Search results for: non-linear viscous dampers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1597

Search results for: non-linear viscous dampers

997 Collocation Method for Coupled System of Boundary Value Problems with Cubic B-Splines

Authors: K. N. S. Kasi Viswanadham

Abstract:

Coupled system of second order linear and nonlinear boundary value problems occur in various fields of Science and Engineering. In the formulation of the problem, any one of 81 possible types of boundary conditions may occur. These 81 possible boundary conditions are written as a combination of four boundary conditions. To solve a coupled system of boundary value problem with these converted boundary conditions, a collocation method with cubic B-splines as basis functions has been developed. In the collocation method, the mesh points of the space variable domain have been selected as the collocation points. The basis functions have been redefined into a new set of basis functions which in number match with the number of mesh points in the space variable domain. The solution of a non-linear boundary value problem has been obtained as the limit of a sequence of solutions of linear boundary value problems generated by quasilinearization technique. Several linear and nonlinear boundary value problems are presented to test the efficiency of the proposed method and found that numerical results obtained by the present method are in good agreement with the exact solutions available in the literature.

Keywords: collocation method, coupled system, cubic b-splines, mesh points

Procedia PDF Downloads 201
996 Quadratic Convective Flow of a Micropolar Fluid in a Non-Darcy Porous Medium with Convective Boundary Condition

Authors: Ch. Ramreddy, P. Naveen, D. Srinivasacharya

Abstract:

The objective of the present study is to investigate the effect of nonlinear temperature and concentration on the mixed convective flow of micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of convective boundary condition. In order to analyze all the essential features, the transformed nonlinear conservation equations are worked out numerically by spectral method. By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the coupling number and inclination of angle tend to decrease the skin friction, mass transfer rate and the reverse change is there in wall couple stress and heat transfer rate. The nominal effect on the wall couple stress and skin friction is encountered whereas the significant effect on the local heat and mass transfer rates are found for high enough values of Biot number.

Keywords: convective boundary condition, micropolar fluid, non-darcy porous medium, non-linear convection, spectral method

Procedia PDF Downloads 262
995 Direct Displacement-Based Design Procedure for Performance-Based Seismic Design of Structures

Authors: Haleh Hamidpour

Abstract:

Since the seismic damageability of structures is controlled by the inelastic deformation capacities of structural elements, seismic design of structure based on force analogy methods is not appropriate. In recent year, the basic approach of design codes have been changed from force-based approach to displacement-based. In this regard, a Direct Displacement-Based Design (DDBD) and a Performance-Based Plastic Design (PBPD) method are proposed. In this study, the efficiency of these two methods on seismic performance of structures is evaluated through a sample 12-story reinforced concrete moment frame. The building is designed separately based on the DDBD and the PBPD methods. Once again the structure is designed by the traditional force analogy method according to the FEMA P695 regulation. Different design method results in different structural elements. Seismic performance of these three structures is evaluated through nonlinear static and nonlinear dynamic analysis. The results show that the displacement-based design methods accommodate the intended performance objectives better than the traditional force analogy method.

Keywords: direct performance-based design, ductility demands, inelastic seismic performance, yield mechanism

Procedia PDF Downloads 319
994 Scope of Heavy Oil as a Fuel of the Future

Authors: Kiran P. Chadayamuri, Saransh Bagdi

Abstract:

Increasing imbalance between energy supply and demand has made nations and companies involved in the energy sector to boost up their research and find suitable solutions. With the high rates at which conventional oil and gas resources are depleting, efficient exploration and exploitation of heavy oil could just be the answer. Heavy oil may be defined as crude oil having API gravity value of less than 20⁰. They are highly viscous, have low hydrogen to carbon ratios and are known to produce high carbon residues. They have high contents of asphaltenes, heavy metals, sulphur and nitrogen in them. Due to these properties extraction, transportation and refining of crude oil have its share of challenges. Lack of suitable technology has hindered its production in the past, but now things are going in a more positive direction. The aim of this paper is to study the various advantages of heavy oil, associated limitations and its feasibility as a fuel of the future.

Keywords: energy, heavy oil, fuel, future

Procedia PDF Downloads 277
993 Set-point Performance Evaluation of Robust ‎Back-Stepping Control Design for a Nonlinear ‎Electro-‎Hydraulic Servo System

Authors: Maria Ahmadnezhad, Seyedgharani Ghoreishi ‎

Abstract:

Electrohydraulic servo system have been used in industry in a wide ‎number of applications. Its ‎dynamics are highly nonlinear and also ‎have large extent of model uncertainties and external ‎disturbances. ‎In this thesis, a robust back-stepping control (RBSC) scheme is ‎proposed to overcome ‎the problem of disturbances and system ‎uncertainties effectively and to improve the set-point ‎performance ‎of EHS systems. In order to implement the proposed control ‎scheme, the system ‎uncertainties in EHS systems are considered as ‎total leakage coefficient and effective oil volume. In ‎addition, in ‎order to obtain the virtual controls for stabilizing system, the ‎update rule for the ‎system uncertainty term is induced by the ‎Lyapunov control function (LCF). To verify the ‎performance and ‎robustness of the proposed control system, computer simulation of ‎the ‎proposed control system using Matlab/Simulink Software is ‎executed. From the computer ‎simulation, it was found that the ‎RBSC system produces the desired set-point performance and ‎has ‎robustness to the disturbances and system uncertainties of ‎EHS systems.‎

Keywords: electro hydraulic servo system, back-stepping control, robust back-‎stepping control, Lyapunov redesign‎

Procedia PDF Downloads 987
992 Revisiting the Impact of Oil Price on Trade Deficit of Pakistan: Evidence from Nonlinear Auto-Regressive Distributed Lag Model and Asymmetric Multipliers

Authors: Qaiser Munir, Hamid Hussain

Abstract:

Oil prices are believed to have a major impact on several economic indicators, leading to several instances where a comparison between oil prices and a trade deficit of oil-importing countries have been carried out. Building upon the narrative, this paper sheds light on the ongoing debate by inquiring upon the possibility of asymmetric linkages between oil prices, industrial production, exchange rate, whole price index, and trade deficit. The analytical tool used to further understand the complexities of a recent approach called nonlinear auto-regressive distributed lag model (NARDL) is utilised. Our results suggest that there are significant asymmetric effects among the main variables of interest. Further, our findings indicate that any variation in oil prices, industrial production, exchange rate, and whole price index on trade deficit tend to fluctuate in the long run. Moreover, the long-run picture denotes that increased oil price leads to a negative impact on the trade deficit, which, in its true essence, is a disproportionate impact. In addition to this, the Wald test simultaneously conducted concludes the absence of any significant evidence of the asymmetry in the oil prices impact on the trade balance in the short-run.

Keywords: trade deficit, oil prices, developing economy, NARDL

Procedia PDF Downloads 126
991 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes

Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy

Abstract:

This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.

Keywords: attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques

Procedia PDF Downloads 312
990 Inverse Heat Conduction Analysis of Cooling on Run-Out Tables

Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi

Abstract:

In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.

Keywords: inverse analysis, function specification, neural net works, particle swarm, run-out table

Procedia PDF Downloads 228
989 A Review of Masonry Buildings Restrengthening Methods

Authors: Negar Sartipzadeh

Abstract:

The historic buildings are generally the ones which have been built by materials like brick, mud, stone, and wood. Some phenomena such as severe earthquakes can be tremendously detrimental to the structures, imposing serious effects and losses on such structures. Hence, it matters a lot to ascertain safety and reliability of the structures under such circumstances. It has been asserted that the major reason for the collapse of Unreinforced Masonry (URM) in various earthquakes is the incapability of resisting the forces and vice versa because such URMs are meant for the gravity load and they fail to withstand the shear forces inside the plate and the bending forces outside the plate. For this reason, restrengthening such structures is a key factor in lowering the seismic loss in developing countries. Seismic reinforcement of the historic buildings with regard to their cultural value on one hand, and exhaustion and damage of many of the structural elements on the other hand, have brought in restricting factors which necessitate the seismic reinforcement methods meant for such buildings to be maximally safe, non-destructive, effective, and non-obvious. Henceforth, it is pinpointed that making use of diverse technologies such as active controlling, Energy dampers, and seismic separators besides the current popular methods would be justifiable for such buildings, notwithstanding their high imposed costs.

Keywords: masonry buildings, seismic reinforcement, Unreinforced Masonry (URM), earthquake

Procedia PDF Downloads 270
988 Oxygen Transfer in Viscous Non-Newtonian Liquid in a Hybrid Bioreactor

Authors: Sérgio S. de Jesus, Aline Santana, Rubens Maciel Filho

Abstract:

Global oxygen transfer coefficient (kLa) was characterized in a mechanically agitated airlift bio reactor. The experiments were carried out in an airlift bio reactor (3.2 L) with internal re circulation (a concentric draft-tube airlift vessel device); the agitation is carried out through a turbine Rushton impeller located along with the gas sparger in the region comprised in the riser. The experiments were conducted using xanthan gum (0.6%) at 250 C and a constant rotation velocity of 0 and 800 rpm, as well as in the absence of agitation (airlift mode); the superficial gas velocity varied from 0.0157 to 0.0262 ms-1. The volumetric oxygen transfer coefficient dependence of the rotational speed revealed that the presence of agitation increased up to two times the kLa value.

Keywords: aeration, mass transfer, non-Newtonian fluids, stirred airlift bioreactor

Procedia PDF Downloads 449
987 Tracking Performance Evaluation of Robust Back-Stepping Control Design for a ‎Nonlinear Electro-Hydraulic Servo System

Authors: Maria Ahmadnezhad, Mohammad Reza Soltanpour

Abstract:

Electrohydraulic servo systems have been used in industry in a wide number of applications. Its dynamics ‎are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this ‎thesis, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of ‎disturbances and system uncertainties effectively and to improve the tracking performance of EHS ‎systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems ‎are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the ‎virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the ‎Lyapunov control function (LCF). To verify the performance and robustness of the proposed control ‎system, computer simulation of the proposed control system using Matlab/Simulink Software is ‎executed. From the computer simulation, it was found that the RBSC system produces the desired ‎tracking performance and has robustness to the disturbances and system uncertainties of EHS systems.‎

Keywords: electro hydraulic servo system, back-stepping control, robust back-stepping control, Lyapunov redesign

Procedia PDF Downloads 284
986 Vibration Control of a Tracked Vehicle Driver Seat via Magnetorheological Damper

Authors: Wael Ata

Abstract:

Tracked vehicles are exposed to severe operating conditions during their battlefield. The suspension system of such vehicles plays a crucial role in the mitigation of vibration transmitted from unevenness to vehicle hull and consequently to the crew. When the vehicles are crossing the road with high speeds, the driver is subjected to a high magnitude of vibration dose. This is because of the passive suspension system of the tracked vehicle lack the effectiveness to withstand induced vibration from irregular terrains. This paper presents vibration control of a semi-active seat suspension incorporating Magnetorheological (MR) damper fitted to a driver seat of an amphibious tracked vehicle (BMP-1). A half vehicle model featuring the proposed semi-active seat suspension is developed and its governing equations are derived. Two controllers namely; skyhook and fuzzy logic skyhook based to suppress the vibration dose at driver’s seat are formulated. The results show that the controlled MR suspension seat along with the vehicle model has substantially suppressed vibration levels at the driver’s seat under bump and sinusoidal excitations

Keywords: Tracked Vehicles, MR dampers, Skyhook controller, fuzzy logic controller

Procedia PDF Downloads 106
985 The Observable Method for the Regularization of Shock-Interface Interactions

Authors: Teng Li, Kamran Mohseni

Abstract:

This paper presents an inviscid regularization technique that is capable of regularizing the shocks and sharp interfaces simultaneously in the shock-interface interaction simulations. The direct numerical simulation of flows involving shocks has been investigated for many years and a lot of numerical methods were developed to capture the shocks. However, most of these methods rely on the numerical dissipation to regularize the shocks. Moreover, in high Reynolds number flows, the nonlinear terms in hyperbolic Partial Differential Equations (PDE) dominates, constantly generating small scale features. This makes direct numerical simulation of shocks even harder. The same difficulty happens in two-phase flow with sharp interfaces where the nonlinear terms in the governing equations keep sharpening the interfaces to discontinuities. The main idea of the proposed technique is to average out the small scales that is below the resolution (observable scale) of the computational grid by filtering the convective velocity in the nonlinear terms in the governing PDE. This technique is named “observable method” and it results in a set of hyperbolic equations called observable equations, namely, observable Navier-Stokes or Euler equations. The observable method has been applied to the flow simulations involving shocks, turbulence, and two-phase flows, and the results are promising. In the current paper, the observable method is examined on the performance of regularizing shocks and interfaces at the same time in shock-interface interaction problems. Bubble-shock interactions and Richtmyer-Meshkov instability are particularly chosen to be studied. Observable Euler equations will be numerically solved with pseudo-spectral discretization in space and third order Total Variation Diminishing (TVD) Runge Kutta method in time. Results are presented and compared with existing publications. The interface acceleration and deformation and shock reflection are particularly examined.

Keywords: compressible flow simulation, inviscid regularization, Richtmyer-Meshkov instability, shock-bubble interactions.

Procedia PDF Downloads 341
984 Interactive Winding Geometry Design of Power Transformers

Authors: Paffrath Meinhard, Zhou Yayun, Guo Yiqing, Ertl Harald

Abstract:

Winding geometry design is an important part of power transformer electrical design. Conventionally, the winding geometry is designed manually, which is a time-consuming job because it involves many iteration steps in order to meet all cost, manufacturing and electrical requirements. Here a method is presented which automatically generates the winding geometry for given user parameters and allows the user to interactively set and change parameters. To achieve this goal, the winding problem is transferred to a mixed integer nonlinear optimization problem. The relevant geometrical design parameters are defined as optimization variables. The cost and other requirements are modeled as constraints. For the solution, a stochastic ant colony optimization algorithm is applied. It is well-known, that an optimizer can get stuck in a local minimum. For the winding problem, we present efficient strategies to come out of local minima, furthermore a reduced variable search range helps to accelerate the solution process. Numerical examples show that the optimization result is delivered within seconds such that the user can interactively change the variable search area and constraints to improve the design.

Keywords: ant colony optimization, mixed integer nonlinear programming, power transformer, winding design

Procedia PDF Downloads 370
983 Constitutive Modeling of Different Types of Concrete under Uniaxial Compression

Authors: Mostafa Jafarian Abyaneh, Khashayar Jafari, Vahab Toufigh

Abstract:

The cost of experiments on different types of concrete has raised the demand for prediction of their behavior with numerical analysis. In this research, an advanced numerical model has been presented to predict the complete elastic-plastic behavior of polymer concrete (PC), high-strength concrete (HSC), high performance concrete (HPC) along with different steel fiber contents under uniaxial compression. The accuracy of the numerical response was satisfactory as compared to other conventional simple models such as Mohr-Coulomb and Drucker-Prager. In order to predict the complete elastic-plastic behavior of specimens including softening behavior, disturbed state concept (DSC) was implemented by nonlinear finite element analysis (NFEA) and hierarchical single surface (HISS) failure criterion, which is a failure surface without any singularity.

Keywords: disturbed state concept (DSC), hierarchical single surface (HISS) failure criterion, high performance concrete (HPC), high-strength concrete (HSC), nonlinear finite element analysis (NFEA), polymer concrete (PC), steel fibers, uniaxial compression test

Procedia PDF Downloads 302
982 The Modeling of Viscous Microenvironment for the Coupled Enzyme System of Bioluminescence Bacteria

Authors: Irina E. Sukovataya, Oleg S. Sutormin, Valentina A. Kratasyuk

Abstract:

Effect of viscosity of media on kinetic parameters of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase was investigated with addition of organic solvents (glycerol and sucrose), because bioluminescent enzyme systems based on bacterial luciferases offer a unique and general tool for analysis of the many analytes and enzymes in the environment, research, and clinical laboratories and other fields. The possibility of stabilization and increase of activity of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase activity in vicious aqueous-organic mixtures have been shown.

Keywords: coupled enzyme system of bioluminescence bacteria NAD(P)H:FMN-oxidoreductase–luciferase, glycerol, stabilization of enzymes, sucrose

Procedia PDF Downloads 384
981 The Effect of Radiation on Unsteady MHD Flow past a Vertical Porous Plate in the Presence of Heat Flux

Authors: Pooja Sharma

Abstract:

In the present paper the effects of radiation is studied on unsteady flow of viscous incompressible electrically conducting fluid past a vertical porous plate embedded in the porous medium in the presence of constant heat flux. A uniform Transverse Magnetic field is considered and induced magnetic field is supposed as negligible. The non-linear governing equations are solved numerically. Numerical results of the velocity and temperature fields are shown through graphs. The results illustrates that the appropriator combination of regulated values of thermo-physical parameters is expedient for controlling the flow system.

Keywords: heat transfer, radiation, MHD flow, porous medium

Procedia PDF Downloads 428
980 Study of Two MPPTs for Photovoltaic Systems Using Controllers Based in Fuzzy Logic and Sliding Mode

Authors: N. Ould cherchali, M. S. Boucherit, L. Barazane, A. Morsli

Abstract:

Photovoltaic power is widely used to supply isolated or unpopulated areas (lighting, pumping, etc.). Great advantage is that this source is inexhaustible, it offers great safety in use and it is clean. But the dynamic models used to describe a photovoltaic system are complicated and nonlinear and due to nonlinear I-V and P–V characteristics of photovoltaic generators, a maximum power point tracking technique (MPPT) is required to maximize the output power. In this paper, two online techniques of maximum power point tracking using robust controller for photovoltaic systems are proposed, the first technique use fuzzy logic controller (FLC) and the second use sliding mode controller (SMC) for photovoltaic systems. The two maximum power point tracking controllers receive the partial derivative of power as inputs, and the output is the duty cycle corresponding to maximum power. A Photovoltaic generator with Boost converter is developed using MATLAB/Simulink to verify the preferences of the proposed techniques. SMC technique provides a good tracking speed in fast changing irradiation and when the irradiation changes slowly or is constant the panel power of FLC technique presents a much smoother signal with less fluctuations.

Keywords: fuzzy logic controller, maximum power point, photovoltaic system, tracker, sliding mode controller

Procedia PDF Downloads 533
979 Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing Using Radial Basis Functions

Authors: David Kriebel, Jan Edgar Mehner

Abstract:

The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced, which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retaining the high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurately by using traditional arbitrary shape functions.

Keywords: electromechanical, electric field, transducer, simulation, modeling, finite-element, mesh morphing, radial basis function

Procedia PDF Downloads 226
978 Comparison of Reserve Strength Ratio and Capacity Curve Parameters of Offshore Platforms with Distinct Bracing Arrangements

Authors: Aran Dezhban, Hooshang Dolatshahi Pirooz

Abstract:

The phenomenon of corrosion, especially in the Persian Gulf region, is the main cause of the deterioration of offshore platforms, due to the high corrosion of its water. This phenomenon occurs mostly in the area of water spraying, threatening the members of the first floor of the jacket, legs, and piles in this area. In the current study, the effect of bracing arrangement on the Capacity Curve and Reserve Strength Ratio of Fixed-Type Offshore Platforms is investigated. In order to continue the operation of the platform, two modes of robust and damaged structures are considered, while checking the adequacy of the platform capacity based on the allowable values of API RP-2SIM regulations. The platform in question is located in the Persian Gulf, which is modeled on the OpenSEES software. In this research, the Nonlinear Pushover Analysis has been used. After validation, the Capacity Curve of the studied platforms is obtained and then their Reserve Strength Ratio is calculated. Results are compared with the criteria in the API-2SIM regulations.

Keywords: fixed-type jacket structure, structural integrity management, nonlinear pushover analysis, robust and damaged structure, reserve strength ration, capacity curve

Procedia PDF Downloads 106
977 Finite Element Method Analysis of Occluded-Ear Simulator and Natural Human Ear Canal

Authors: M. Sasajima, T. Yamaguchi, Y. Hu, Y. Koike

Abstract:

In this paper, we discuss the propagation of sound in the narrow pathways of an occluded-ear simulator typically used for the measurement of insert-type earphones. The simulator has a standardized frequency response conforming to the international standard (IEC60318-4). In narrow pathways, the speed and phase of sound waves are modified by viscous air damping. In our previous paper, we proposed a new finite element method (FEM) to consider the effects of air viscosity in this type of audio equipment. In this study, we will compare the results from the ear simulator FEM model, and those from a three dimensional human ear canal FEM model made from computed tomography images, with the measured frequency response data from the ear canals of 18 people.

Keywords: ear simulator, FEM, viscosity, human ear canal

Procedia PDF Downloads 396
976 Effect of Synthetic Jet on Wind Turbine Noise

Authors: Reda Mankbadi

Abstract:

The current work explores the use of Synthetic Jet Actuators (SJAs) for control of the acoustic radiation of a low-speed transitioning airfoil in a uniform stream. In the adopted numerical procedure, the actuator is modeled without its resonator cavity through imposing a simple fluctuating-velocity boundary condition at the bottom of the actuator's orifice. The orifice cavity, with the properly defined boundary condition, is then embedded into the airfoil surface. High-accuracy viscous simulations are then conducted to study the effects of the actuation on sound radiated by the airfoil. Results show that SJA can considerably suppress the radiated sound of the airfoil in uniform incoming stream.

Keywords: simulations, aeroacoustics, wind turbine noise, synthetic jet actuators (SJAs)

Procedia PDF Downloads 343
975 Control of an Asymmetrical Design of a Pneumatically Actuated Ambidextrous Robot Hand

Authors: Emre Akyürek, Anthony Huynh, Tatiana Kalganova

Abstract:

The Ambidextrous Robot Hand is a robotic device with the purpose to mimic either the gestures of a right or a left hand. The symmetrical behavior of its fingers allows them to bend in one way or another keeping a compliant and anthropomorphic shape. However, in addition to gestures they can reproduce on both sides, an asymmetrical mechanical design with a three tendons routing has been engineered to reduce the number of actuators. As a consequence, control algorithms must be adapted to drive efficiently the ambidextrous fingers from one position to another and to include grasping features. These movements are controlled by pneumatic muscles, which are nonlinear actuators. As their elasticity constantly varies when they are under actuation, the length of pneumatic muscles and the force they provide may differ for a same value of pressurized air. The control algorithms introduced in this paper take both the fingers asymmetrical design and the pneumatic muscles nonlinearity into account to permit an accurate control of the Ambidextrous Robot Hand. The finger motion is achieved by combining a classic PID controller with a phase plane switching control that turns the gain constants into dynamic values. The grasping ability is made possible because of a sliding mode control that makes the fingers adapt to the shape of an object before strengthening their positions.

Keywords: ambidextrous hand, intelligent algorithms, nonlinear actuators, pneumatic muscles, robotics, sliding control

Procedia PDF Downloads 278
974 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 207
973 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.

Keywords: deep learning, optical Soliton, neural network, partial differential equation

Procedia PDF Downloads 110
972 Identification of Switched Reluctance Motor Parameters Using Exponential Swept-Sine Signal

Authors: Abdelmalek Ouannou, Adil Brouri, Laila Kadi, Tarik

Abstract:

Switched reluctance motor (SRM) has a major interest in a large domain as in electric vehicle driving because of its wide range of speed operation, high performances, low cost, and robustness to run under degraded conditions. The purpose of the paper is to develop a new analytical approach for modeling SRM parameters. Then, an identification scheme is proposed to obtain the SRM parameters. Since the SRM is featured by a highly nonlinear behavior, modeling these devices is difficult. Then, it is convenient to develop an accurate model describing the SRM. Furthermore, it is always operated in the magnetically saturated mode to maximize the energy transfer. Accordingly, it is shown that the SRM can be accurately described by a generalized polynomial Hammerstein model, i.e., the parallel connection of several Hammerstein models having polynomial nonlinearity. Presently an analytical identification method is developed using a chirp excitation signal. Afterward, the parameters of the obtained model have been determined using Finite Element Method analysis. Finally, in order to show the effectiveness of the proposed method, a comparison between the true and estimate models has been performed. The obtained results show that the output responses are very close.

Keywords: switched reluctance motor, swept-sine signal, generalized Hammerstein model, nonlinear system

Procedia PDF Downloads 227
971 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations

Authors: Shank Kulkarni, Alireza Tabarraei

Abstract:

The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.

Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test

Procedia PDF Downloads 229
970 Seismic Evaluation of Multi-Plastic Hinge Design Approach on RC Shear Wall-Moment Frame Systems against Near-Field Earthquakes

Authors: Mohsen Tehranizadeh, Mahboobe Forghani

Abstract:

The impact of higher modes on the seismic response of dual structural system consist of concrete moment-resisting frame and with RC shear walls is investigated against near-field earthquakes in this paper. a 20 stories reinforced concrete shear wall-special moment frame structure is designed in accordance with ASCE7 requirements and The nonlinear model of the structure was performed on OpenSees platform. Nonlinear time history dynamic analysis with 3 near-field records are performed on them. In order to further understand the structural collapse behavior in the near field, the response of the structure at the moment of collapse especially the formation of plastic hinges is explored. The results revealed that the amplification of moment at top of the wall due to higher modes, the plastic hinge can form in the upper part of wall, even when designed and detailed for plastic hinging at the base only (according to ACI code).on the other hand, shear forces in excess of capacity design values can develop due to the contribution of the higher modes of vibration to dynamic response due to the near field can cause brittle shear or sliding failure modes. The past investigation on shear walls clearly shows the dual-hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the wall. In this study, to investigate the implications of multi-design approach, 4 models with varies arrangement of hinge plastics at the base and height of the shear wall are considered. results base on time history analysis showed that the dual or multi plastic hinges approach can be useful in order to control the high moment and shear demand of higher mode effect.

Keywords: higher mode effect, Near-field earthquake, nonlinear time history analysis, multi plastic hinge design

Procedia PDF Downloads 417
969 On the Free-Surface Generated by the Flow over an Obstacle in a Hydraulic Channel

Authors: M. Bouhadef, K. Bouzelha-Hammoum, T. Guendouzen-Dabouz, A. Younsi, T. Zitoun

Abstract:

The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid.

Keywords: experiments, free-surface flow, hydraulic channel, subcritical regime, supercritical flow

Procedia PDF Downloads 295
968 Analysis of Slip Flow Heat Transfer between Asymmetrically Heated Parallel Plates

Authors: Hari Mohan Kushwaha, Santosh Kumar Sahu

Abstract:

In the present study, analysis of heat transfer is carried out in the slip flow region for the fluid flowing between two parallel plates by employing the asymmetric heat fluxes at surface of the plates. The flow is assumed to be hydrodynamically and thermally fully developed for the analysis. The second order velocity slip and viscous dissipation effects are considered for the analysis. Closed form expressions are obtained for the Nusselt number as a function of Knudsen number and modified Brinkman number. The limiting condition of the present prediction for Kn = 0, Kn2 = 0, and Brq1 = 0 is considered and found to agree well with other analytical results.

Keywords: Knudsen number, modified Brinkman number, slip flow, velocity slip

Procedia PDF Downloads 372