Search results for: permutation representation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1282

Search results for: permutation representation

682 Multi-Objective Production Planning Problem: A Case Study of Certain and Uncertain Environment

Authors: Ahteshamul Haq, Srikant Gupta, Murshid Kamal, Irfan Ali

Abstract:

This case study designs and builds a multi-objective production planning model for a hardware firm with certain & uncertain data. During the time of interaction with the manager of the firm, they indicate some of the parameters may be vague. This vagueness in the formulated model is handled by the concept of fuzzy set theory. Triangular & Trapezoidal fuzzy numbers are used to represent the uncertainty in the collected data. The fuzzy nature is de-fuzzified into the crisp form using well-known defuzzification method via graded mean integration representation method. The proposed model attempts to maximize the production of the firm, profit related to the manufactured items & minimize the carrying inventory costs in both certain & uncertain environment. The recommended optimal plan is determined via fuzzy programming approach, and the formulated models are solved by using optimizing software LINGO 16.0 for getting the optimal production plan. The proposed model yields an efficient compromise solution with the overall satisfaction of decision maker.

Keywords: production planning problem, multi-objective optimization, fuzzy programming, fuzzy sets

Procedia PDF Downloads 215
681 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: aerial thermography, data processing, drone, low-cost, point cloud

Procedia PDF Downloads 145
680 Discrete Group Search Optimizer for the Travelling Salesman Problem

Authors: Raed Alnajjar, Mohd Zakree, Ahmad Nazri

Abstract:

In this study, we apply Discrete Group Search Optimizer (DGSO) for solving Traveling Salesman Problem (TSP). The DGSO is a nature inspired optimization algorithm that imitates the animal behavior, especially animal searching behavior. The proposed DGSO uses a vector representation and some discrete operators, such as destruction, construction, differential evolution, swap and insert. The TSP is a well-known hard combinatorial optimization problem, which seeks to find the shortest path among numbers of cities. The performance of the proposed DGSO is evaluated and tested on benchmark instances which listed in LIBTSP dataset. The experimental results show that the performance of the proposed DGSO is comparable with the other methods in the state of the art for some instances. The results show that DGSO outperform Ant Colony System (ACS) in some instances whilst outperform other metaheuristic in most instances. In addition to that, the new results obtained a number of optimal solutions and some best known results. DGSO was able to obtain feasible and good quality solution across all dataset.

Keywords: discrete group search optimizer (DGSO); Travelling salesman problem (TSP); Variable neighborhood search(VNS)

Procedia PDF Downloads 324
679 Man-Nature relationship in Bishop’s Poetry: An Eco-Critical Reading of the Selected Poems

Authors: Khaled Abkar Alkodimi

Abstract:

This paper attempts to explore Bishop’s eco-poetics and environmental consciousness from an ecocritical perspective. It focuses on her representations of animals, environments, and natural phenomena and the connection between a broad range of human activities and flora, fauna habitats. Indeed, Bishop shows a sense of human responsibility towards the earth in her peculiar treatment of place and livestock, which appears to be more than a static growth process. Her poetry is totally contrary to egoism and egotism, and this can be easily noticed in her subjective understanding of nature and creatures. The findings show Bishop as an eco-poet who committed herself and her poetry to highlight the significance of nature and world life at large. This is obvious through her representation of natural phenomena such as seasonal cycles, weather, and physical and ecological elements, including air, earth, and water, which essentially constitute and inform the poet’s environmental thoughts. Examining Bishop’s conception of a human relationship with ‘external nature through the examination of her poetic language, this study shows how the environmental imagination can suggest social responsibility to readers.

Keywords: elizabeth bishop, eco-criticism, eco-poetry, environmental consciousness, man-nature relationship

Procedia PDF Downloads 193
678 A Software Tool for Computer Forensic Investigation Using Client-Side Web History Visualization

Authors: Francisca Onaolapo Oladipo, Peter Afam Ugwu

Abstract:

Records of user activities which are valuable for forensic investigation purposes are provided by web browsers -these records in most cases are not in visual formats that are easily understood, thereby requiring some extra processes. This paper describes the implementation of a software tool for client-side web history visualization providing suitable forensic evidence for investigative purposes. Visual C#, Perl and gnuplot were deployed on Windows Operating System (OS) environment to implement the system and the resulting tool parses and transforms a web browser history into a visual format that enables an investigator to quickly and efficiently explore, understand, and interpret the user online activities in the context of a specific investigation. The system was tested using two forensic cases: the client-side web history files generated by Mozilla Firefox browser was extracted using MozillaHistoryView utility, then parsed and visualized using bar and stacked column charts. From the visual representation, results of user web activities across various productive and non-productive websites were obtained.

Keywords: history, forensics, visualization, web activities

Procedia PDF Downloads 298
677 Rules in Policy Integration, Case Study: Victoria Catchment Management

Authors: Ratri Werdiningtyas, Yongping Wei, Andrew Western

Abstract:

This paper contributes to on-going attempts at bringing together land, water and environmental policy in catchment management. A tension remains in defining the boundaries of policy integration. Most of Integrated Water Resource Management is valued as rhetoric policy. It is far from being achieved on the ground because the socio-ecological system has not been understood and developed into complete and coherent problem representation. To clarify the feature of integration, this article draws on institutional fit for public policy integration and uses these insights in an empirical setting to identify the mechanism that can facilitate effective public integration for catchment management. This research is based on the journey of Victoria’s government from 1890-2016. A total of 274 Victorian Acts related to land, water, environment management published in those periods has been investigated. Four conditions of integration have been identified in their co-evolution: (1) the integration policy based on reserves, (2) the integration policy based on authority interest, (3) policy based on integrated information and, (4) policy based coordinated resource, authority and information. Results suggest that policy coordination among their policy instrument is superior rather than policy integration in the case of catchment management.

Keywords: catchment management, co-evolution, policy integration, phase

Procedia PDF Downloads 249
676 Piezosurgery in Periodontics and Oral Implantology

Authors: Neelesh Papineni

Abstract:

Aim: Piezosurgery is a relatively new technique for osteotomy and osteoplasty that uses ultrasonic vibration. The conventional method of treating periodontal cases are by conventional surgeries. However, in this advancing field the use of motor-driven instruments is being considered less invasive. Out of these motor-driven instruments, piezo-electric device has been introduced to the field of periodontics and oral implantology. This article discusses about the wide range of application of piezo-electric device in periodontology, its advantages over conventional surgical therapies and other motor-driven instruments. Results: Piezo- electric has shown better results in aspect of osteotomy, osteoplasty, implants, and any procedure which includes conserving the bone. Also piezo-electric does not cause any kind of damage to the surrounding soft tissue and eliminates the risk of bone necrosis which is a risk factor in other motor driven instruments. Conclusion: In this era of modern dentistry , a successful periodontal and implant surgery requires a sound osseous support. This review gives a pictorial representation about the wide range of application of piezo-electric device in periodontology.

Keywords: piezo-electric, osteotomy, osteoplasty, implantology

Procedia PDF Downloads 372
675 Structural Barriers to Voting among Young Voters: an Intersectional Approach

Authors: Ryo Sato

Abstract:

The United States and many other countries witness alarmingly low voting rates among youths, skewing democratic representation. Many scholars and pundits have ascribed to this trend young voters' laziness, indifference, and self-centeredness and placed blame on them. However, a growing body of research is focusing on structural barriers to voting, which are defined as built-in obstacles lying in electoral laws and procedures. Drawing on national survey data from 891 young adults in 2020 and extant literature on structural barriers to voting, the project aims to develop a framework for analyzing systematic obstacles to voting experienced by young people and offer tangible policy recommendations. The preliminary findings presented at this conference include an intersectional analysis of the survey data, focusing on how different social categories — race, gender, socioeconomic status, immigration status, and others — in combination create unique voting experiences and barriers. This project offers a critical framework to combat the individualized understanding of low voting rates among youths and inform pathways to functional democracy.

Keywords: youth voting behavior, structural barriers, intersectionality, democratic participation, S

Procedia PDF Downloads 59
674 A Characterization of Skew Cyclic Code with Complementary Dual

Authors: Eusebio Jr. Lina, Ederlina Nocon

Abstract:

Cyclic codes are a fundamental subclass of linear codes that enjoy a very interesting algebraic structure. The class of skew cyclic codes (or θ-cyclic codes) is a generalization of the notion of cyclic codes. This a very large class of linear codes which can be used to systematically search for codes with good properties. A linear code with complementary dual (LCD code) is a linear code C satisfying C ∩ C^⊥ = {0}. This subclass of linear codes provides an optimum linear coding solution for a two-user binary adder channel and plays an important role in countermeasures to passive and active side-channel analyses on embedded cryptosystems. This paper aims to identify LCD codes from the class of skew cyclic codes. Let F_q be a finite field of order q, and θ be an automorphism of F_q. Some conditions for a skew cyclic code to be LCD were given. To this end, the properties of a noncommutative skew polynomial ring F_q[x, θ] of automorphism type were revisited, and the algebraic structure of skew cyclic code using its skew polynomial representation was examined. Using the result that skew cyclic codes are left ideals of the ring F_q[x, θ]/〈x^n-1〉, a characterization of a skew cyclic LCD code of length n was derived. A necessary condition for a skew cyclic code to be LCD was also given.

Keywords: LCD cyclic codes, skew cyclic LCD codes, skew cyclic complementary dual codes, theta-cyclic codes with complementary duals

Procedia PDF Downloads 346
673 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis

Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu

Abstract:

Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.

Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing

Procedia PDF Downloads 139
672 Mapping Crime against Women in India: Spatio-Temporal Analysis, 2001-2012

Authors: Ritvik Chauhan, Vijay Kumar Baraik

Abstract:

Women are most vulnerable to crime despite occupying central position in shaping a society as the first teacher of children. In India too, having equal rights and constitutional safeguards, the incidences of crime against them are large and grave. In this context of crime against women, especially rape has been increasing over time. This paper explores the spatial and temporal aspects of crime against women in India with special reference to rape. It also examines the crime against women with its spatial, socio-economic and demographic associates using related data obtained from the National Crime Records Bureau India, Indian Census and other government sources of the Government of India. The simple statistical, choropleth mapping and other cartographic representation methods have been used to see the crime rates, spatio-temporal patterns of crime, and association of crime with its correlates.  The major findings are visible spatial variations across the country and are also in the rising trends in terms of incidence and rates over the reference period. The study also indicates that the geographical associations are somewhat observed. However, selected indicators of socio-economic factors seem to have no significant bearing on crime against women at this level.

Keywords: crime against women, crime mapping, trend analysis, society

Procedia PDF Downloads 334
671 A Comparative Analysis on QRS Peak Detection Using BIOPAC and MATLAB Software

Authors: Chandra Mukherjee

Abstract:

The present paper is a representation of the work done in the field of ECG signal analysis using MATLAB 7.1 Platform. An accurate and simple ECG feature extraction algorithm is presented in this paper and developed algorithm is validated using BIOPAC software. To detect the QRS peak, ECG signal is processed by following mentioned stages- First Derivative, Second Derivative and then squaring of that second derivative. Efficiency of developed algorithm is tested on ECG samples from different database and real time ECG signals acquired using BIOPAC system. Firstly we have lead wise specified threshold value the samples above that value is marked and in the original signal, where these marked samples face change of slope are spotted as R-peak. On the left and right side of the R-peak, faces change of slope identified as Q and S peak, respectively. Now the inbuilt Detection algorithm of BIOPAC software is performed on same output sample and both outputs are compared. ECG baseline modulation correction is done after detecting characteristics points. The efficiency of the algorithm is tested using some validation parameters like Sensitivity, Positive Predictivity and we got satisfied value of these parameters.

Keywords: first derivative, variable threshold, slope reversal, baseline modulation correction

Procedia PDF Downloads 411
670 3D Virtualization through Data Collected from Measurements of Mobile Signal Reception Power Levels (LTE) Band at Escuela Superior Politécnica de Chimborazo in Riobamba-Ecuador

Authors: Sandra Cuenca, Steven Chango, Fabian Chamba, Alexandra Vaca

Abstract:

This project addresses a representation of a virtual environment based on the analysis of the RSRP (Reference Signal Received Power) obtained by the Network Cell Info Lite application at the Escuela Superior Politécnica de Chimborazo (ESPOCH) considering the open areas of the Business Administration Department in the 4G LTE Frequency (band 2) of Claro Telephony at a frequency of 1967. 5 MHz, where measurements were performed from 17:00 UTC-05:00. The indicators required for the simulation of the environment designed in sketchup were focused especially on the power levels obtained where it was possible to represent the scenario with real power values obtained in each concentric radius of a total of 3 campaigns of 200 samples each, where the values vary between 84.6 dBm to 115.5 dBm having average power values for each of the 23 radiuses which are introduced in a virtual environment, allowing users to immerse themselves in it, where they can explore 3D virtual environments, generating a color scale from 0 to 10 with red being the weakest signal and green the signal with the best intensity.

Keywords: virtualization, LTE, radios, power intensity levels colors, mobile signal reception power

Procedia PDF Downloads 91
669 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control

Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza

Abstract:

In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.

Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing

Procedia PDF Downloads 149
668 Towards a Distributed Computation Platform Tailored for Educational Process Discovery and Analysis

Authors: Awatef Hicheur Cairns, Billel Gueni, Hind Hafdi, Christian Joubert, Nasser Khelifa

Abstract:

Given the ever changing needs of the job markets, education and training centers are increasingly held accountable for student success. Therefore, education and training centers have to focus on ways to streamline their offers and educational processes in order to achieve the highest level of quality in curriculum contents and managerial decisions. Educational process mining is an emerging field in the educational data mining (EDM) discipline, concerned with developing methods to discover, analyze and provide a visual representation of complete educational processes. In this paper, we present our distributed computation platform which allows different education centers and institutions to load their data and access to advanced data mining and process mining services. To achieve this, we present also a comparative study of the different clustering techniques developed in the context of process mining to partition efficiently educational traces. Our goal is to find the best strategy for distributing heavy analysis computations on many processing nodes of our platform.

Keywords: educational process mining, distributed process mining, clustering, distributed platform, educational data mining, ProM

Procedia PDF Downloads 454
667 Woman: Her Identity and Strive for Existence Reflected English Literature

Authors: Diksha Kadam

Abstract:

The study of images of women in literature and women writers has been a significant area of concern for the last four decades because it is as ‘the study of signification and meaning production’ play a vital role in shaping the perceptions and consciousness of various segment of society in relation to the lives, roles, problems and experiences of different categories of women as women and as autonomous citizen of society. In the history of worlds English literature the status of women and representation of her in the writings is an issue of discussion always. The essence of her existence in the literature is felt; the ecstasy of her feelings is always seen. The literature is full of facts and figures. She is one of them. Her contribution to the literature is undoubtedly a beginning of a new era. Multiple challenges and multiple identities as represented in majority of the literary texts and in real provide much hope and assurance to the new generation of mothers and daughters in the direction of transformation of the individual and collective consciousness of society paving way for the emergence of an actually empowered new woman. This paper will focus on some of the prominent Indian and American women writers in English literature and the various dimensions of her image through some of the prominent works. This attempt of mine will be merely a salute to those women who have struggled to prove their identity as one of the members of society.

Keywords: role of women’s writing, new era, contribution to the literature, consciousness, existence

Procedia PDF Downloads 403
666 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction

Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal

Abstract:

Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.

Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction

Procedia PDF Downloads 139
665 Early Design Prediction of Submersible Maneuvers

Authors: Hernani Brinati, Mardel de Conti, Moyses Szajnbok, Valentina Domiciano

Abstract:

This study brings a mathematical model and examples for the numerical prediction of submersible maneuvers in the horizontal and in the vertical planes. The geometry of the submarine is here taken as a body of revolution plus a sail, two horizontal and two vertical rudders. The model includes the representation of the hull resistance and of the propeller thrust and torque, what enables to consider the variation of the longitudinal component of the velocity of the ship when maneuvering. The hydrodynamic forces are represented through power series expansions of the acceleration and velocity components. The hydrodynamic derivatives for the body of revolution are mostly estimated based on fundamental principles applicable to the flow around airplane fuselages in the subsonic regime. The hydrodynamic forces for the sail and rudders are estimated based on a finite aspect ratio wing theory. The objective of this study is to build an expedite model for submarine maneuvers prediction, based on fundamental principles, which may be convenient in the early stages of the ship design. This model is tested against available numerical and experimental data.

Keywords: submarine maneuvers, submarine, maneuvering, dynamics

Procedia PDF Downloads 638
664 Outline of a Technique for the Recommendation of Tourism Products in Cuba Using GIS

Authors: Jesse D. Cano, Marlon J. Remedios

Abstract:

Cuban tourism has developed so much in the last 30 years to the point of becoming one of the engines of the Cuban economy. With such a development, Cuban companies opting for e-tourism as a way to publicize their products and attract customers has also grown. Despite this fact, the majority of Cuban tourism-themed websites simply provide information on the different products and services they offer which results in many cases, in the user getting overwhelmed with the amount of information available which results in the user abandoning the search before he can find a product that fits his needs. Customization has been recognized as a critical factor for successful electronic tourism business and the use of recommender systems is the best approach to address the problem of personalization. This paper aims to outline a preliminary technique to obtain predictions about which products a particular user would give a better evaluation; these products would be those which the website would show in the first place. To achieve this, the theoretical elements of the Cuban tourism environment are discussed; recommendation systems and geographic information systems as tools for information representation are also discussed. Finally, for each structural component identified, we define a set of rules that allows obtaining an electronic tourism system that handles the personalization of the service provided effectively.

Keywords: geographic information system, technique, tourism products, recommendation

Procedia PDF Downloads 504
663 Efficiency of the Strain Based Approach Formulation for Plate Bending Analysis

Authors: Djamal Hamadi, Sifeddine Abderrahmani, Toufik Maalem, Oussama Temami

Abstract:

In recent years many finite elements have been developed for plate bending analysis. The formulated elements are based on the strain based approach. This approach leads to the representation of the displacements by higher order polynomial terms without the need for the introduction of additional internal and unnecessary degrees of freedom. Good convergence can also be obtained when the results are compared with those obtained from the corresponding displacement based elements, having the same total number of degrees of freedom. Furthermore, the plate bending elements are free from any shear locking since they converge to the Kirchhoff solution for thin plates contrarily for the corresponding displacement based elements. In this paper the efficiency of the strain based approach compared to well known displacement formulation is presented. The results obtained by a new formulated plate bending element based on the strain approach and Kirchhoff theory are compared with some others elements. The good convergence of the new formulated element is confirmed.

Keywords: displacement fields, finite elements, plate bending, Kirchhoff theory, strain based approach

Procedia PDF Downloads 297
662 Multiple Fusion Based Single Image Dehazing

Authors: Joe Amalraj, M. Arunkumar

Abstract:

Haze is an atmospheric phenomenon that signicantly degrades the visibility of outdoor scenes. This is mainly due to the atmosphere particles that absorb and scatter the light. This paper introduces a novel single image approach that enhances the visibility of such degraded images. In this method is a fusion-based strategy that derives from two original hazy image inputs by applying a white balance and a contrast enhancing procedure. To blend effectively the information of the derived inputs to preserve the regions with good visibility, we filter their important features by computing three measures (weight maps): luminance, chromaticity, and saliency. To minimize artifacts introduced by the weight maps, our approach is designed in a multiscale fashion, using a Laplacian pyramid representation. This paper demonstrates the utility and effectiveness of a fusion-based technique for de-hazing based on a single degraded image. The method performs in a per-pixel fashion, which is straightforward to implement. The experimental results demonstrate that the method yields results comparative to and even better than the more complex state-of-the-art techniques, having the advantage of being appropriate for real-time applications.

Keywords: single image de-hazing, outdoor images, enhancing, DSP

Procedia PDF Downloads 410
661 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation

Authors: Ksenia Meshkova

Abstract:

With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.

Keywords: neural networks, computer vision, representation learning, autoencoders

Procedia PDF Downloads 128
660 Perception of Violence through the Drawing: A Research with Mexican University Students

Authors: Yessica Martinez Soto, Cesar E. Jimenez Yanez, Margarita Barak Velasquez, Yaralin Aceves Villanueva

Abstract:

The presence of violent behavior in society is growing rapidly, which causes people to live in an environment of constant tension due to fear of becoming victims of violent acts. It is up to social scientists to be able to carry out analyzes in this regard to identify the different ways in which violence is normalized among people. The interest of this research work focuses on investigating the perception of violence in Mexican University students through the technique of drawing. To carry out this research, we worked with 67 university students from the Autonomous University of Baja California in Mexico, who drew an image of how they understood the concept of violence. His works showed us a variety of emotions, actions, and elements that relate and link with violence. One of the methodological tools to recognize and establish the link between the knowledge of a concept between discourse and practice is through graphic representations, that is, drawings. Although the drawing gives us a personal interpretation of the reality of each artist, the repetition of elements and the representation of similar situations allowed us to identify the degrees of incidence of the different types of violence and the areas in which it manifests itself.

Keywords: college students, Mexico, social representations, violence

Procedia PDF Downloads 234
659 Representation of Self and the Client in Social Work Students’ Report

Authors: Unity Nkateng

Abstract:

New forms of academic writing such as apprenticeship genres are developing in the field of applied linguistics. However, these perspectives have not adequately addressed the issue of social work students in Botswana. The paper addresses the issue of academic writing with special attention to the types of documents written by University of Botswana (UB) social work students on their fieldwork placement. The research method for this study combines two major research tools in the qualitative inquiry which are text analysis and interviews in order to investigate the context in which the texts are produced. 12 students were consulted and gave their consent for the study. 26 case reports were collected from the Department of Social work at the University of Botswana. The findings show that the case reports students write during their fieldwork placements have 6 moves, which focus on the clients’ story and describe what the students have done and achieved. The significance is that the discrepancy between professional writing and students writing raise questions about the extent to which students are being prepared for professional writing. Students have indicated that their academic writing varies according to the preferences of individual lecturers rather than the requirement of the work situation.

Keywords: apprenticeship genres, client's voice, material processes, relational possesive processes

Procedia PDF Downloads 244
658 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth

Authors: Valentina Zhang

Abstract:

While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.

Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning

Procedia PDF Downloads 148
657 Physically Informed Kernels for Wave Loading Prediction

Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross

Abstract:

Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.

Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design

Procedia PDF Downloads 195
656 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements

Authors: Yasmeen A. S. Essawy, Khaled Nassar

Abstract:

With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.

Keywords: building information modeling (BIM), elemental graph data model (EGDM), geometric and topological data models, graph theory

Procedia PDF Downloads 384
655 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera

Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin

Abstract:

We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.

Keywords: human action recognition, pose estimation, D-CNN, deep learning

Procedia PDF Downloads 146
654 Spatio- Temporal Gender Based Patterns of Lung Cancer in the Punjab Province of Pakistan, 2008-2012

Authors: Rubab Z. Kahlon, Ibtisam Butt, Isma Younis, Aamer G. Mufti

Abstract:

Worldwide lung cancer 1.61 million cases were seen in both genders. Lung carcinoma is the major cause of both morbidity and mortality in the world. Purpose of the present study was to describe the spatio- temporal trends of lung cancer in both genders. A retrospective study was conducted. Total 1498 patients of lung carcinoma were examined. Only lung cancer patients from all over the Punjab were included in the present study. MS Excel 2010 was used for data tabulation and calculation while the Arc GIS version 9.3 was used for geographical representation of the data. 1498 cases of Lung cancer were found from 2008-2012. The number of male patients was 1236 and female was 262. Majority of the patients were from Lahore districts with 807 patients. Lung cancer was more prevalent in male as compared to female in our region. Increase in the prevalence of lung cancer was prominently seen in the most populated and industrial areas of the Punjab province. Time trend of five years showed fluctuation in the lung cancer incidence during the study period.

Keywords: districts, gender, lung cancer trends, Punjab province of Pakistan

Procedia PDF Downloads 533
653 Media Regulation and Public Sphere in the Digital Age: An Analysis in the Light of Constructive Democracy

Authors: Carlos Marden Cabral Coutinho, Jose Luis Bolzan de Morais

Abstract:

The article proposed intends to analyze the possibility (and conditions) of a media regulation law in a democratic rule of law in the twenty-first century. To do so, will be presented initially the idea of the public sphere (by Jürgen Habermas), showing how it is presented as an interface between the citizen and the state (or the private and public) and how important is it in a deliberative democracy. Based on this paradigm, the traditional perception of the role of public information (such as system functional element) and on the possibility of media regulation will be exposed, due to the public nature of their activity. A critical argument will then be displayed from two different perspectives: a) the formal function of the current media information, considering that the digital age has fragmented the information access; b) the concept of a constructive democracy, which reduces the need for representation, changing the strategic importance of the public sphere. The question to be addressed (based on the comparative law) is if the regulation is justified in a polycentric democracy, especially when it operates under the digital age (with immediate and virtual communication). The proposal is to be presented in the sense that even in a twenty-first century the media in a democratic rule of law still has an extremely important role and may be subject to regulation, but this should be on terms very different (and narrower) from those usually defended.

Keywords: constructive democracy, media, digital age, public sphere

Procedia PDF Downloads 381