Search results for: indoor ventilation
163 Use of Geometrical Relationship in the Ancient Vihara Housing Reclining Buddha Remains of Thailand's Kamphaeng Phet World Heritage Site
Authors: Vacharee Svamivastu
Abstract:
This research investigates the application of geometrical relationship to the ancient religious assembly hall (Vihara) housing a reclining Buddha statue of Thailand's Kamphaeng Phet Historical Park. The study utilizes the archaeological and wooden roof structure remains of the Vihara as the prima facie evidence, supplemented with evidence from other active archaeological sites with architectural kinship as well as Buddhist ideology. At present, the wooden roofs of the Vihara fell prey to the elements and there remain only the base, columns and enclosing walls. Unlike typical Viharas whose floor plan are of rectangular shape, the floor plan of the Vihara housing the reclining Buddha is of square configuration of 25x25m. Further observation has revealed the utilization of large laterite boulders as the principal construction material of the assembly hall (Vihara) columns. The laterite columns are of square shape (1x1m) and various heights (H), ranging from 3.50m to 5.50m. The erection of the Vihara required a total of 36 laterite columns. The pattern of columns arrangement is of two rows of inner columns, two rows of outer columns and two rows of verandah columns. The space between pairs of the verandah columns was stacked with laterite blocks of varying sizes to form the Vihara walls with small openings for ventilation. Upon applying the geometrical relationship-grid system to the Vihara, the results reveal that the placement of the columns was deliberately and masterfully undertaken such that the center of the square-shaped Vihara is conspicuously spacious so as to accommodate the sacred reclining Buddha statue. The elegance of the Vihara demonstrates the ingenious application of geometrical relationship to transforming a space into a structure (i.e. Vihara) of architectural and religious significance.Keywords: geometrical relationship, the religious assembly hall, Vihara, Kamphaeng Phet School of Master Builder
Procedia PDF Downloads 275162 Energy Efficient Building Design in Nigeria: An Assessment of the Effect of the Sun on Energy Consumption in Residential Buildings
Authors: Ekele T. Ochedi, Ahmad H. Taki, Birgit Painter
Abstract:
The effect of the sun and its path on thermal comfort and energy consumption in residential buildings in tropical climates constitute a serious concern for designers, building owners, and users. Passive design approaches based on the sun and its path have been identified as a means of reducing energy consumption as well as enhancing thermal comfort in buildings worldwide. Hence, a thorough understanding regarding the sun path is key to achieving this. This is necessary due to energy need, poor energy supply, and distribution, energy poverty, and over-dependence on electric generators for power supply in Nigeria. These challenges call for a change in the approach to energy-related issues, especially in terms of buildings. The aim of this study is to explore the influence of building orientation, glazing and the use of shading devices on residential buildings in Nigeria. This is intended to provide data that will guide designers in the design of energy-efficient residential buildings. The paper used EnergyPlus to analyze a typical semi-detached residential building in Lokoja, Nigeria using hourly weather data for a period of 10 years. Building performance was studied as well as possible improvement regarding different orientations, glazing types and shading devices. The simulation results show some reductions in energy consumption in response to changes in building orientation, types of glazing and the use of shading devices. The results indicate 29.45% reduction in solar gains and 1.90% in annual operative temperature using natural ventilation only. This shows a huge potential to reduce energy consumption and improve people’s well-being through the use of proper building orientation, glazing and appropriate shading devices on building envelope. The study concludes that for a significant reduction in total energy consumption by residential buildings, the design should focus on multiple design options rather than concentrating on one or few building elements. Moreover, the investigation confirms that energy performance modeling can be used by building designers to take advantage of the sun and to evaluate various design options.Keywords: energy consumption, energy-efficient buildings, glazing, thermal comfort, shading devices, solar gains
Procedia PDF Downloads 212161 Allergenic Potential of Airborne Algae Isolated from Malaysia
Authors: Chu Wan-Loy, Kok Yih-Yih, Choong Siew-Ling
Abstract:
The human health risks due to poor air quality caused by a wide array of microorganisms have attracted much interest. Airborne algae have been reported as early as 19th century and they can be found in the air of tropic and warm atmospheres. Airborne algae normally originate from water surfaces, soil, trees, buildings and rock surfaces. It is estimated that at least 2880 algal cells are inhaled per day by human. However, there are relatively little data published on airborne algae and its related adverse health effects except sporadic reports of algae associated clinical allergenicity. A collection of airborne algae cultures has been established following a recent survey on the occurrence of airborne algae in indoor and outdoor environments in Kuala Lumpur. The aim of this study was to investigate the allergenic potential of the isolated airborne green and blue-green algae, namely Scenedesmus sp., Cylindrospermum sp. and Hapalosiphon sp.. The suspensions of freeze-dried airborne algae were adminstered into balb-c mice model through intra-nasal route to determine their allergenic potential. Results showed that Scenedesmus sp. (1 mg/mL) increased the systemic Ig E levels in mice by 3-8 fold compared to pre-treatment. On the other hand, Cylindrospermum sp. and Hapalosiphon sp. at similar concentration caused the Ig E to increase by 2-4 fold. The potential of airborne algae causing Ig E mediated type 1 hypersensitivity was elucidated using other immunological markers such as cytokine interleukin (IL)- 4, 5, 6 and interferon-ɣ. When we compared the amount of interleukins in mouse serum between day 0 and day 53 (day of sacrifice), Hapalosiphon sp. (1mg/mL) increased the expression of IL4 and 6 by 8 fold while the Cylindrospermum sp. (1mg/mL) increased the expression of IL4 and IFɣ by 8 and 2 fold respectively. In conclusion, repeated exposure to the three selected airborne algae may stimulate the immune response and generate Ig E in a mouse model.Keywords: airborne algae, respiratory, allergenic, immune response, Malaysia
Procedia PDF Downloads 239160 The Electrophysiology Study Results in Patients with Guillain Barre Syndrome (GBS): A Retrospective Study in a TertiaryHospital in Cebu City, Philippines
Authors: Dyna Ann C. Sevilles, Noel J. Belonguel, Jarungchai Anton S. Vatanagul, Mary Jeanne O. Flordelis, Grace G. Anota
Abstract:
Guillain Barre syndrome is an acute inflammatory polyradiculoneuropathy causing progressive symmetrical weakness which can be debilitating to the patient. Early diagnosis is important especially in the acute phase when treatment favors good outcome and reduces the incidence of the need for mechanical ventilation. Electrodiagnostic studies aid in the evaluation of patients suspected with GBS. However, the characteristic electrical changes may not be evident until after several weeks. Thus, studies performed early in the course may give unclear results. The aim of this study is to associate the symptom onset of patients diagnosed with Guillain Barre syndrome with the EMG NCV results and determine the earliest time when there is evident findings supporting the diagnosis. This is a retrospective descriptive chart review study involving patients of >/= 18 years of age with GBS written on their charts in a Tertiaty hospital in Cebu City, Philippines from January 2000 to July 2014. Twenty patients showed electrodiagnostic findings suggestive of GBS. The mean day of illness when EMG NCV was carried out was 7 days. The earliest with suggestive findings was done on day 2 (10%) of illness. Moreover, the highest frequency with positive results was done on day 3 (20%) of illness. Based on the Dutch Guillain Barre Study group criteria, the most frequent variables noted were: prolonged distal motor latency in both median and ulnar nerves(65%) and both peroneal and tibial nerves (71%); and reduced CMAP in both median and ulnar nerves (65%) and both tibial and peroneal nerves (71%). The EMG NCV findings showed majority of demyelinating type (59%). Electrodiagnostic studies are helpful in aiding the physician in the diagnosis and treatment of the disease in the early stage. Based on this study, neurophysiologic evidence of GBS can be seen in as early as day 2 of clinical illness.Keywords: Acute Inflammatory Demyelinating Polyneuropathy, electrophysiologic study, EMG NCV, Guillain Barre Syndrome
Procedia PDF Downloads 287159 Study of Heat Transfer through the Ground and its Accumulation Properties to Increase the Energy Efficiency of Underground Buildings
Authors: Sandeep Bandarwadkar, Tadas Zdankus
Abstract:
To maintain a comfortable indoor temperature for its residents in the colder season, heating a building is necessary. Due to the expansion in the construction sectors, the consumption of heating energy is increasing. According to Eurostat data, in the European Union, the share of energy consumption of heating energy for space and cooling in residential buildings was around 63% in 2019. These figures indicate that heating energy still accounts for a significant portion of total energy consumption in Europe. Innovation is crucial to reduce energy consumption in buildings and achieve greater energy efficiency and sustainability. It can bring about new solutions that are smarter and more natural energy generation to reduce greenhouse gas emissions. The ground can serve as an effective and sustainable heat accumulator for heating and cooling. The temperature of the ground is higher than that of the ambient air in the colder period and lower in the warmer period. The building deep in the soil could use less thermal energy compared to the above-ground buildings that provide the same amount of thermal comfort. The temperature difference between the soil and the air inside the building decreases as the temperature of the soil increases. In progress, this process generates the condition that acts against heat loss. However, heat dissipates further to the consecutive layers and reaches thermal equilibrium. The charging of the ground by heat and its dissipation through the adjacent soil layers was investigated experimentally. The results of this research showed that 9% of the energy savings in partially underground buildings and 44.4% in completely underground buildings were derived from heating the space. Heat loss to the ground is treated as a charge of the soil by thermal energy. The dependence of the intensity of the charge on time was analysed and presented.Keywords: heat transfer, accumulation of heat, underground building, soil charge
Procedia PDF Downloads 71158 Effect of Green Roofs to Prevent the Dissipation of Energy in Mountainous Areas
Authors: Mina Ganji Morad, Maziar Azadisoleimanieh, Sina Ganji Morad
Abstract:
A green roof is formed by green plants alive and has many positive impacts in the regional climatic, as well as indoor. Green roof system to prevent solar radiation plays a role in the cooling space. The cooling is done by reducing thermal fluctuations on the exterior of the roof and by increasing the roof heat capacity which cause to keep the space under the roof cool in the summer and heating rate increases during the winter. A roof garden is one of the recommended ways to reduce energy consumption in large cities. Despite the scale of the city green roofs have effective functions, such as beautiful view of city and decontaminating the urban landscape and reduce mental stress, and in an exchange of energy and heat from outside to inside spaces. This article is based on a review of 20 articles and 10 books and valid survey results on the positive effects of green roofs to prevent energy waste in the building. According to these publications, three of the conventional roof, green roof typical and green roof with certain administrative details (layers of glass) and the use of resistant plants and shrubs have been analyzed and compared their heat transfer. The results of these studies showed that one of the best green roof systems for mountainous climate is tree and shrub system that in addition to being resistant to climate change in mountainous regions, will benefit from the other advantages of green roof. Due to the severity of climate change in mountainous areas it is essential to prevent the waste of buildings heating and cooling energy. Proper climate design can greatly help to reduce energy.Keywords: green roof, heat transfer, reducing energy consumption, mountainous areas, sustainable architecture
Procedia PDF Downloads 397157 Effects of the Air Supply Outlets Geometry on Human Comfort inside Living Rooms: CFD vs. ADPI
Authors: Taher M. Abou-deif, Esmail M. El-Bialy, Essam E. Khalil
Abstract:
The paper is devoted to numerically investigating the influence of the air supply outlets geometry on human comfort inside living looms. A computational fluid dynamics model is developed to examine the air flow characteristics of a room with different supply air diffusers. The work focuses on air flow patterns, thermal behavior in the room with few number of occupants. As an input to the full-scale 3-D room model, a 2-D air supply diffuser model that supplies direction and magnitude of air flow into the room is developed. Air distribution effect on thermal comfort parameters was investigated depending on changing the air supply diffusers type, angles and velocity. Air supply diffusers locations and numbers were also investigated. The pre-processor Gambit is used to create the geometric model with parametric features. Commercially available simulation software “Fluent 6.3” is incorporated to solve the differential equations governing the conservation of mass, three momentum and energy in the processing of air flow distribution. Turbulence effects of the flow are represented by the well-developed two equation turbulence model. In this work, the so-called standard k-ε turbulence model, one of the most widespread turbulence models for industrial applications, was utilized. Basic parameters included in this work are air dry bulb temperature, air velocity, relative humidity and turbulence parameters are used for numerical predictions of indoor air distribution and thermal comfort. The thermal comfort predictions through this work were based on ADPI (Air Diffusion Performance Index),the PMV (Predicted Mean Vote) model and the PPD (Percentage People Dissatisfied) model, the PMV and PPD were estimated using Fanger’s model.Keywords: thermal comfort, Fanger's model, ADPI, energy effeciency
Procedia PDF Downloads 409156 Failure Analysis of Pipe System at a Hydroelectric Power Plant
Authors: Ali Göksenli, Barlas Eryürek
Abstract:
In this study, failure analysis of pipe system at a micro hydroelectric power plant is investigated. Failure occurred at the pipe system in the powerhouse during shut down operation of the water flow by a valve. This locking had caused a sudden shock wave, also called “Water-hammer effect”, resulting in noise and inside pressure increase. After visual investigation of the effect of the shock wave on the system, a circumference crack was observed at the pipe flange weld region. To establish the reason for crack formation, calculations of pressure and stress values at pipe, flange and welding seams were carried out and concluded that safety factor was high (2.2), indicating that no faulty design existed. By further analysis, pipe system and hydroelectric power plant was examined. After observations it is determined that the plant did not include a ventilation nozzle (air trap), that prevents the system of sudden pressure increase inside the pipes which is caused by water-hammer effect. Analyses were carried out to identify the influence of water-hammer effect on inside pressure increase and it was concluded that, according Jowkowsky’s equation, shut down time is effective on inside pressure increase. The valve closing time was uncertain but by a shut down time of even one minute, inside pressure would increase by 7.6 bar (working pressure was 34.6 bar). Detailed investigations were also carried out on the assembly of the pipe-flange system by considering technical drawings. It was concluded that the pipe-flange system was not installed according to the instructions. Two of five weld seams were not applied and one weld was carried out faulty. This incorrect and inadequate weld seams resulted in; insufficient connection of the pipe to the flange constituting a strong notch effect at weld seam regions, increase in stress values and the decrease of strength and safety factorKeywords: failure analysis, hydroelectric plant, crack, shock wave, welding seam
Procedia PDF Downloads 344155 Efficiency Validation of Hybrid Geothermal and Radiant Cooling System Implementation in Hot and Humid Climate Houses of Saudi Arabia
Authors: Jamil Hijazi, Stirling Howieson
Abstract:
Over one-quarter of the Kingdom of Saudi Arabia’s total oil production (2.8 million barrels a day) is used for electricity generation. The built environment is estimated to consume 77% of the total energy production. Of this amount, air conditioning systems consume about 80%. Apart from considerations surrounding global warming and CO2 production it has to be recognised that oil is a finite resource and the KSA like many other oil rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground cooling pipes in combination with black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing carbon emissions while providing all year round thermal comfort in a typical Saudi Arabian urban housing block. At the outset air and soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (Design Builder) that utilised the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/ stack ventilation and radiant cooling pipes embed in floor).Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.Keywords: energy efficiency, ground pipe, hybrid cooling, radiative cooling, thermal comfort
Procedia PDF Downloads 262154 Characteristics of the Particle Size Distribution and Exposure Concentrations of Nanoparticles Generated from the Laser Metal Deposition Process
Authors: Yu-Hsuan Liu, Ying-Fang Wang
Abstract:
The objectives of the present study are to characterize nanoparticles generated from the laser metal deposition (LMD) process and to estimate particle concentrations deposited in the head (H), that the tracheobronchial (TB) and alveolar (A) regions, respectively. The studied LMD chamber (3.6m × 3.8m × 2.9m) is installed with a robot laser metal deposition machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling inside the chamber for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L / min, respectively. The resultant size distributions were used to predict depositions of nanoparticles at the H, TB, and A regions of the respiratory tract using the UK National Radiological Protection Board’s (NRPB’s) LUDEP Software. Result that the number concentrations of nanoparticles in indoor background and LMD chamber were 4.8×10³ and 4.3×10⁵ # / cm³, respectively. However, the nanoparticles emitted from the LMD process was in the form of the uni-modal with number median diameter (NMD) and geometric standard deviation (GSD) as 142nm and 1.86, respectively. The fractions of the nanoparticles deposited on the alveolar region (A: 69.8%) were higher than the other two regions of the head region (H: 10.9%), tracheobronchial region (TB: 19.3%). This study conducted static sampling to measure the nanoparticles in the LMD process, and the results show that the fraction of particles deposited on the A region was higher than the other two regions. Therefore, applying the characteristics of nanoparticles emitted from LMD process could be provided valuable scientific-based evidence for exposure assessments in the future.Keywords: exposure assessment, laser metal deposition process, nanoparticle, respiratory region
Procedia PDF Downloads 284153 Effects of Indole on Aerobic Biodegradation of Butanoic Acid by Pseudomonas aeruginosa and Serratia marcescens
Authors: J. B. J. Njalam’mano, E. M. N. Chirwa
Abstract:
In low resource settings in Africa and other developing regions, pit latrines remain the dominant basic minimum acceptable form of sanitation. However, unpleasant smells-malodours emitted from faecal sludge in the pit latrines, which elicit disgusting or repulsive response, are one of the factors that thwart people to use latrines and instead opt for open defecation as an alternative. This provides an important but often overlooked major impediment, dissuading people from adopting and using the pit latrines hence affecting successful, effective sanitation promotion. The malodours are primarily attributed to four odorants: butanoic acid (C₄H₈O₂), dimethyl trisulphide (C₂H₆S₃), indole (C₈H₇N) and para-cresol (C₇H₈O). Several pit latrine deodorisation methods such as addition of carbonous materials, use of ventilation systems and urine separation are available, and they continue to occupy their niche, but social, economic, environmental and technological shortfalls remain. Bioremediation has been gaining popularity because it is inexpensive, simple to operate and environmentally friendly. Recently, the biodegradation of butanoic acid as individual odorant has been studied. However, to the best of our knowledge, there have been no kinetic studies of the butanoic acid in the presence of other key odorous compounds. In this study, a series of experiments were conducted to investigate the effects of indole on the removal of butanoic acid under aerobic conditions using indigenous bacteria strains, Pseudomonas aeruginosa, and Serratia marcescens isolated from faecal sludge as pure cultures as well as mixed cultures. In this purpose, butanoic acid removal was performed in a batch reactor containing the bacterial strains in mineral salt medium (MSM) amended with 3000 ppm of butanoic acid at the temperature of 30°C, under continuous stirring rate of 150 rpm and the concentration of indole was varied from 50-200 ppm. The initial pH of the solution was in the range of 6.0-7.2. Overall, there were significant differences in the bacterial growth rate and total butanoic acid removal dependent on the concentration of indole in the solution.Keywords: biodegradation, butanoic acid, indole, pit latrine
Procedia PDF Downloads 195152 Field Prognostic Factors on Discharge Prediction of Traumatic Brain Injuries
Authors: Mohammad Javad Behzadnia, Amir Bahador Boroumand
Abstract:
Introduction: Limited facility situations require allocating the most available resources for most casualties. Accordingly, Traumatic Brain Injury (TBI) is the one that may need to transport the patient as soon as possible. In a mass casualty event, deciding when the facilities are restricted is hard. The Extended Glasgow Outcome Score (GOSE) has been introduced to assess the global outcome after brain injuries. Therefore, we aimed to evaluate the prognostic factors associated with GOSE. Materials and Methods: In a multicenter cross-sectional study conducted on 144 patients with TBI admitted to trauma emergency centers. All the patients with isolated TBI who were mentally and physically healthy before the trauma entered the study. The patient’s information was evaluated, including demographic characteristics, duration of hospital stays, mechanical ventilation on admission laboratory measurements, and on-admission vital signs. We recorded the patients’ TBI-related symptoms and brain computed tomography (CT) scan findings. Results: GOSE assessments showed an increasing trend by the comparison of on-discharge (7.47 ± 1.30), within a month (7.51 ± 1.30), and within three months (7.58 ± 1.21) evaluations (P < 0.001). On discharge, GOSE was positively correlated with Glasgow Coma Scale (GCS) (r = 0.729, P < 0.001) and motor GCS (r = 0.812, P < 0.001), and inversely with age (r = −0.261, P = 0.002), hospitalization period (r = −0.678, P < 0.001), pulse rate (r = −0.256, P = 0.002) and white blood cell (WBC). Among imaging signs and trauma-related symptoms in univariate analysis, intracranial hemorrhage (ICH), interventricular hemorrhage (IVH) (P = 0.006), subarachnoid hemorrhage (SAH) (P = 0.06; marginally at P < 0.1), subdural hemorrhage (SDH) (P = 0.032), and epidural hemorrhage (EDH) (P = 0.037) were significantly associated with GOSE at discharge in multivariable analysis. Conclusion: Our study showed some predictive factors that could help to decide which casualty should transport earlier to a trauma center. According to the current study findings, GCS, pulse rate, WBC, and among imaging signs and trauma-related symptoms, ICH, IVH, SAH, SDH, and EDH are significant independent predictors of GOSE at discharge in TBI patients.Keywords: field, Glasgow outcome score, prediction, traumatic brain injury.
Procedia PDF Downloads 75151 Design and Optimization of an Electromagnetic Vibration Energy Converter
Authors: Slim Naifar, Sonia Bradai, Christian Viehweger, Olfa Kanoun
Abstract:
Vibration provides an interesting source of energy since it is available in many indoor and outdoor applications. Nevertheless, in order to have an efficient design of the harvesting system, vibration converters have to satisfy some criterion in terms of robustness, compactness and energy outcome. In this work, an electromagnetic converter based on mechanical spring principle is proposed. The designed harvester is formed by a coil oscillating around ten ring magnets using a mechanical spring. The proposed design overcomes one of the main limitation of the moving coil by avoiding the contact between the coil wires with the mechanical spring which leads to a better robustness for the converter. In addition, the whole system can be implemented in a cavity of a screw. Different parameters in the harvester were investigated by finite element method including the magnet size, the coil winding number and diameter and the excitation frequency and amplitude. A prototype was realized and tested. Experiments were performed for 0.5 g to 1 g acceleration. The used experimental setup consists of an electrodynamic shaker as an external artificial vibration source controlled by a laser sensor to measure the applied displacement and frequency excitation. Together with the laser sensor, a controller unit, and an amplifier, the shaker is operated in a closed loop which allows controlling the vibration amplitude. The resonance frequency of the proposed designs is in the range of 24 Hz. Results indicate that the harvester can generate 612 mV and 1150 mV maximum open circuit peak to peak voltage at resonance for 0.5 g and 1 g acceleration respectively which correspond to 4.75 mW and 1.34 mW output power. Tuning the frequency to other values is also possible due to the possibility to add mass to the moving part of the or by changing the mechanical spring stiffness.Keywords: energy harvesting, electromagnetic principle, vibration converter, moving coil
Procedia PDF Downloads 298150 Predictive Value Modified Sick Neonatal Score (MSNS) On Critically Ill Neonates Outcome Treated in Neonatal Intensive Care Unit (NICU)
Authors: Oktavian Prasetia Wardana, Martono Tri Utomo, Risa Etika, Kartika Darma Handayani, Dina Angelika, Wurry Ayuningtyas
Abstract:
Background: Critically ill neonates are newborn babies with high-risk factors that potentially cause disability and/or death. Scoring systems for determining the severity of the disease have been widely developed as well as some designs for use in neonates. The SNAPPE-II method, which has been used as a mortality predictor scoring system in several referral centers, was found to be slow in assessing the outcome of critically ill neonates in the Neonatal Intensive Care Unit (NICU). Objective: To analyze the predictive value of MSNS on the outcome of critically ill neonates at the time of arrival up to 24 hours after being admitted to the NICU. Methods: A longitudinal observational analytic study based on medical record data was conducted from January to August 2022. Each sample was recorded from medical record data, including data on gestational age, mode of delivery, APGAR score at birth, resuscitation measures at birth, duration of resuscitation, post-resuscitation ventilation, physical examination at birth (including vital signs and any congenital abnormalities), the results of routine laboratory examinations, as well as the neonatal outcomes. Results: This study involved 105 critically ill neonates who were admitted to the NICU. The outcome of critically ill neonates was 50 (47.6%) neonates died, and 55 (52.4%) neonates lived. There were more males than females (61% vs. 39%). The mean gestational age of the subjects in this study was 33.8 ± 4.28 weeks, with the mean birth weight of the subjects being 1820.31 ± 33.18 g. The mean MSNS score of neonates with a deadly outcome was lower than that of the lived outcome. ROC curve with a cut point MSNS score <10.5 obtained an AUC of 93.5% (95% CI: 88.3-98.6) with a sensitivity value of 84% (95% CI: 80.5-94.9), specificity 80 % (CI 95%: 88.3-98.6), Positive Predictive Value (PPV) 79.2%, Negative Predictive Value (NPV) 84.6%, Risk Ratio (RR) 5.14 with Hosmer & Lemeshow test results p>0.05. Conclusion: The MSNS score has a good predictive value and good calibration of the outcomes of critically ill neonates admitted to the NICU.Keywords: critically ill neonate, outcome, MSNS, NICU, predictive value
Procedia PDF Downloads 69149 Performance Analysis of Three Absorption Heat Pump Cycles, Full and Partial Loads Operations
Authors: B. Dehghan, T. Toppi, M. Aprile, M. Motta
Abstract:
The environmental concerns related to global warming and ozone layer depletion along with the growing worldwide demand for heating and cooling have brought an increasing attention toward ecological and efficient Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, since space heating accounts for a considerable part of the European primary/final energy use, it has been identified as one of the sectors with the most challenging targets in energy use reduction. Heat pumps are commonly considered as a technology able to contribute to the achievement of the targets. Current research focuses on the full load operation and seasonal performance assessment of three gas-driven absorption heat pump cycles. To do this, investigations of the gas-driven air-source ammonia-water absorption heat pump systems for small-scale space heating applications are presented. For each of the presented cycles, both full-load under various temperature conditions and seasonal performances are predicted by means of numerical simulations. It has been considered that small capacity appliances are usually equipped with fixed geometry restrictors, meaning that the solution mass flow rate is driven by the pressure difference across the associated restrictor valve. Results show that gas utilization efficiency (GUE) of the cycles varies between 1.2 and 1.7 for both full and partial loads and vapor exchange (VX) cycle is found to achieve the highest efficiency. It is noticed that, for typical space heating applications, heat pumps operate over a wide range of capacities and thermal lifts. Thus, partially, the novelty introduced in the paper is the investigation based on a seasonal performance approach, following the method prescribed in a recent European standard (EN 12309). The overall result is a modest variation in the seasonal performance for analyzed cycles, from 1.427 (single-effect) to 1.493 (vapor-exchange).Keywords: absorption cycles, gas utilization efficiency, heat pump, seasonal performance, vapor exchange cycle
Procedia PDF Downloads 109148 A Study on Thermal and Flow Characteristics by Solar Radiation for Single-Span Greenhouse by Computational Fluid Dynamics Simulation
Authors: Jonghyuk Yoon, Hyoungwoon Song
Abstract:
Recently, there are lots of increasing interest in a smart farming that represents application of modern Information and Communication Technologies (ICT) into agriculture since it provides a methodology to optimize production efficiencies by managing growing conditions of crops automatically. In order to obtain high performance and stability for smart greenhouse, it is important to identify the effect of various working parameters such as capacity of ventilation fan, vent opening area and etc. In the present study, a 3-dimensional CFD (Computational Fluid Dynamics) simulation for single-span greenhouse was conducted using the commercial program, Ansys CFX 18.0. The numerical simulation for single-span greenhouse was implemented to figure out the internal thermal and flow characteristics. In order to numerically model solar radiation that spread over a wide range of wavelengths, the multiband model that discretizes the spectrum into finite bands of wavelength based on Wien’s law is applied to the simulation. In addition, absorption coefficient of vinyl varied with the wavelength bands is also applied based on Beer-Lambert Law. To validate the numerical method applied herein, the numerical results of the temperature at specific monitoring points were compared with the experimental data. The average error rates (12.2~14.2%) between them was shown and numerical results of temperature distribution are in good agreement with the experimental data. The results of the present study can be useful information for the design of various greenhouses. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Advanced Production Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(315093-03).Keywords: single-span greenhouse, CFD (computational fluid dynamics), solar radiation, multiband model, absorption coefficient
Procedia PDF Downloads 136147 Strategies For Management Of Massive Intraoperative Airway Haemorrhage Complicating Surgical Pulmonary Embolectomy
Authors: Nicholas Bayfield, Liam Bibo, Kaushelandra Rathore, Lucas Sanders, Mark Newman
Abstract:
INTRODUCTION: Surgical pulmonary embolectomy is an established therapy for acute pulmonary embolism causing right heart dysfunction and haemodynamic instability. Massive intraoperative airway haemorrhage is a rare complication of pulmonary embolectomy. We present our institutional experience with massive airway haemorrhage complicating pulmonary embolectomy and discuss optimal therapeutic strategies. METHODS: A retrospective review of emergent surgical pulmonary embolectomy patients was undertaken. Cases complicated by massive intra-operative airway haemorrhage were identified. Intra- and peri-operative management strategies were analysed and discussed. RESULTS: Of 76 patients undergoing emergent or salvage pulmonary embolectomy, three cases (3.9%) of massive intraoperative airway haemorrhage were identified. Haemorrhage always began on weaning from cardiopulmonary bypass. Successful management strategies involved intraoperative isolation of the side of bleeding, occluding the affected airway with an endobronchial blocker, institution of veno-arterial (VA) extracorporeal membrane oxygenation (ECMO) and reversal of anticoagulation. Running the ECMO without heparinisation allows coagulation to occur. Airway haemorrhage was controlled within 24 hours of operation in all patients, allowing re-institution of dual lung ventilation and decannulation from ECMO. One case in which positive end-expiratory airway pressure was trialled initially was complicated by air embolism. Although airway haemorrhage was controlled successfully in all cases, all patients died in-hospital for reasons unrelated to the airway haemorrhage. CONCLUSION: Massive intraoperative airway haemorrhage during pulmonary embolectomy is a rare complication with potentially catastrophic outcomes. Re-perfusion alveolar and capillary injury is the likely aetiology. With a systematic approach to management, airway haemorrhage can be well controlled intra-operatively and often resolves within 24 hours. Stopping blood flow to the pulmonary arteries and support of oxygenation by the institution of VA ECMO is important. This management has been successful in our 3 cases.Keywords: pulmonary embolectomy, cardiopulmonary bypass, cardiac surgery, pulmonary embolism
Procedia PDF Downloads 176146 Impact of Agroforestry Practices on Biodiversity Management and Livelihoods of Communities Adjacent Magamba Nature Reserve(MNR), Tanzania
Authors: P. J. Kagosi, M. Mndolwa, E. Japhate
Abstract:
The study was conducted to communities adjacent MNR, Lushoto district, Tanzania. The MNR is one of the nine nature reserves in the Eastern Arc Mountains of Tanzania with an area of 8,700ha with high biological diversity. However, biodiversity in MNR have been threatened by increasing human activities for livelihood in 1970s. The AF systems in the study area was practised since 1980s however, no study was conducted on AF impacts. This paper presents the influence of AF on livelihood of communities adjacent MNR and biodiversity conservation. Qualitative and quantitative data were collected using socio-economic survey and botanical surveys. Data were analysed using Statistical Packages for Social Sciences and content analysis. The study found that in 1970s free livestock grazing caused considerable surface runoff, soil erosion and reduction of crop production. Since 1980s, the study area received various interventions based on the land conservations and improved livelihood through practising AF systems. It was further found that the AF farming improved crop productivity, reduced soil erosion, increased firewood (80.2%) and other forest products availability and AF encouraged community members practicing indoor livestock keeping.The dominant agroforestry tree found in the study area is grevillea reported by 74.1% of respondents planting an average of 40 trees. The study found that the AF reduced pressure to MNR as forest products and fodders were obtained from community's farms in turn, currently water flow from MNR has been increased. Thus AF products support livelihood needs and conserve biodiversity. The study recommends continuity education on new AF technology packages.Keywords: impact of agroforestry, biodiversity management, communities’ livelihoods, Magamba nature reserve
Procedia PDF Downloads 354145 Resurgence of Influenza A (H1N1) Pdm09 during November 2015 - February 2016, Pakistan
Authors: Nazish Badar
Abstract:
Background: To investigate the epidemic resurgent wave of influenza A (H1N1) pdm09 infections during 2015-16 Influenza season(Nov,15 –Feb,16) we compared epidemiological features of influenza A (H1N1) pdm09 associated hospitalizations and deaths during this period in Pakistan. Methods: Respiratory samples were tested using CDC Real-Time RT-PCR protocols. Demographic and epidemiological data was analyzed using SPSS. Risk ratio was calculated between age groups to compare patients that were hospitalized and died due to influenza A (H1N1) pdm09 during this period. Results: A total of 1970 specimens were analyzed; influenza virus was detected in 494(25%) samples, including 458(93%) Influenza type A and 36(7%) influenza type B viruses. Amongst influenza A viruses, 351(77%) A(H1N1) pdm09 and 107(23%) were A/H3N2. Influenza A(H1N1)pdm09 peaked in January 2016 when 250(54%) of tested patients were positive. The resurgent waves increased hospitalizations due to pdmH1N1 as compared to the rest part of the year. Overall 267(76%) A(H1N1) pdm09 cases were hospitalized. Adults ≥18 years showed the highest relative risk of hospitalization (1.2). Median interval of hospitalization and symptom onset was five days for all age groups. During this period, a total of 34 laboratory-confirmed deaths associated with pandemic influenza A (H1N1) were reported out of 1970 cases, the case fatality rate was 1.72%. the male to female ratio was 2:1in reported deaths. The majority of the deaths during that period occurred in adults ≥18 years of age. Overall median age of the death cases was 42.8 years with underlying medical conditions. The median number of days between symptom onset was two days. The diagnosis upon admission in influenza-associated fatal cases was pneumonia (53%). Acute Respiratory Distress Syndrome 9 (26%), eight out of which (88%) required mechanical ventilation. Conclusions: The present resurgence of pandemic virus cannot be attributed to a single factor. The prolong cold and dry weather, possibility of drift in virus and absence of annual flu vaccination may have played an integrated role in resurfacing of pandemic virus.Keywords: influenza A (H1N1)pdm 09, resurgence, epidemiology, Pakistan
Procedia PDF Downloads 197144 The Use of Unmanned Aerial System (UAS) in Improving the Measurement System on the Example of Textile Heaps
Authors: Arkadiusz Zurek
Abstract:
The potential of using drones is visible in many areas of logistics, especially in terms of their use for monitoring and control of many processes. The technologies implemented in the last decade concern new possibilities for companies that until now have not even considered them, such as warehouse inventories. Unmanned aerial vehicles are no longer seen as a revolutionary tool for Industry 4.0, but rather as tools in the daily work of factories and logistics operators. The research problem is to develop a method for measuring the weight of goods in a selected link of the clothing supply chain by drones. However, the purpose of this article is to analyze the causes of errors in traditional measurements, and then to identify adverse events related to the use of drones for the inventory of a heap of textiles intended for production purposes. On this basis, it will be possible to develop guidelines to eliminate the causes of these events in the measurement process using drones. In a real environment, work was carried out to determine the volume and weight of textiles, including, among others, weighing a textile sample to determine the average density of the assortment, establishing a local geodetic network, terrestrial laser scanning and photogrammetric raid using an unmanned aerial vehicle. As a result of the analysis of measurement data obtained in the facility, the volume and weight of the assortment and the accuracy of their determination were determined. In this article, this work presents how such heaps are currently being tested, what adverse events occur, indicate and describes the current use of photogrammetric techniques of this type of measurements so far performed by external drones for the inventory of wind farms or construction of the station and compare them with the measurement system of the aforementioned textile heap inside a large-format facility.Keywords: drones, unmanned aerial system, UAS, indoor system, security, process automation, cost optimization, photogrammetry, risk elimination, industry 4.0
Procedia PDF Downloads 86143 Elements of Successful Commercial Streets: A Socio-Spatial Analysis of Commercial Streets in Cairo
Authors: Toka Aly
Abstract:
Historically, marketplaces were the most important nodes and focal points of cities, where different activities took place. Commercial streets offer more than just spaces for shopping; they also offer choices for social activities and cultural exchange. They are considered the backbone of the city’s vibrancy and vitality. Despite that, the public life in Cairo’s commercial streets has deteriorated, where the shopping activities became reliant mainly on 'planned formal places', mainly in privatized or indoor spaces like shopping malls. The main aim of this paper is to explore the key elements and tools of assessing the successfulness of commercial streets in Cairo. The methodology followed in this paper is based on a case study methodology (multiple cases) that is based on assessing and analyzing the physical and social elements in historical and contemporary commercial streets in El Muiz Street and Baghdad Street in Cairo. The data collection is based on personal observations, photographs, maps and street sections. Findings indicate that the key factors of analyzing commercial streets are factors affecting the sensory experience, factors affecting the social behavior, and general aspects that attract people. Findings also indicate that urban features have clear influence on shopping pedestrian activities in both streets. Moreover, in order for a commercial street to be successful, shopping patterns must provide people with a quality public space that can provide easy navigation and accessibility, good visual continuity, and well-designed urban features and social gathering. Outcomes of this study will be a significant endeavor in providing a good background for urban designers on analyzing and assessing successfulness of commercial streets. The study will also help in understanding the different physical and social pattern of vending activities taking place in Cairo.Keywords: activities, commercial street, marketplace, successful, vending
Procedia PDF Downloads 302142 Comparison of Maternal and Perinatal Outcomes of Obstetric Population Diagnosed with Covid-19 in Reference to Influenza A/H1N1: A Systematic Review and Meta-Analysis
Authors: Maria Vargas Hernandez, Jose Rojas Suarez, Carmelo Dueñas Castell, Sandra Contreras, Camilo Bello, Diana Borre, Walter Anichiarico, Harold Vasquez, Eduard Perez, Jose Santacruz
Abstract:
In the last two decades, there have been outbreaks of emerging infectious diseases, with an impact on both the general population and the obstetric population. These infections, which affect the general population, pose a high risk for adverse maternal and perinatal outcomes, taking into account that physiological and immunological changes that occur during pregnancy can increase their risk or severity. Among these, the pandemics of viral infections, Influenza A/H1N1 and SARS-CoV-2/COVID-19, stand out. In 2009, Influenza A/H1N1 infection (H1N1 2009pdm) affected approximately 3,110 obstetric patients, with data reported from 29 countries, including 1,625 (52.3%) cases that were hospitalized, 378 (23.3%) admissions to ICU and 130 (8%) deaths; and since the end of 2019, the Severe Acute Respiratory Syndrome - 2 (SARS-CoV-2) has been identified, causing the COVID-19 pandemic, with global mortality that is around 2-4% for the general population, and higher mortality in patients requiring admission to the intensive care unit. Its impact on the obstetric population is still unknown. Objectives: To evaluate the impact on maternal and perinatal outcomes of COVID-19 infection in reference to influenza A/H1N1 infection in the obstetric population. Methodology: Systematic review of the literature and meta-analysis. Results: Mortality from maternal infection with influenza A/H1N1 appears to be higher (8%) than mortality due to maternal infection with COVID-19 (3%). The rates of ICU admission, hospitalization, the requirement for invasive mechanical ventilation, and fetal death also appear to be higher in the maternal population with A/H1N1 infection, in reference to the maternal population with COVID-19 infection. Within perinatal outcomes, the admission to the neonatal ICU appears to be higher in the infants born to mothers with COVID-19 infection (28% vs. 15% for COVID-19 and A/H1N1, respectively). Conclusion: A/H1N1 infection in the obstetric population seems to be associated with a higher proportion of adverse outcomes in relation to COVID-19 infection. The actual impact of maternal influenza A/H1N1 infection on perinatal outcomes is unknown. More COVID-19 studies are needed to understand the impact of maternal infection on perinatal outcomes in this population.Keywords: A/H1N1, COVID-19, maternal outcomes, perinatal outcomes
Procedia PDF Downloads 224141 Dietary Intake, Serum Vitamin D Status, and Sun Exposure of Malaysian Women of Different Ethnicity
Authors: H. Z. M. Chong, M. E. Y. Leong, G. L. Khor, S. C. Loke
Abstract:
Vitamin D insufficiency is reported to be prevalent among women living in different altitudes including the equator where sunshine is available throughout the year. Multiple factors for vitamin D insufficiency include poor intake of vitamin D rich food and inadequate sun exposure, especially among women working indoor with a sedentary lifestyle. Furthermore, Muslim women in Malaysia whose attire covers the entire body are likely to receive poor sun exposure. This research determined serum vitamin D status, vitamin D intake and sun exposure of women aged 20-45 years of different ethnicity in Kuala Lumpur, Malaysia. Blood samples were collected from 106 women for determination of serum 25(OH)D levels. Information about vitamin D intake and sun exposure were obtained by interviewing the subjects using pre-tested questionnaires. The overall mean serum 25(OH)D was found to be 29.9 ± 14 nmol/L. Vitamin D deficiency and insufficiency was prevalent and highest among the Malay women. Less than ten percent of the subjects in this study met the sufficient vitamin D level recommendation of ≥50 nmol/L. Intake of vitamin D rich food such as oily fishes was poor across the different ethnicity. Other dietary sources of vitamin D in the diet were fortified bread and skim milk. On the other hand, the median sunlight exposure of the subjects was 3.9 hours per week. The Malay women reported to have the highest duration being exposed to the sun. Nevertheless, due to cultural clothing practices, these women had the least body surface area exposed to sunlight, resulting in the lowest calculated sun index score compared to the Chinese and the Indians. Low intake of vitamin D rich foods and sun exposure were negatively correlated with serum 25(OH)D level. In conclusion, intake of food sources rich in vitamin D and adequate body surface area exposed to the sun are essential to ensure healthy vitamin D level. Supplementation of vitamin D may be recommended to women whom unable to meet these recommendations.Keywords: serum 25-OH, sun exposure, vitamin D food frequency, vitamin D deficiency
Procedia PDF Downloads 266140 Evaluate Effects of Different Curing Methods on Compressive Strength, Modulus of Elasticity and Durability of Concrete
Authors: Dhara Shah, Chandrakant Shah
Abstract:
Construction industry utilizes plenty of water in the name of curing. Looking at the present scenario, the days are not so far when all construction industries will have to switch over to an alternative-self curing system, not only to save water for sustainable development of the environment but also to promote indoor and outdoor construction activities even in water scarce areas. At the same time, curing is essential for the development of proper strength and durability. IS 456-2000 recommends a curing period of 7 days for ordinary Portland cement concrete, and 10 to 14 days for concrete prepared using mineral admixtures or blended cements. But, being the last act in the concreting operations, it is often neglected or not fully done. Consequently, the quality of hardened concrete suffers, more so, if the freshly laid concrete gets exposed to the environmental conditions of low humidity, high wind velocity and high ambient temperature. To avoid the adverse effects of neglected or insufficient curing, which is considered a universal phenomenon, concrete technologist and research scientists have come up with curing compounds. Concrete is said to be self-cured, if it is able to retain its water content to perform chemical reaction for the development of its strength. Curing compounds are liquids which are either incorporated in concrete or sprayed directly onto concrete surfaces and which then dry to form a relatively impermeable membrane that retards the loss of moisture from the concrete. They are an efficient and cost-effective means of curing concrete and may be applied to freshly placed concrete or that which has been partially cured by some other means. However, they may affect the bond between concrete and subsequent surface treatments. Special care in the choice of a suitable compound needs to be exercised in such circumstances. Curing compounds are generally formulated from wax emulsions, chlorinated rubbers, synthetic and natural resins, and from PVA emulsions. Their effectiveness varies quite widely, depending on the material and strength of the emulsion.Keywords: curing methods, self-curing compound, compressive strength, modulus of elasticity, durability
Procedia PDF Downloads 330139 Occupational Heat Stress Condition According to Wet Bulb Globe Temperature Index in Textile Processing Unit: A Case Study of Surat, Gujarat, India
Authors: Dharmendra Jariwala, Robin Christian
Abstract:
Thermal exposure is a common problem in every manufacturing industry where heat is used in the manufacturing process. In developing countries like India, a lack of awareness regarding the proper work environmental condition is observed among workers. Improper planning of factory building, arrangement of machineries, ventilation system, etc. play a vital role in the rise of temperature within the manufacturing areas. Due to the uncontrolled thermal stress, workers may be subjected to various heat illnesses from mild disorder to heat stroke. Heat stress is responsible for the health risk and reduction in production. Wet Bulb Globe Temperature (WBGT) index and relative humidity are used to evaluate heat stress conditions. WBGT index is a weighted average of natural wet bulb temperature, globe temperature, dry bulb temperature, which are measured with standard instrument QuestTemp 36 area stress monitor. In this study textile processing units have been selected in the industrial estate in the Surat city. Based on the manufacturing process six locations were identified within the plant at which process was undertaken at 120°C to 180°C. These locations were jet dying machine area, stenter machine area, printing machine, looping machine area, washing area which generate process heat. Office area was also selected for comparision purpose as a sixth location. Present Study was conducted in the winter season and summer season for day and night shift. The results shows that average WBGT index was found above Threshold Limiting Value (TLV) during summer season for day and night shift in all three industries except office area. During summer season highest WBGT index of 32.8°C was found during day shift and 31.5°C was found during night shift at printing machine area. Also during winter season highest WBGT index of 30°C and 29.5°C was found at printing machine area during day shift and night shift respectively.Keywords: relative humidity, textile industry, thermal stress, WBGT
Procedia PDF Downloads 173138 Two-Level Separation of High Air Conditioner Consumers and Demand Response Potential Estimation Based on Set Point Change
Authors: Mehdi Naserian, Mohammad Jooshaki, Mahmud Fotuhi-Firuzabad, Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee
Abstract:
In recent years, the development of communication infrastructure and smart meters have facilitated the utilization of demand-side resources which can enhance stability and economic efficiency of power systems. Direct load control programs can play an important role in the utilization of demand-side resources in the residential sector. However, investments required for installing control equipment can be a limiting factor in the development of such demand response programs. Thus, selection of consumers with higher potentials is crucial to the success of a direct load control program. Heating, ventilation, and air conditioning (HVAC) systems, which due to the heat capacity of buildings feature relatively high flexibility, make up a major part of household consumption. Considering that the consumption of HVAC systems depends highly on the ambient temperature and bearing in mind the high investments required for control systems enabling direct load control demand response programs, in this paper, a recent solution is presented to uncover consumers with high air conditioner demand among large number of consumers and to measure the demand response potential of such consumers. This can pave the way for estimating the investments needed for the implementation of direct load control programs for residential HVAC systems and for estimating the demand response potentials in a distribution system. In doing so, we first cluster consumers into several groups based on the correlation coefficients between hourly consumption data and hourly temperature data using K-means algorithm. Then, by applying a recent algorithm to the hourly consumption and temperature data, consumers with high air conditioner consumption are identified. Finally, demand response potential of such consumers is estimated based on the equivalent desired temperature setpoint changes.Keywords: communication infrastructure, smart meters, power systems, HVAC system, residential HVAC systems
Procedia PDF Downloads 67137 Fecal Prevalence, Serotype Distribution and Antimicrobial Resistance of Salmonella in Dairy Cattle in Central Ethiopia
Authors: Tadesse Eguale, Ephrem Engdawork, Wondwossen Gebreyes, Dainel Asrat, Hile Alemayehu, John Gunn
Abstract:
Salmonella is one of the major zoonotic pathogens affecting wide range of vertebrates and humans worldwide. Consumption of contaminated dairy products and contact with dairy cattle represent the common sources of non-typhoidal Salmonella infection in humans. Fecal samples were collected from 132 dairy herds in central Ethiopia and cultured for Salmonella to determine the prevalence, serotype distribution and antimicrobial susceptibility. Salmonella was recovered from the feces of at least one cattle in 10(7.6%) of the dairy farms. Out of 1193 fecal samples 30(2.5%) were positive for Salmonella. Large farm size, detection of diarrhea in one or more animals during sampling and keeping animals completely indoor compared to occasional grazing outside were associated with Salmonella positivity of the farms. Farm level prevalence of Salmonella was significantly higher in young animals below 6 months of age compared to other age groups(X2=10.24; p=0.04). Nine different serotypes were isolated. The four most frequently recovered serotypes were S. Typhimurium (23.3%),S. Saintpaul (20%) and S. Kentucky and S. Virchow (16.7%) each. All isolates were resistant or intermediately resistant to at least one of the 18 drugs tested. Twenty-six (86.7%), 20(66.7%), 18(60%), 16(53.3%) of the isolates were resistant to streptomycin, nitrofurantoin, sulfisoxazole and tetracycline respectively. Resistance to 2 drugs was detected in 93.3% of the isolates. Resistance to 3 or more drugs were detected in 21(70%) of the total isolates while multi-drug resistance (MDR) to 7 or more drugs were detected in 12 (40%) of the isolates. The rate of occurrence of MDR in Salmonella strains isolated from dairy farms in Addis Ababa was significantly higher than those isolated from farms outside of Addis Ababa((p= 0.009). The detection of high MDR in Salmonella isolates originating from dairy farms warrants the need for strict pathogen reduction strategy in dairy cattle and spread of these MDR strains to human population.Keywords: salmonella, antimicrobial resistance, fecal prevalence
Procedia PDF Downloads 496136 A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models
Authors: R. Hellmuth
Abstract:
The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated.Keywords: building information modeling, digital factory model, factory planning, maintenance
Procedia PDF Downloads 110135 Clinical Evidence of the Efficacy of ArtiCovid (Artemisia Annua Extract) on Covid-19 Patients in DRC
Authors: Md, MCS, MPH Munyangi Wa Nkola Jerome
Abstract:
The pandemic of COVID-19, a recently discovered contagious respiratory disease called SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus 2 Majority of people infected with SARS-CoV-2: Asymptomatic or mildly ill 14% of patients will develop severe illness requiring hospitalization and oxygen support, and 5% of these will be transferred to an intensive care unit, Urgent need for new treatments that can be used quickly to avoid transfer of patients to intensive care and death. Objective: To evaluate the clinical activity (efficacy) of ArtiCovid Hypothesis: Administration of 3 times a teaspoon per day by COVID patients (symptomatic, mild, or moderate forms) results in the disappearance of symptoms and improvement of biological parameters (including viral suppression). Clinical efficacy: the disappearance of clinical signs after seven days of treatment; reduction in the rate of patients transferred to intensive care units for mechanical ventilation and a decrease in mortality related to this infection Paraclinical efficacy: improvement of biological parameters (mainly d-dimer, CRP) Virological efficacy: suppression of the viral load after seven days of treatment (control test on the seventh day is negative) Pilot study using a standardized solution based on Artemisia annua (ARTICOVID) Obtaining authorization from the health authorities of the province of Central Kongo Recruitment of volunteer patients, mainly in the Kinkanda HospitalCarrying out tests before and after treatment as well as analyses before and after treatment. The protocol obtained the approval of the ethics committee 50 patients who completed the treatment were aged between 2 and 70 years, with an average age of 36 yearsMore half were male (56%). One in four patients was a health professional (25%) Of the 12 health professionals, 4 were physicians. For those who reported the date of onset of the disease, the average duration between the appearance of the first symptoms and the medical consultation was 5 days. The 50 patients put on ARTICOVID were discharged alive with CRP levels substantially normalizedAfter seven to eight days, the control test came back negative. This pilot study suggests that ARTICOVID may be effective against COVID-19 infection.Keywords: artiCovid, DRC, Covid-19, SARS_COV_2
Procedia PDF Downloads 120134 Exposure Assessment to Heavy Metals and Flame Retardants Among Moroccan Children and Their Impact on the Epigenetic Profile
Authors: Kaoutar Chbihi, Aziza Menouni, Emilie Hardy, Matteo Creta, Nathalie Grova, An Van Nieuwenhuyse, Lode Godderis, Samir El Jaafari, Radu-Corneliu Duca
Abstract:
Industrial products and materials are often treated with additional compounds like brominated flame retardants (BFRs) and heavy metals in order to prevent their ignition, increase their functionality and improve their performance like electrical conductivity. Consequently, this could potentially expose children to harmful chemicals through indoor dust and through hand-to-mouth or toy-chewing behaviors. The aim of this study was to assess the exposure of Moroccan children aged 5-11 years to BFRs and heavy metal elements and investigate their impacts on the epigenetic profile, namely through global DNA methylation modifications. First, parents were asked to answer a questionnaire on children’s lifestyle, then blood and urine samples were collected from (n= 93) children, following the ethical guidelines, for biomonitoring and DNA methylation analysis, using a set of solid phase extraction (SPE), LC-MS/MS, GC-MS/MS and ICP/MS techniques. BFRs were detected in 54.84% of samples with a median concentration of 0.01 nmol/mL (range: 0.004-0.051 nmol/mL), while metal elements were detected in more than 90% of samples. No association was found between BFRs and global DNA methylation, unlike metal element levels that showed significant variations with global DNA methylation biomarkers, namely 5-mdC, 5-OH-mdC and N⁶-mA levels. To conclude, Moroccan children could be significantly exposed to flame retardant compounds and heavy metal elements through several routes, such as dust or equipment usage and are therefore susceptible to the adverse health effects that could be linked with such chemicals. Further research is required to assess the exposure to environmental pollutants among the Moroccan population in order to protect Moroccan health and prevent the incidence of diseases.Keywords: biomonitoring, children, DNA methylation, epigenetics, flame retardants, heavy metals, Morocco
Procedia PDF Downloads 97