. Flammini, R. Morbidelli, C. Saltalippi
Abstract:
The increase of air surface temperature at global scale is a fact, with values around 0.85 ºC since the late nineteen century, as well as a significant change in main features of rainfall regime. Nevertheless, the detected climatic changes are not equally distributed all over the world, but exhibit specific characteristics in different regions. Therefore, studying the evolution of climatic indices in different geographical areas with a prefixed standard approach becomes very useful in order to analyze the existence of climatic trend and compare results. In this work, a methodology to investigate the climatic change and its effects on a wide set of climatic indices is proposed and applied at regional scale in the case study of a Mediterranean area, Umbria region in Italy. From data of the available temperature stations, nine temperature indices have been obtained and the existence of trends has been checked by applying the non-parametric Mann-Kendall test, while the non-parametric Pettitt test and the parametric Standard Normal Homogeneity Test (SNHT) have been applied to detect the presence of break points. In addition, aimed to characterize the rainfall regime, data from 11 rainfall stations have been used and a trend analysis has been performed on cumulative annual rainfall depth, daily rainfall, rainy days, and dry periods length. The results show a general increase in any temperature indices, even if with a trend pattern dependent of indices and stations, and a general decrease of cumulative annual rainfall and average daily rainfall, with a time rainfall distribution over the year different from the past.Keywords: climatic change, temperature, rainfall regime, trend analysis
Procedia PDF Downloads 1204825 Poli4SDG: An Application for Environmental Crises Management and Gender Support
Authors: Angelica S. Valeriani, Lorenzo Biasiolo
Abstract:
In recent years, the scale of the impact of climate change and its related side effects has become ever more massive and devastating. Sustainable Development Goals (SDGs), promoted by United Nations, aim to front issues related to climate change, among others. In particular, the project CROWD4SDG focuses on a bunch of SDGs since it promotes environmental activities and climate-related issues. In this context, we developed a prototype of an application, under advanced development considering web design, that focuses on SDG 13 (SDG on climate action) by providing users with useful instruments to face environmental crises and climate-related disasters. Our prototype is thought and structured for both web and mobile development. The main goal of the application, POLI4SDG, is to help users to get through emergency services. To this extent, an organized overview and classification prove to be very effective and helpful to people in need. A careful analysis of data related to environmental crises prompted us to integrate the user contribution, i.e., exploiting a core principle of Citizen Science, into the realization of a public catalog, available for consulting and organized according to typology and specific features. In addition, gender equality and opportunity features are considered in the prototype in order to allow women, often the most vulnerable category, to have direct support. The overall description of the application functionalities is detailed. Moreover, the implementation features and properties of the prototype are discussed.Keywords: crowdsourcing, social media, SDG, climate change, natural disasters, gender equality
Procedia PDF Downloads 1134824 Data-Driven Market Segmentation in Hospitality Using Unsupervised Machine Learning
Authors: Rik van Leeuwen, Ger Koole
Abstract:
Within hospitality, marketing departments use segmentation to create tailored strategies to ensure personalized marketing. This study provides a data-driven approach by segmenting guest profiles via hierarchical clustering based on an extensive set of features. The industry requires understandable outcomes that contribute to adaptability for marketing departments to make data-driven decisions and ultimately driving profit. A marketing department specified a business question that guides the unsupervised machine learning algorithm. Features of guests change over time; therefore, there is a probability that guests transition from one segment to another. The purpose of the study is to provide steps in the process from raw data to actionable insights, which serve as a guideline for how hospitality companies can adopt an algorithmic approach.Keywords: hierarchical cluster analysis, hospitality, market segmentation
Procedia PDF Downloads 1084823 Prediction of Music Track Popularity: A Machine Learning Approach
Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan
Abstract:
Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.Keywords: classifier, machine learning, music tracks, popularity, prediction
Procedia PDF Downloads 6634822 Impact of Hooliganism on Sports
Authors: Ernest Boateng Nuako
Abstract:
This research is to find the effects of sports hooliganism on Ashanti school sports and find out some possible ways of amending or controlling them if we are to still experience them in our sporting fraternity. The researcher limited himself to the Ashanti region. The sample population was made up of officials, performances, and spectators drawn from four major second-cycle institutions and four basic schools in Ashanti. In all, 150 respondents were used, and all of them fell into the set of population, that is, performers, officials, and spectators. A structured questionnaire consisting of 29 statements where used to solicit views and opinions from the respondents on the effects of sports hooliganism in Ashanti school sports. Microsoft Office Excel tool (MS Excel) was used to analyze the response of the respondents, and the results were expressed in percentages. The study is aimed at finding out the effect sports hooliganism has on school sports festivals in Ghana with the Ashanti region as a case study and identify possible controlling measures to curb down the fast-pace effect of hooliganism on Ashanti regional schools. The research seeks to assist sports officials to identify some effects of sports hooliganism in Ashanti regional schools. It is also there to help officials to identify the influence hooliganism has on sports. This research also serves as a guide to other researchers who want to go into researching sports in the region. This research revealed that sports hooliganism has, in diverse ways, affected school sports in the region. It was also evident from the research study that sanctions, the presence of security, and other employable remedies could be used in controlling this unfortunate incident during our school sports competitions.Keywords: officiating officials, school sports, hooliganism, spectators, performer
Procedia PDF Downloads 1124821 Recognition of Cursive Arabic Handwritten Text Using Embedded Training Based on Hidden Markov Models (HMMs)
Authors: Rabi Mouhcine, Amrouch Mustapha, Mahani Zouhir, Mammass Driss
Abstract:
In this paper, we present a system for offline recognition cursive Arabic handwritten text based on Hidden Markov Models (HMMs). The system is analytical without explicit segmentation used embedded training to perform and enhance the character models. Extraction features preceded by baseline estimation are statistical and geometric to integrate both the peculiarities of the text and the pixel distribution characteristics in the word image. These features are modelled using hidden Markov models and trained by embedded training. The experiments on images of the benchmark IFN/ENIT database show that the proposed system improves recognition.Keywords: recognition, handwriting, Arabic text, HMMs, embedded training
Procedia PDF Downloads 3544820 Cigarette Smoke Detection Based on YOLOV3
Abstract:
In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction
Procedia PDF Downloads 874819 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate
Abstract:
Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.Keywords: artificial neural network, load estimation, regional survey, rural electrification
Procedia PDF Downloads 1234818 Cataphora in English and Chinese Conversation: A Corpus-based Contrastive Study
Authors: Jun Gao
Abstract:
This paper combines the corpus-based and contrastive approaches, seeking to provide a systematic account of cataphora in English and Chinese natural conversations. Based on spoken corpus data, the first part of the paper examines a range of characteristics of cataphora in the two languages, including frequency of occurrence, patterns, and syntactic features. On the basis of this exploration, cataphora in the two languages are contrasted in a structured way. The analysis shows that English and Chinese share a similar distribution of cataphora in natural conversations in terms of frequency of occurrence, with repeat identification cataphora higher than first mention cataphora and intra-sentential cataphora much higher than inter-sentential cataphora. In terms of patterns, three types are identified in English, i.e. P+N, Ø+N, and it+Clause, while in Chinese, two types are identified, i.e., P+N and Ø+N. English and Chinese are similar in terms of syntactic features, i.e., cataphor and postcedent in the intra-sentential cataphora mainly occur in the initial subject position of the same clause, with postcedent immediately followed or delayed, and cataphor and postcedent are mostly in adjacent sentences in inter-sentential cataphora. In the second part of the paper, the motivations of cataphora are investigated. It is found that cataphora is primarily motivated by the speaker and hearer’s different knowledge states with regard to the referent. Other factors are also involved, such as interference, word search, and the tension between the principles of Economy and Clarity.Keywords: cataphora, contrastive study, motivation, pattern, syntactic features
Procedia PDF Downloads 814817 A Clustering Algorithm for Massive Texts
Authors: Ming Liu, Chong Wu, Bingquan Liu, Lei Chen
Abstract:
Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections.Keywords: vector reconstruction, large-scale text clustering, partial tuning sub-process, overall tuning sub-process
Procedia PDF Downloads 4354816 DBN-Based Face Recognition System Using Light Field
Authors: Bing Gu
Abstract:
Abstract—Most of Conventional facial recognition systems are based on image features, such as LBP, SIFT. Recently some DBN-based 2D facial recognition systems have been proposed. However, we find there are few DBN-based 3D facial recognition system and relative researches. 3D facial images include all the individual biometric information. We can use these information to build more accurate features, So we present our DBN-based face recognition system using Light Field. We can see Light Field as another presentation of 3D image, and Light Field Camera show us a way to receive a Light Field. We use the commercially available Light Field Camera to act as the collector of our face recognition system, and the system receive a state-of-art performance as convenient as conventional 2D face recognition system.Keywords: DBN, face recognition, light field, Lytro
Procedia PDF Downloads 4644815 The Boy Who Cried Wolf-North Korea Nuclear Test and Its Implication to the Regional Stability
Authors: Mark Wenyi Lai
Abstract:
The very lethal weapon of nuclear warhead had threatened the survival of the world for half of the 20th century. When most of the countries have already denounced and stopped the development, one country is eager to produce and use them. Since 2006, Pyongyang has launched six times of nuclear tests. The most recent one in September 2017 signaled North Korea’s military capability to project the mass destruction through ICBM (Intercontinental Ballistic Missile) over Seoul, Tokyo, Guam, Hawaii, Alaska or probably the West Coast of the United States with the explosive energy ten times of the atom bombing of Hiroshima in 1945. This research paper adopted time-series content analysis focusing on the related countries responses to North Korea’s tests in 2006, 2009, 2013, and 2016. The preliminary hypotheses are first, North Korea determined to protect the regime by having triad nuclear capability. Negotiations are mere means to this end. Second, South Korea is paralyzed by its ineffective domestic politics and unable to develop its independent strategy toward the North. Third, Japan was using the external threat to campaign for its rearmament plan and brought instability in foreign relations. Fourth, China found herself in the strange position of defending the loyal buffer state meanwhile witnessing the fourth and dangerous neighboring country gaining the card into nuclear club. Fifth, the United States had admitted that North Korea’s going nuclear is unstoppable. Therefore, to keep the regional stability in the East Asia, the US relied on the new balance of power formed by everyone versus Pyongyang. But, countries in East Asia actually have problems getting along with each other. Sixth, Russia distanced herself from the North Kore row but benefitted by advancing its strategic importance in the Far East. Tracing back the history of nuclear states, this research paper concluded that North Korea will head on becoming a more confident country. The regional stability will restore once related countries deal with the new fact and treat Pyongyang regime with a new strategy. The gradual opening and economic reform are on the way for the North Korea in the near future.Keywords: nuclear test, North Korea, six party talk, US foreign policy
Procedia PDF Downloads 2814814 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction
Procedia PDF Downloads 5134813 Leadership in Future Operational Environment
Authors: M. Şimşek
Abstract:
Rapidly changing factors that affect daily life also affect operational environment and the way military leaders fulfill their missions. With the help of technological developments, traditional linearity of conflict and war has started to fade away. Furthermore, mission domain has broadened to include traditional threats, hybrid threats and new challenges of cyber and space. Considering the future operational environment, future military leaders need to adapt themselves to the new challenges of the future battlefield. But how to decide what kind of features of leadership are required to operate and accomplish mission in the new complex battlefield? In this article, the main aim is to provide answers to this question. To be able to find right answers, first leadership and leadership components are defined, and then characteristics of future operational environment are analyzed. Finally, leadership features that are required to be successful in redefined battlefield are explained.Keywords: future operational environment, leadership, leadership components
Procedia PDF Downloads 4344812 A Report of 5-Months-Old Baby with Balanced Chromosomal Rearrangements along with Phenotypic Abnormalities
Authors: Mohit Kumar, Beklashwar Salona, Shiv Murti, Mukesh Singh
Abstract:
We report here a case of five-months old male baby, born as second child of non-consanguineous parents with no considerable history of genetic abnormality which was referred to our cytogenetic laboratory for chromosomal analysis. Physical dysmorphic facial features including mongoloid face, cleft palate, simian crease, and developmental delay were observed. We present this case with unique balanced autosomal translocation of t(3;10)(p21;p13). The risk of phenotypic abnormalities based on de novo balanced translocation was estimated to be 7%. The association of balanced chromosomal rearrangement with Down syndrome features such as multiple congenital anomalies, facial dysmorphism and congenital heart anomalies are very rare in a 5-months old male child. Trisomy-21 is not uncommon in chromosomal abnormality with the birth defect and balanced translocations are frequently observed in patients with secondary infertility or recurrent spontaneous abortion (RSA). Two ml heparinized peripheral blood cells cultured in RPMI-1640 for 72 hours supplemented with 20% fetal bovine serum, phytohemagglutinin (PHA), and antibiotics were used for chromosomal analysis. A total 30 metaphases images were captured using Olympus-BX51 microscope and analyzed using Bio-view karyotyping software through GTG-banding (G bands by trypsin and Giemsa) according to International System for Human Cytogenetic Nomenclature 2016. The results showed balanced translocation between short arm of chromosome # 3 and short arm of chromosome # 10. The karyotype of the child was found to be 46,XY,t(3;10)(p21; p13). Chromosomal abnormalities are one of the major causes of birth defect in new born babies. Also, balanced translocations are frequently observed in patients with secondary infertility or recurrent spontaneous abortion. The index case presented with dysmorphic facial features and had a balanced translocation 46,XY,t(3;10)(p21;p13). This translocation with break points at (p21; p13) has not been reported in the literature in a child with facial dysmorphism. To the best of our knowledge, this is the first report of novel balanced translocation t(3;10) with break points in a child with dysmorphic features. We found balanced chromosomal translocation instead of any trisomy or unbalanced aberrations along with some phenotypic abnormalities. Therefore, we suggest that such novel balanced translocation with abnormal phenotype should be reported in order to enable the pathologist, pediatrician, and gynecologist to have a better insight into the intricacies of chromosomal abnormalities and their associated phenotypic features. We hypothesized that dysmorphic features as seen in this case may be the result of change in the pattern of genes located at the breakpoint area in balanced translocations or may be due to deletion or mutation of genes located on the p-arm of chromosome # 3 and p-arm of chromosome # 10.Keywords: balanced translocation, karyotyping, phenotypic abnormalities, facial dimorphisms
Procedia PDF Downloads 209