Search results for: maximal covering location problem
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9955

Search results for: maximal covering location problem

9355 Interval Bilevel Linear Fractional Programming

Authors: F. Hamidi, N. Amiri, H. Mishmast Nehi

Abstract:

The Bilevel Programming (BP) model has been presented for a decision making process that consists of two decision makers in a hierarchical structure. In fact, BP is a model for a static two person game (the leader player in the upper level and the follower player in the lower level) wherein each player tries to optimize his/her personal objective function under dependent constraints; this game is sequential and non-cooperative. The decision making variables are divided between the two players and one’s choice affects the other’s benefit and choices. In other words, BP consists of two nested optimization problems with two objective functions (upper and lower) where the constraint region of the upper level problem is implicitly determined by the lower level problem. In real cases, the coefficients of an optimization problem may not be precise, i.e. they may be interval. In this paper we develop an algorithm for solving interval bilevel linear fractional programming problems. That is to say, bilevel problems in which both objective functions are linear fractional, the coefficients are interval and the common constraint region is a polyhedron. From the original problem, the best and the worst bilevel linear fractional problems have been derived and then, using the extended Charnes and Cooper transformation, each fractional problem can be reduced to a linear problem. Then we can find the best and the worst optimal values of the leader objective function by two algorithms.

Keywords: best and worst optimal solutions, bilevel programming, fractional, interval coefficients

Procedia PDF Downloads 447
9354 Non-Stationary Stochastic Optimization of an Oscillating Water Column

Authors: María L. Jalón, Feargal Brennan

Abstract:

A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response.

Keywords: non-stationary stochastic optimization, oscillating water, temporal variability, wave energy

Procedia PDF Downloads 373
9353 Non-Dominated Sorting Genetic Algorithm (NSGA-II) for the Redistricting Problem in Mexico

Authors: Antonin Ponsich, Eric Alfredo Rincon Garcia, Roman Anselmo Mora Gutierrez, Miguel Angel Gutierrez Andrade, Sergio Gerardo De Los Cobos Silva, Pedro Lara Velzquez

Abstract:

The electoral zone design problem consists in redrawing the boundaries of legislative districts for electoral purposes in such a way that federal or state requirements are fulfilled. In Mexico, this process has been historically carried out by the National Electoral Institute (INE), by optimizing an integer nonlinear programming model, in which population equality and compactness of the designed districts are considered as two conflicting objective functions, while contiguity is included as a hard constraint. The solution technique used by the INE is a Simulated Annealing (SA) based algorithm, which handles the multi-objective nature of the problem through an aggregation function. The present work represents the first intent to apply a classical Multi-Objective Evolutionary Algorithm (MOEA), the second version of the Non-dominated Sorting Genetic Algorithm (NSGA-II), to this hard combinatorial problem. First results show that, when compared with the SA algorithm, the NSGA-II obtains promising results. The MOEA manages to produce well-distributed solutions over a wide-spread front, even though some convergence troubles for some instances constitute an issue, which should be corrected in future adaptations of MOEAs to the redistricting problem.

Keywords: multi-objective optimization, NSGA-II, redistricting, zone design problem

Procedia PDF Downloads 367
9352 A New Spell-Out Mechanism

Authors: Yusra Yahya

Abstract:

In this paper, a new spell-out mechanism is developed and defended. This mechanism builds on the role of phase heads as both the loci of spell-out features and the transfer triggers via either Phase Impenetrability Condition 1 (PIC1) and/or Phase Impenetrability Condition 2 (PIC2). The assumption here is that phase heads, mainly v*, can regulate the spell-out process by deciding both the type of spell-out applying and the timing of spell-out relevant. This paper also proposes a new form of the constraint Wrap call it Wrap-XP’ and it is assumed to apply to IP as a functional maximal projection. This extension is shown to fall as a natural result once we assume the new theory of phases and multiple spell-out. Moreover, it is proposed in this work that some forms of XP movement are not motivated by an EPP feature of a strong phase head mainly v*, but they are rather motivated by a last resort strategy to accomplish the spell-out instruction of this phase head.

Keywords: linguistics, syntax, phonology, phase theory, optimality theory

Procedia PDF Downloads 514
9351 Dosimetric Comparison among Different Head and Neck Radiotherapy Techniques Using PRESAGE™ Dosimeter

Authors: Jalil ur Rehman, Ramesh C. Tailor, Muhammad Isa Khan, Jahnzeeb Ashraf, Muhammad Afzal, Geofferry S. Ibbott

Abstract:

Purpose: The purpose of this analysis was to investigate dose distribution of different techniques (3D-CRT, IMRT and VMAT) of head and neck cancer using 3-dimensional dosimeter called PRESAGETM Dosimeter. Materials and Methods: Computer tomography (CT) scans of radiological physics center (RPC) head and neck anthropomorphic phantom with both RPC standard insert and PRESAGETM insert were acquired separated with Philipp’s CT scanner and both CT scans were exported via DICOM to the Pinnacle version 9.4 treatment planning system (TPS). Each plan was delivered twice to the RPC phantom first containing the RPC standard insert having TLD and film dosimeters and then again containing the Presage insert having 3-D dosimeter (PRESAGETM) by using a Varian True Beam linear accelerator. After irradiation, the standard insert including point dose measurements (TLD) and planar Gafchromic® EBT film measurement were read using RPC standard procedure. The 3D dose distribution from PRESAGETM was read out with the Duke Midsized optical scanner dedicated to RPC (DMOS-RPC). Dose volume histogram (DVH), mean and maximal doses for organs at risk were calculated and compared among each head and neck technique. The prescription dose was same for all head and neck radiotherapy techniques which was 6.60 Gy/friction. Beam profile comparison and gamma analysis were used to quantify agreements among film measurement, PRESAGETM measurement and calculated dose distribution. Quality assurances of all plans were performed by using ArcCHECK method. Results: VMAT delivered the lowest mean and maximum doses to organ at risk (spinal cord, parotid) than IMRT and 3DCRT. Such dose distribution was verified by absolute dose distribution using thermoluminescent dosimeter (TLD) system. The central axial, sagittal and coronal planes were evaluated using 2D gamma map criteria(± 5%/3 mm) and results were 99.82% (axial), 99.78% (sagital), 98.38% (coronal) for VMAT plan and found the agreement between PRESAGE and pinnacle was better than IMRT and 3D-CRT plan excludes a 7 mm rim at the edge of the dosimeter. Profile showed good agreement for all plans between film, PRESAGE and pinnacle and 3D gamma was performed for PTV and OARs, VMAT and 3DCRT endow with better agreement than IMRT. Conclusion: VMAT delivered lowered mean and maximal doses to organs at risk and better PTV coverage during head and neck radiotherapy. TLD, EBT film and PRESAGETM dosimeters suggest that VMAT was better for the treatment of head and neck cancer than IMRT and 3D-CRT.

Keywords: RPC, 3DCRT, IMRT, VMAT, EBT2 film, TLD, PRESAGETM

Procedia PDF Downloads 397
9350 An Ant Colony Optimization Approach for the Pollution Routing Problem

Authors: P. Parthiban, Sonu Rajak, N. Kannan, R. Dhanalakshmi

Abstract:

This paper deals with the Vehicle Routing Problem (VRP) with environmental considerations which is called Pollution Routing Problem (PRP). The objective is to minimize the operational and environmental costs. It consists of routing a number of vehicles to serve a set of customers, and determining fuel consumption, driver wages and their speed on each route segment, while respecting the capacity constraints and time windows. In this context, we presented an Ant Colony Optimization (ACO) approach, combined with a Speed Optimization Algorithm (SOA) to solve the PRP. The proposed solution method consists of two stages. Stage one is to solve a Vehicle Routing Problem with Time Window (VRPTW) using ACO and in the second stage a SOA is run on the resulting VRPTW solutions. Given a vehicle route, the SOA consists of finding the optimal speed on each arc of the route in order to minimize an objective function comprising fuel consumption costs and driver wages. The proposed algorithm tested on benchmark problem, the preliminary results show that the proposed algorithm is able to provide good solutions.

Keywords: ant colony optimization, CO2 emissions, combinatorial optimization, speed optimization, vehicle routing

Procedia PDF Downloads 324
9349 Voltage and Frequency Regulation Using the Third-Party Mid-Size Battery

Authors: Roghieh A. Biroon, Zoleikha Abdollahi

Abstract:

The recent growth of renewables, e.g., solar panels, batteries, and electric vehicles (EVs) in residential and small commercial sectors, has potential impacts on the stability and operation of power grids. Considering approximately 50 percent share of the residential and the commercial sectors in the electricity demand market, the significance of these impacts, and the necessity of addressing them are more highlighted. Utilities and power system operators should manage the renewable electricity sources integration with power systems in such a way to extract the most possible advantages for the power systems. The most common effect of high penetration level of the renewables is the reverse power flow in the distribution feeders when the customers generate more power than their needs. The reverse power flow causes voltage rise and thermal issues in the power grids. To overcome the voltage rise issues in the distribution system, several techniques have been proposed including reducing transformers short circuit resistance and feeder impedance, installing autotransformers/voltage regulators along the line, absorbing the reactive power by distributed generators (DGs), and limiting the PV and battery sizes. In this study, we consider a medium-scale battery energy storage to manage the power energy and address the aforementioned issues on voltage deviation and power loss increase. We propose an optimization algorithm to find the optimum size and location for the battery. The optimization for the battery location and size is so that the battery maintains the feeder voltage deviation and power loss at a certain desired level. Moreover, the proposed optimization algorithm controls the charging/discharging profile of the battery to absorb the negative power flow from residential and commercial customers in the feeder during the peak time and sell the power back to the system during the off-peak time. The proposed battery regulates the voltage problem in the distribution system while it also can play frequency regulation role in islanded microgrids. This battery can be regulated and controlled by the utilities or a third-party ancillary service provider for the utilities to reduce the power system loss and regulate the distribution feeder voltage and frequency in standard level.

Keywords: ancillary services, battery, distribution system and optimization

Procedia PDF Downloads 131
9348 Occupational Health Hazards of Itinerant Waste Buyers (IWBs) in Kathmandu, Nepal

Authors: Ashish Khanal, Suja Giri

Abstract:

The scrap collection work is associated with multiple health hazards. Cut and scratches during collection and transportation of scraps are common. IWBs purchase the scraps mainly papers, cartoons, glass bottles and metals from the households. This study was conducted in Kathmandu, the capital city of Nepal. The location was chosen because Kathmandu is the biggest city of Nepal with highest number of IWBs. The research used a case study strategy to examine the occupational health hazards of IWBs. The only mode of collecting and transporting of scraps in Kathmandu is the bicycle. They have to do this regular work even during the scorching sun and chilled winter. The musculoskeletal and gastrointestinal disorders are the common health problem shared by IWBs in Kathmandu, Nepal. Despite of these problems, IWBs don’t take it seriously and rarely goes for the health check-up. There is need of personal protective equipment and guidance for safety of IWBs. IWBs need to wear closed shoes and use gloves to avoid cuts during the collection and transportation of the recyclables.

Keywords: itinerant waste buyers, Kathmandu, occupational health, scrap

Procedia PDF Downloads 181
9347 An Open-Source Guidance System for an Autonomous Planter Robot in Precision Agriculture

Authors: Nardjes Hamini, Mohamed Bachir Yagoubi

Abstract:

Precision agriculture has revolutionized farming by enabling farmers to monitor their crops remotely in real-time. By utilizing technologies such as sensors, farmers can detect the state of growth, hydration levels, and nutritional status and even identify diseases affecting their crops. With this information, farmers can make informed decisions regarding irrigation, fertilization, and pesticide application. Automated agricultural tasks, such as plowing, seeding, planting, and harvesting, are carried out by autonomous robots and have helped reduce costs and increase production. Despite the advantages of precision agriculture, its high cost makes it inaccessible to small and medium-sized farms. To address this issue, this paper presents an open-source guidance system for an autonomous planter robot. The system is composed of a Raspberry Pi-type nanocomputer equipped with Wi-Fi, a GPS module, a gyroscope, and a power supply module. The accompanying application allows users to enter and calibrate maps with at least four coordinates, enabling the localized contour of the parcel to be captured. The application comprises several modules, such as the mission entry module, which traces the planting trajectory and points, and the action plan entry module, which creates an ordered list of pre-established tasks such as loading, following the plan, returning to the garage, and entering sleep mode. A remote control module enables users to control the robot manually, visualize its location on the map, and use a real-time camera. Wi-Fi coverage is provided by an outdoor access point, covering a 2km circle. This open-source system offers a low-cost alternative for small and medium-sized farms, enabling them to benefit from the advantages of precision agriculture.

Keywords: autonomous robot, guidance system, low-cost, medium farms, open-source system, planter robot, precision agriculture, real-time monitoring, remote control, small farms

Procedia PDF Downloads 111
9346 A Hybrid Algorithm Based on Greedy Randomized Adaptive Search Procedure and Chemical Reaction Optimization for the Vehicle Routing Problem with Hard Time Windows

Authors: Imen Boudali, Marwa Ragmoun

Abstract:

The Vehicle Routing Problem with Hard Time Windows (VRPHTW) is a basic distribution management problem that models many real-world problems. The objective of the problem is to deliver a set of customers with known demands on minimum-cost vehicle routes while satisfying vehicle capacity and hard time windows for customers. In this paper, we propose to deal with our optimization problem by using a new hybrid stochastic algorithm based on two metaheuristics: Chemical Reaction Optimization (CRO) and Greedy Randomized Adaptive Search Procedure (GRASP). The first method is inspired by the natural process of chemical reactions enabling the transformation of unstable substances with excessive energy to stable ones. During this process, the molecules interact with each other through a series of elementary reactions to reach minimum energy for their existence. This property is embedded in CRO to solve the VRPHTW. In order to enhance the population diversity throughout the search process, we integrated the GRASP in our method. Simulation results on the base of Solomon’s benchmark instances show the very satisfactory performances of the proposed approach.

Keywords: Benchmark Problems, Combinatorial Optimization, Vehicle Routing Problem with Hard Time Windows, Meta-heuristics, Hybridization, GRASP, CRO

Procedia PDF Downloads 411
9345 Solving the Economic Load Dispatch Problem Using Differential Evolution

Authors: Alaa Sheta

Abstract:

Economic Load Dispatch (ELD) is one of the vital optimization problems in power system planning. Solving the ELD problems mean finding the best mixture of power unit outputs of all members of the power system network such that the total fuel cost is minimized while sustaining operation requirements limits satisfied across the entire dispatch phases. Many optimization techniques were proposed to solve this problem. A famous one is the Quadratic Programming (QP). QP is a very simple and fast method but it still suffer many problem as gradient methods that might trapped at local minimum solutions and cannot handle complex nonlinear functions. Numbers of metaheuristic algorithms were used to solve this problem such as Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO). In this paper, another meta-heuristic search algorithm named Differential Evolution (DE) is used to solve the ELD problem in power systems planning. The practicality of the proposed DE based algorithm is verified for three and six power generator system test cases. The gained results are compared to existing results based on QP, GAs and PSO. The developed results show that differential evolution is superior in obtaining a combination of power loads that fulfill the problem constraints and minimize the total fuel cost. DE found to be fast in converging to the optimal power generation loads and capable of handling the non-linearity of ELD problem. The proposed DE solution is able to minimize the cost of generated power, minimize the total power loss in the transmission and maximize the reliability of the power provided to the customers.

Keywords: economic load dispatch, power systems, optimization, differential evolution

Procedia PDF Downloads 283
9344 Production Plan and Technological Variants Optimization by Goal Programming Methods

Authors: Tunjo Perić, Franjo Bratić

Abstract:

In this paper the goal programming methodology for solving multiple objective problem of the technological variants and production plan optimization has been applied. The optimization criteria are determined and the multiple objective linear programming model for solving a problem of the technological variants and production plan optimization is formed and solved. Then the obtained results are analysed. The obtained results point out to the possibility of efficient application of the goal programming methodology in solving the problem of the technological variants and production plan optimization. The paper points out on the advantages of the application of the goal programming methodolohy compare to the Surrogat Worth Trade-off method in solving this problem.

Keywords: goal programming, multi objective programming, production plan, SWT method, technological variants

Procedia PDF Downloads 382
9343 A Parallel Algorithm for Solving the PFSP on the Grid

Authors: Samia Kouki

Abstract:

Solving NP-hard combinatorial optimization problems by exact search methods, such as Branch-and-Bound, may degenerate to complete enumeration. For that reason, exact approaches limit us to solve only small or moderate size problem instances, due to the exponential increase in CPU time when problem size increases. One of the most promising ways to reduce significantly the computational burden of sequential versions of Branch-and-Bound is to design parallel versions of these algorithms which employ several processors. This paper describes a parallel Branch-and-Bound algorithm called GALB for solving the classical permutation flowshop scheduling problem as well as its implementation on a Grid computing infrastructure. The experimental study of our distributed parallel algorithm gives promising results and shows clearly the benefit of the parallel paradigm to solve large-scale instances in moderate CPU time.

Keywords: grid computing, permutation flow shop problem, branch and bound, load balancing

Procedia PDF Downloads 283
9342 Integration of LCA and BIM for Sustainable Construction

Authors: Laura Álvarez Antón, Joaquín Díaz

Abstract:

The construction industry is turning towards sustainability. It is a well-known fact that sustainability is based on a balance between environmental, social and economic aspects. In order to achieve sustainability efficiently, these three criteria should be taken into account in the initial project phases, since that is when a project can be influenced most effectively. Thus the aim must be to integrate important tools like BIM and LCA at an early stage in order to make full use of their potential. With the synergies resulting from the integration of BIM and LCA, a wider approach to sustainability becomes possible, covering the three pillars of sustainability.

Keywords: building information modeling (BIM), construction industry, design phase, life cycle assessment (LCA), sustainability

Procedia PDF Downloads 451
9341 An Ensemble Learning Method for Applying Particle Swarm Optimization Algorithms to Systems Engineering Problems

Authors: Ken Hampshire, Thomas Mazzuchi, Shahram Sarkani

Abstract:

As a subset of metaheuristics, nature-inspired optimization algorithms such as particle swarm optimization (PSO) have shown promise both in solving intractable problems and in their extensibility to novel problem formulations due to their general approach requiring few assumptions. Unfortunately, single instantiations of algorithms require detailed tuning of parameters and cannot be proven to be best suited to a particular illustrative problem on account of the “no free lunch” (NFL) theorem. Using these algorithms in real-world problems requires exquisite knowledge of the many techniques and is not conducive to reconciling the various approaches to given classes of problems. This research aims to present a unified view of PSO-based approaches from the perspective of relevant systems engineering problems, with the express purpose of then eliciting the best solution for any problem formulation in an ensemble learning bucket of models approach. The central hypothesis of the research is that extending the PSO algorithms found in the literature to real-world optimization problems requires a general ensemble-based method for all problem formulations but a specific implementation and solution for any instance. The main results are a problem-based literature survey and a general method to find more globally optimal solutions for any systems engineering optimization problem.

Keywords: particle swarm optimization, nature-inspired optimization, metaheuristics, systems engineering, ensemble learning

Procedia PDF Downloads 99
9340 Iot-Based Interactive Patient Identification and Safety Management System

Authors: Jonghoon Chun, Insung Kim, Jonghyun Lim, Gun Ro

Abstract:

We believe that it is possible to provide a solution to reduce patient safety accidents by displaying correct medical records and prescription information through interactive patient identification. Our system is based on the use of smart bands worn by patients and these bands communicate with the hybrid gateways which understand both BLE and Wifi communication protocols. Through the convergence of low-power Bluetooth (BLE) and hybrid gateway technology, which is one of short-range wireless communication technologies, we implement ‘Intelligent Patient Identification and Location Tracking System’ to prevent medical malfunction frequently occurring in medical institutions. Based on big data and IOT technology using MongoDB, smart band (BLE, NFC function) and hybrid gateway, we develop a system to enable two-way communication between medical staff and hospitalized patients as well as to store locational information of the patients in minutes. Based on the precise information provided using big data systems, such as location tracking and movement of in-hospital patients wearing smart bands, our findings include the fact that a patient-specific location tracking algorithm can more efficiently operate HIS (Hospital Information System) and other related systems. Through the system, we can always correctly identify patients using identification tags. In addition, the system automatically determines whether the patient is a scheduled for medical service by the system in use at the medical institution, and displays the appropriateness of the medical treatment and the medical information (medical record and prescription information) on the screen and voice. This work was supported in part by the Korea Technology and Information Promotion Agency for SMEs (TIPA) grant funded by the Korean Small and Medium Business Administration (No. S2410390).

Keywords: BLE, hybrid gateway, patient identification, IoT, safety management, smart band

Procedia PDF Downloads 311
9339 A Study of General Attacks on Elliptic Curve Discrete Logarithm Problem over Prime Field and Binary Field

Authors: Tun Myat Aung, Ni Ni Hla

Abstract:

This paper begins by describing basic properties of finite field and elliptic curve cryptography over prime field and binary field. Then we discuss the discrete logarithm problem for elliptic curves and its properties. We study the general common attacks on elliptic curve discrete logarithm problem such as the Baby Step, Giant Step method, Pollard’s rho method and Pohlig-Hellman method, and describe in detail experiments of these attacks over prime field and binary field. The paper finishes by describing expected running time of the attacks and suggesting strong elliptic curves that are not susceptible to these attacks.c

Keywords: discrete logarithm problem, general attacks, elliptic curve, prime field, binary field

Procedia PDF Downloads 234
9338 Interrelationship between Quadriceps' Activation and Inhibition as a Function of Knee-Joint Angle and Muscle Length: A Torque and Electro and Mechanomyographic Investigation

Authors: Ronald Croce, Timothy Quinn, John Miller

Abstract:

Incomplete activation, or activation failure, of motor units during maximal voluntary contractions is often referred to as muscle inhibition (MI), and is defined as the inability of the central nervous system to maximally drive a muscle during a voluntary contraction. The purpose of the present study was to assess the interrelationship amongst peak torque (PT), muscle inhibition (MI; incomplete activation of motor units), and voluntary muscle activation (VMA) of the quadriceps’ muscle group as a function of knee angle and muscle length during maximal voluntary isometric contractions (MVICs). Nine young adult males (mean + standard deviation: age: 21.58 + 1.30 years; height: 180.07 + 4.99 cm; weight: 89.07 + 7.55 kg) performed MVICs in random order with the knee at 15, 55, and 95° flexion. MI was assessed using the interpolated twitch technique and was estimated by the amount of additional knee extensor PT evoked by the superimposed twitch during MVICs. Voluntary muscle activation was estimated by root mean square amplitude electromyography (EMGrms) and mechanomyography (MMGrms) of agonist (vastus medialis [VM], vastus lateralis [VL], and rectus femoris [RF]) and antagonist (biceps femoris ([BF]) muscles during MVICs. Data were analyzed using separate repeated measures analysis of variance. Results revealed a strong dependency of quadriceps’ PT (p < 0.001), MI (p < 0.001) and MA (p < 0.01) on knee joint position: PT was smallest at the most shortened muscle position (15°) and greatest at mid-position (55°); MI and MA were smallest at the most shortened muscle position (15°) and greatest at the most lengthened position (95°), with the RF showing the greatest change in MA. It is hypothesized that the ability to more fully activate the quadriceps at short compared to longer muscle lengths (96% contracted at 15°; 91% at 55°; 90% at 95°) might partly compensate for the unfavorable force-length mechanics at the more extended position and consequent declines in VMA (decreases in EMGrms and MMGrms muscle amplitude during MVICs) and force production (PT = 111-Nm at 15°, 217-NM at 55°, 199-Nm at 95°). Biceps femoris EMG and MMG data showed no statistical differences (p = 0.11 and 0.12, respectively) at joint angles tested, although there were greater values at the extended position. Increased BF muscle amplitude at this position could be a mechanism by which anterior shear and tibial rotation induced by high quadriceps’ activity are countered. Measuring and understanding the degree to which one sees MI and VMA in the QF muscle has particular clinical relevance because different knee-joint disorders, such ligament injuries or osteoarthritis, increase levels of MI observed and markedly reduced the capability of full VMA.

Keywords: electromyography, interpolated twitch technique, mechanomyography, muscle activation, muscle inhibition

Procedia PDF Downloads 350
9337 Hybridized Simulated Annealing with Chemical Reaction Optimization for Solving to Sequence Alignment Problem

Authors: Ernesto Linan, Linda Cruz, Lucero Becerra

Abstract:

In this paper, a new hybridized algorithm based on Chemical Reaction Optimization and Simulated Annealing is proposed to solve the alignment sequence Problem. The Chemical Reaction Optimization is a population-based meta-heuristic algorithm based on the principles of a chemical reaction. Simulated Annealing is applied to solve a large number of combinatorial optimization problems of general-purpose. In this paper, we propose hybridization between Chemical Reaction Optimization algorithm and Simulated Annealing in order to solve the Sequence Alignment Problem. An initial population of molecules is defined at beginning of the proposed algorithm, where each molecule represents a sequence alignment problem. In order to simulate inter-molecule collisions, the process of Chemical Reaction is placed inside the Metropolis Cycle at certain values of temperature. Inside this cycle, change of molecules is done due to collisions; some molecules are accepted by applying Boltzmann probability. The results with the hybrid scheme are better than the results obtained separately.

Keywords: chemical reaction optimization, sequence alignment problem, simulated annealing algorithm, metaheuristics

Procedia PDF Downloads 211
9336 A Multi-Objective Programming Model to Supplier Selection and Order Allocation Problem in Stochastic Environment

Authors: Rouhallah Bagheri, Morteza Mahmoudi, Hadi Moheb-Alizadeh

Abstract:

This paper aims at developing a multi-objective model for supplier selection and order allocation problem in stochastic environment, where purchasing cost, percentage of delivered items with delay and percentage of rejected items provided by each supplier are supposed to be stochastic parameters following any arbitrary probability distribution. In this regard, dependent chance programming is used which maximizes probability of the event that total purchasing cost, total delivered items with delay and total rejected items are less than or equal to pre-determined values given by decision maker. The abovementioned stochastic multi-objective programming problem is then transformed into a stochastic single objective programming problem using minimum deviation method. In the next step, the further problem is solved applying a genetic algorithm, which performs a simulation process in order to calculate the stochastic objective function as its fitness function. Finally, the impact of stochastic parameters on the given solution is examined via a sensitivity analysis exploiting coefficient of variation. The results show that whatever stochastic parameters have greater coefficients of variation, the value of the objective function in the stochastic single objective programming problem is deteriorated.

Keywords: supplier selection, order allocation, dependent chance programming, genetic algorithm

Procedia PDF Downloads 313
9335 Wavelet Based Signal Processing for Fault Location in Airplane Cable

Authors: Reza Rezaeipour Honarmandzad

Abstract:

Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.

Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal

Procedia PDF Downloads 525
9334 Asymmetric of the Segregation-Enhanced Brazil Nut Effect

Authors: Panupat Chaiworn, Soraya lama

Abstract:

We study the motion of particles in cylinders which are subjected to a sinusoidal vertical vibration. We measure the rising time of a large intruder from the bottom of the container to free surface of the bed particles and find that the rising time as a function of intruder density increases to a maximum and then decreases monotonically. The result is qualitatively accord to the previous findings in experiments using relative humidity of the bed particles and found speed convection of the bed particles containers it moving slowly, and the rising time of the intruder where a minimal instead of maximal rising time in the small density region was found. Our experimental results suggest that the topology of the container plays an important role in the Brazil nut effect.

Keywords: granular particles, Brazil nut effect, cylinder container, vertical vibration, convection

Procedia PDF Downloads 530
9333 Monocular 3D Person Tracking AIA Demographic Classification and Projective Image Processing

Authors: McClain Thiel

Abstract:

Object detection and localization has historically required two or more sensors due to the loss of information from 3D to 2D space, however, most surveillance systems currently in use in the real world only have one sensor per location. Generally, this consists of a single low-resolution camera positioned above the area under observation (mall, jewelry store, traffic camera). This is not sufficient for robust 3D tracking for applications such as security or more recent relevance, contract tracing. This paper proposes a lightweight system for 3D person tracking that requires no additional hardware, based on compressed object detection convolutional-nets, facial landmark detection, and projective geometry. This approach involves classifying the target into a demographic category and then making assumptions about the relative locations of facial landmarks from the demographic information, and from there using simple projective geometry and known constants to find the target's location in 3D space. Preliminary testing, although severely lacking, suggests reasonable success in 3D tracking under ideal conditions.

Keywords: monocular distancing, computer vision, facial analysis, 3D localization

Procedia PDF Downloads 141
9332 Geospatial Network Analysis Using Particle Swarm Optimization

Authors: Varun Singh, Mainak Bandyopadhyay, Maharana Pratap Singh

Abstract:

The shortest path (SP) problem concerns with finding the shortest path from a specific origin to a specified destination in a given network while minimizing the total cost associated with the path. This problem has widespread applications. Important applications of the SP problem include vehicle routing in transportation systems particularly in the field of in-vehicle Route Guidance System (RGS) and traffic assignment problem (in transportation planning). Well known applications of evolutionary methods like Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm Optimization (PSO) have come up to solve complex optimization problems to overcome the shortcomings of existing shortest path analysis methods. It has been reported by various researchers that PSO performs better than other evolutionary optimization algorithms in terms of success rate and solution quality. Further Geographic Information Systems (GIS) have emerged as key information systems for geospatial data analysis and visualization. This research paper is focused towards the application of PSO for solving the shortest path problem between multiple points of interest (POI) based on spatial data of Allahabad City and traffic speed data collected using GPS. Geovisualization of results of analysis is carried out in GIS.

Keywords: particle swarm optimization, GIS, traffic data, outliers

Procedia PDF Downloads 483
9331 The Study of the Mutual Effect of Genotype in Environment by Percent of Oil Criterion in Sunflower

Authors: Seyed Mohammad Nasir Mousavi, Pasha Hejazi, Maryam Ebrahimian Dehkordi

Abstract:

In order to study the Mutual effect of genotype × environment for the percent of oil index in sunflower items, an experiment was accomplished in form of complete random block designs in four iteration in four diverse researching station comprising Esfahan, Birjand, Sari, and Karaj. Complex variance analysis showed that there is an important diversity between the items under investigation. The results pertaining the coefficient variation of items Azargol and Vidoc has respectively allocated the minimum coefficient of variations. According to the results extrapolated from Shokla stability variance, the Items Brocar, Allison and Fabiola, are among the stable genotypes for oil percent respectively. in the biplot GGE, the location under investigations divided in two super-environment, first one comprised of locations naming Esfahan, Karaj, and Birjand, and second one were such a location as Sari. By this point of view, in the first super-environment, the Item Fabiola and in the second Almanzor item was among the best items and crops.

Keywords: sunflower, stability, GGE bipilot, super-environment

Procedia PDF Downloads 547
9330 Effects of Incident Angle and Distance on Visible Light Communication

Authors: Taegyoo Woo, Jong Kang Park, Jong Tae Kim

Abstract:

Visible Light Communication (VLC) provides wireless communication features in illumination systems. One of the key applications is to recognize the user location by indoor illuminators such as light emitting diodes. For localization of individual receivers in these systems, we usually assume that receivers and transmitters are placed in parallel. However, it is difficult to satisfy this assumption because the receivers move randomly in real case. It is necessary to analyze the case when transmitter is not placed perfectly parallel to receiver. It is also important to identify changes on optical gain by the tilted angles and distances of them against the illuminators. In this paper, we simulate optical gain for various cases where the tilt of the receiver and the distance change. Then, we identified changing patterns of optical gains according to tilted angles of a receiver and distance. These results can help many VLC applications understand the extent of the location errors with regard to optical gains of the receivers and identify the root cause.

Keywords: visible light communication, incident angle, optical gain, light emitting diode

Procedia PDF Downloads 336
9329 Investigation of the Evolutionary Equations of the Two-Planetary Problem of Three Bodies with Variable Masses

Authors: Zhanar Imanova

Abstract:

Masses of real celestial bodies change anisotropically and reactive forces appear, and they need to be taken into account in the study of these bodies' dynamics. We studied the two-planet problem of three bodies with variable masses in the presence of reactive forces and obtained the equations of perturbed motion in Newton’s form equations. The motion equations in the orbital coordinate system, unlike the Lagrange equation, are convenient for taking into account the reactive forces. The perturbing force is expanded in terms of osculating elements. The expansion of perturbing functions is a time-consuming analytical calculation and results in very cumber some analytical expressions. In the considered problem, we obtained expansions of perturbing functions by small parameters up to and including the second degree. In the non resonant case, we obtained evolution equations in the Newton equation form. All symbolic calculations were done in Wolfram Mathematica.

Keywords: two-planet, three-body problem, variable mass, evolutionary equations

Procedia PDF Downloads 65
9328 Clutter Suppression Based on Singular Value Decomposition and Fast Wavelet Algorithm

Authors: Ruomeng Xiao, Zhulin Zong, Longfa Yang

Abstract:

Aiming at the problem that the target signal is difficult to detect under the strong ground clutter environment, this paper proposes a clutter suppression algorithm based on the combination of singular value decomposition and the Mallat fast wavelet algorithm. The method first carries out singular value decomposition on the radar echo data matrix, realizes the initial separation of target and clutter through the threshold processing of singular value, and then carries out wavelet decomposition on the echo data to find out the target location, and adopts the discard method to select the appropriate decomposition layer to reconstruct the target signal, which ensures the minimum loss of target information while suppressing the clutter. After the verification of the measured data, the method has a significant effect on the target extraction under low SCR, and the target reconstruction can be realized without the prior position information of the target and the method also has a certain enhancement on the output SCR compared with the traditional single wavelet processing method.

Keywords: clutter suppression, singular value decomposition, wavelet transform, Mallat algorithm, low SCR

Procedia PDF Downloads 119
9327 A Priority Based Imbalanced Time Minimization Assignment Problem: An Iterative Approach

Authors: Ekta Jain, Kalpana Dahiya, Vanita Verma

Abstract:

This paper discusses a priority based imbalanced time minimization assignment problem dealing with the allocation of n jobs to m < n persons in which the project is carried out in two stages, viz. Stage-I and Stage-II. Stage-I consists of n1 ( < m) primary jobs and Stage-II consists of remaining (n-n1) secondary jobs which are commenced only after primary jobs are finished. Each job is to be allocated to exactly one person, and each person has to do at least one job. It is assumed that nature of the Stage-I jobs is such that one person can do exactly one primary job whereas a person can do more than one secondary job in Stage-II. In a particular stage, all persons start doing the jobs simultaneously, but if a person is doing more than one job, he does them one after the other in any order. The aim of the proposed study is to find the feasible assignment which minimizes the total time for the two stage execution of the project. For this, an iterative algorithm is proposed, which at each iteration, solves a constrained imbalanced time minimization assignment problem to generate a pair of Stage-I and Stage-II times. For solving this constrained problem, an algorithm is developed in the current paper. Later, alternate combinations based method to solve the priority based imbalanced problem is also discussed and a comparative study is carried out. Numerical illustrations are provided in support of the theory.

Keywords: assignment, imbalanced, priority, time minimization

Procedia PDF Downloads 235
9326 Depth Estimation in DNN Using Stereo Thermal Image Pairs

Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge

Abstract:

Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.

Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation

Procedia PDF Downloads 281