Search results for: discrete logarithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 710

Search results for: discrete logarithm

110 Numerical Method for Productivity Prediction of Water-Producing Gas Well with Complex 3D Fractures: Case Study of Xujiahe Gas Well in Sichuan Basin

Authors: Hong Li, Haiyang Yu, Shiqing Cheng, Nai Cao, Zhiliang Shi

Abstract:

Unconventional resources have gradually become the main direction for oil and gas exploration and development. However, the productivity of gas wells, the level of water production, and the seepage law in tight fractured gas reservoirs are very different. These are the reasons why production prediction is so difficult. Firstly, a three-dimensional multi-scale fracture and multiphase mathematical model based on an embedded discrete fracture model (EDFM) is established. And the material balance method is used to calculate the water body multiple according to the production performance characteristics of water-producing gas well. This will help construct a 'virtual water body'. Based on these, this paper presents a numerical simulation process that can adapt to different production modes of gas wells. The research results show that fractures have a double-sided effect. The positive side is that it can increase the initial production capacity, but the negative side is that it can connect to the water body, which will lead to the gas production drop and the water production rise both rapidly, showing a 'scissor-like' characteristic. It is worth noting that fractures with different angles have different abilities to connect with the water body. The higher the angle of gas well development, the earlier the water maybe break through. When the reservoir is a single layer, there may be a stable production period without water before the fractures connect with the water body. Once connected, a 'scissors shape' will appear. If the reservoir has multiple layers, the gas and water will produce at the same time. The above gas-water relationship can be matched with the gas well production date of the Xujiahe gas reservoir in the Sichuan Basin. This method is used to predict the productivity of a well with hydraulic fractures in this gas reservoir, and the prediction results are in agreement with on-site production data by more than 90%. It shows that this research idea has great potential in the productivity prediction of water-producing gas wells. Early prediction results are of great significance to guide the design of development plans.

Keywords: EDFM, multiphase, multilayer, water body

Procedia PDF Downloads 193
109 Environmental Impact Assessment in Mining Regions with Remote Sensing

Authors: Carla Palencia-Aguilar

Abstract:

Calculations of Net Carbon Balance can be obtained by means of Net Biome Productivity (NBP), Net Ecosystem Productivity (NEP), and Net Primary Production (NPP). The latter is an important component of the biosphere carbon cycle and is easily obtained data from MODIS MOD17A3HGF; however, the results are only available yearly. To overcome data availability, bands 33 to 36 from MODIS MYD021KM (obtained on a daily basis) were analyzed and compared with NPP data from the years 2000 to 2021 in 7 sites where surface mining takes place in the Colombian territory. Coal, Gold, Iron, and Limestone were the minerals of interest. Scales and Units as well as thermal anomalies, were considered for net carbon balance per location. The NPP time series from the satellite images were filtered by using two Matlab filters: First order and Discrete Transfer. After filtering the NPP time series, comparing the graph results from the satellite’s image value, and running a linear regression, the results showed R2 from 0,72 to 0,85. To establish comparable units among NPP and bands 33 to 36, the Greenhouse Gas Equivalencies Calculator by EPA was used. The comparison was established in two ways: one by the sum of all the data per point per year and the other by the average of 46 weeks and finding the percentage that the value represented with respect to NPP. The former underestimated the total CO2 emissions. The results also showed that coal and gold mining in the last 22 years had less CO2 emissions than limestone, with an average per year of 143 kton CO2 eq for gold, 152 kton CO2 eq for coal, and 287 kton CO2 eq for iron. Limestone emissions varied from 206 to 441 kton CO2 eq. The maximum emission values from unfiltered data correspond to 165 kton CO2 eq. for gold, 188 kton CO2 eq. for coal, and 310 kton CO2 eq. for iron and limestone, varying from 231 to 490 kton CO2 eq. If the most pollutant limestone site improves its production technology, limestone could count with a maximum of 318 kton CO2 eq emissions per year, a value very similar respect to iron. The importance of gathering data is to establish benchmarks in order to attain 2050’s zero emissions goal.

Keywords: carbon dioxide, NPP, MODIS, MINING

Procedia PDF Downloads 104
108 Angiogenesis and Blood Flow: The Role of Blood Flow in Proliferation and Migration of Endothelial Cells

Authors: Hossein Bazmara, Kaamran Raahemifar, Mostafa Sefidgar, Madjid Soltani

Abstract:

Angiogenesis is formation of new blood vessels from existing vessels. Due to flow of blood in vessels, during angiogenesis, blood flow plays an important role in regulating the angiogenesis process. Multiple mathematical models of angiogenesis have been proposed to simulate the formation of the complicated network of capillaries around a tumor. In this work, a multi-scale model of angiogenesis is developed to show the effect of blood flow on capillaries and network formation. This model spans multiple temporal and spatial scales, i.e. intracellular (molecular), cellular, and extracellular (tissue) scales. In intracellular or molecular scale, the signaling cascade of endothelial cells is obtained. Two main stages in development of a vessel are considered. In the first stage, single sprouts are extended toward the tumor. In this stage, the main regulator of endothelial cells behavior is the signals from extracellular matrix. After anastomosis and formation of closed loops, blood flow starts in the capillaries. In this stage, blood flow induced signals regulate endothelial cells behaviors. In cellular scale, growth and migration of endothelial cells is modeled with a discrete lattice Monte Carlo method called cellular Pott's model (CPM). In extracellular (tissue) scale, diffusion of tumor angiogenic factors in the extracellular matrix, formation of closed loops (anastomosis), and shear stress induced by blood flow is considered. The model is able to simulate the formation of a closed loop and its extension. The results are validated against experimental data. The results show that, without blood flow, the capillaries are not able to maintain their integrity.

Keywords: angiogenesis, endothelial cells, multi-scale model, cellular Pott's model, signaling cascade

Procedia PDF Downloads 425
107 Genetic Algorithm for In-Theatre Military Logistics Search-and-Delivery Path Planning

Authors: Jean Berger, Mohamed Barkaoui

Abstract:

Discrete search path planning in time-constrained uncertain environment relying upon imperfect sensors is known to be hard, and current problem-solving techniques proposed so far to compute near real-time efficient path plans are mainly bounded to provide a few move solutions. A new information-theoretic –based open-loop decision model explicitly incorporating false alarm sensor readings, to solve a single agent military logistics search-and-delivery path planning problem with anticipated feedback is presented. The decision model consists in minimizing expected entropy considering anticipated possible observation outcomes over a given time horizon. The model captures uncertainty associated with observation events for all possible scenarios. Entropy represents a measure of uncertainty about the searched target location. Feedback information resulting from possible sensor observations outcomes along the projected path plan is exploited to update anticipated unit target occupancy beliefs. For the first time, a compact belief update formulation is generalized to explicitly include false positive observation events that may occur during plan execution. A novel genetic algorithm is then proposed to efficiently solve search path planning, providing near-optimal solutions for practical realistic problem instances. Given the run-time performance of the algorithm, natural extension to a closed-loop environment to progressively integrate real visit outcomes on a rolling time horizon can be easily envisioned. Computational results show the value of the approach in comparison to alternate heuristics.

Keywords: search path planning, false alarm, search-and-delivery, entropy, genetic algorithm

Procedia PDF Downloads 360
106 The Influence of Travel Experience within Perceived Public Transport Quality

Authors: Armando Cartenì, Ilaria Henke

Abstract:

The perceived public transport quality is an important driver that influences both customer satisfaction and mobility choices. The competition among transport operators needs to improve the quality of the services and identify which attributes are perceived as relevant by passengers. Among the “traditional” public transport quality attributes there are, for example: travel and waiting time, regularity of the services, and ticket price. By contrast, there are some “non-conventional” attributes that could significantly influence customer satisfaction jointly with the “traditional” ones. Among these, the beauty/aesthetics of the transport terminals (e.g. rail station and bus terminal) is probably one of the most impacting on user perception. Starting from these considerations, the point stressed in this paper was if (and how munch) the travel experience of the overall travel (e.g. how long is the travel, how many transport modes must be used) influences the perception of the public transport quality. The aim of this paper was to investigate the weight of the terminal quality (e.g. aesthetic, comfort and service offered) within the overall travel experience. The case study was the extra-urban Italian bus network. The passengers of the major Italian terminal bus were interviewed and the analysis of the results shows that about the 75% of the travelers, are available to pay up to 30% more for the ticket price for having a high quality terminal. A travel experience effect was observed: the average perceived transport quality varies with the characteristic of the overall trip. The passengers that have a “long trip” (travel time greater than 2 hours) perceived as “low” the overall quality of the trip even if they pass through a high quality terminal. The opposite occurs for the “short trip” passengers. This means that if a traveler passes through a high quality station, the overall perception of that terminal could be significantly reduced if he is tired from a long trip. This result is important and if confirmed through other case studies, will allow to conclude that the “travel experience impact" must be considered as an explicit design variable for public transport services and planning.

Keywords: transportation planning, sustainable mobility, decision support system, discrete choice model, design problem

Procedia PDF Downloads 298
105 Formulation and Evaluation of Metformin Hydrochloride Microparticles via BÜCHI Nano-Spray Dryer B-90

Authors: Tamer Shehata

Abstract:

Recently, nanotechnology acquired a great interest in the field of pharmaceutical production. Several pharmaceutical equipment were introduced into the research field for production of nanoparticles, among them, BÜCHI’ fourth generation nano-spray dryer B-90. B-90 is specialized with single step of production and drying of nano and microparticles. Currently, our research group is investigating several pharmaceutical formulations utilizing BÜCHI Nano-Spray Dryer B-90 technology. One of our projects is the formulation and evaluation of metformin hydrochloride mucoadhesive microparticles for treatment of type 2-diabetis. Several polymers were investigated, among them, gelatin and sodium alginate. The previous polymers are natural polymers with mucoadhesive properties. Preformulation studies such as atomization head mesh size, flow rate, head temperature, polymer solution viscosity and surface tension were performed. Postformulation characters such as particle size, flowability, surface scan and dissolution profile were evaluated. Finally, the pharmacological activity of certain selected formula was evaluated in streptozotocin-induced diabetic rats. B-90’spray head was 7 µm hole heated to 120 with air flow rate 3.5 mL/min. The viscosity of the solution was less than 11.5 cP with surface tension less than 70.1 dyne/cm. Successfully, discrete, non-aggregated particles and free flowing powders with particle size was less than 2000 nm were obtained. Gelatin and Sodium alginate combination in ratio 1:3 were successfully sustained the in vitro release profile of the drug. Hypoglycemic evaluation of the previous formula showed a significant reduction of blood glucose level over 24 h. In conclusion, mucoadhesive metformin hydrochloride microparticles obtained from B-90 could offer a convenient dosage form with enhanced hypoglycemic activity.

Keywords: mucoadhesive, microparticles, metformin hydrochloride, nano-spray dryer

Procedia PDF Downloads 311
104 A Computational Framework for Decoding Hierarchical Interlocking Structures with SL Blocks

Authors: Yuxi Liu, Boris Belousov, Mehrzad Esmaeili Charkhab, Oliver Tessmann

Abstract:

This paper presents a computational solution for designing reconfigurable interlocking structures that are fully assembled with SL Blocks. Formed by S-shaped and L-shaped tetracubes, SL Block is a specific type of interlocking puzzle. Analogous to molecular self-assembly, the aggregation of SL blocks will build a reversible hierarchical and discrete system where a single module can be numerously replicated to compose semi-interlocking components that further align, wrap, and braid around each other to form complex high-order aggregations. These aggregations can be disassembled and reassembled, responding dynamically to design inputs and changes with a unique capacity for reconfiguration. To use these aggregations as architectural structures, we developed computational tools that automate the configuration of SL blocks based on architectural design objectives. There are three critical phases in our work. First, we revisit the hierarchy of the SL block system and devise a top-down-type design strategy. From this, we propose two key questions: 1) How to translate 3D polyominoes into SL block assembly? 2) How to decompose the desired voxelized shapes into a set of 3D polyominoes with interlocking joints? These two questions can be considered the Hamiltonian path problem and the 3D polyomino tiling problem. Then, we derive our solution to each of them based on two methods. The first method is to construct the optimal closed path from an undirected graph built from the voxelized shape and translate the node sequence of the resulting path into the assembly sequence of SL blocks. The second approach describes interlocking relationships of 3D polyominoes as a joint connection graph. Lastly, we formulate the desired shapes and leverage our methods to achieve their reconfiguration within different levels. We show that our computational strategy will facilitate the efficient design of hierarchical interlocking structures with a self-replicating geometric module.

Keywords: computational design, SL-blocks, 3D polyomino puzzle, combinatorial problem

Procedia PDF Downloads 129
103 Integrated Genetic-A* Graph Search Algorithm Decision Model for Evaluating Cost and Quality of School Renovation Strategies

Authors: Yu-Ching Cheng, Yi-Kai Juan, Daniel Castro

Abstract:

Energy consumption of buildings has been an increasing concern for researchers and practitioners in the last decade. Sustainable building renovation can reduce energy consumption and carbon dioxide emissions; meanwhile, it also can extend existing buildings useful life and facilitate environmental sustainability while providing social and economic benefits to the society. School buildings are different from other designed spaces as they are more crowded and host the largest portion of daily activities and occupants. Strategies that focus on reducing energy use but also improve the students’ learning environment becomes a significant subject in sustainable school buildings development. A decision model is developed in this study to solve complicated and large-scale combinational, discrete and determinate problems such as school renovation projects. The task of this model is to automatically search for the most cost-effective (lower cost and higher quality) renovation strategies. In this study, the search process of optimal school building renovation solutions is by nature a large-scale zero-one programming determinate problem. A* is suitable for solving deterministic problems due to its stable and effective search process, and genetic algorithms (GA) provides opportunities to acquire global optimal solutions in a short time via its indeterminate search process based on probability. These two algorithms are combined in this study to consider trade-offs between renovation cost and improved quality, this decision model is able to evaluate current school environmental conditions and suggest an optimal scheme of sustainable school buildings renovation strategies. Through adoption of this decision model, school managers can overcome existing limitations and transform school buildings into spaces more beneficial to students and friendly to the environment.

Keywords: decision model, school buildings, sustainable renovation, genetic algorithm, A* search algorithm

Procedia PDF Downloads 118
102 Perinatal Ethanol Exposure Modifies CART System in Rat Brain Anticipated for Development of Anxiety, Depression and Memory Deficits

Authors: M. P. Dandekar, A. P. Bharne, P. T. Borkar, D. M. Kokare, N. K. Subhedar

Abstract:

Ethanol ingestion by the mother ensue adverse consequences for her offspring. Herein, we examine the behavioral phenotype and neural substrate of the offspring of the mother on ethanol. Female rats were fed with ethanol-containing liquid diet from 8 days prior of conception and continued till 25 days post-parturition to coincide with weaning. Behavioral changes associated with anxiety, depression and learning and memory were assessed in the offspring, after they attained adulthood (day 85), using elevated plus maze (EPM), forced swim (FST) and novel object recognition tests (NORT), respectively. The offspring of the alcoholic mother, compared to those of the pair-fed mother, spent significantly more time in closed arms of EPM and showed more immobility time in FST. Offspring at the age of 25 and 85 days failed to discriminate between novel versus familiar object in NORT, thus reflecting anxiogenic, depressive and amnesic phenotypes. Neuropeptide cocaine- and amphetamine-regulated transcript peptide (CART) is known to be involved in central effects of ethanol and hence selected for the current study. Twenty-five days old pups of the alcoholic mother showed significant augmentation in CART-immunoreactivity in the cells of Edinger-Westphal (EW) nucleus and lateral hypothalamus. However, a significant decrease in CART-immunoreactivity was seen in nucleus accumbens shell (AcbSh), lateral part of bed nucleus of the stria terminalis (BNSTl), locus coeruleus (LC), hippocampus (CA1, CA2 and CA3), and arcuate nucleus (ARC) of the pups and/or adults offspring. While no change in the CART-immunoreactive fibers of AcbSh and BNSTl, CA2 and CA3 was noticed in the 25 days old pups, the CART-immunoreactive cells in EW and paraventricular nucleus (PVN), and fibers in the central nucleus of amygdala of 85 days old offspring remained unaffected. We suggest that the endogenous CART system in these discrete areas, among other factors, may be a causal to the abnormalities in the next generation of an alcoholic mother.

Keywords: anxiety, depression, CART, ethanol, immunocytochemistry

Procedia PDF Downloads 395
101 Dynamic Wind Effects in Tall Buildings: A Comparative Study of Synthetic Wind and Brazilian Wind Standard

Authors: Byl Farney Cunha Junior

Abstract:

In this work the dynamic three-dimensional analysis of a 47-story building located in Goiania city when subjected to wind loads generated using both the Wind Brazilian code, NBR6123 (ABNT, 1988) and the Synthetic-Wind method is realized. To model the frames three different methodologies are used: the shear building model and both bi and three-dimensional finite element models. To start the analysis, a plane frame is initially studied to validate the shear building model and, in order to compare the results of natural frequencies and displacements at the top of the structure the same plane frame was modeled using the finite element method through the SAP2000 V10 software. The same steps were applied to an idealized 20-story spacial frame that helps in the presentation of the stiffness correction process applied to columns. Based on these models the two methods used to generate the Wind loads are presented: a discrete model proposed in the Wind Brazilian code, NBR6123 (ABNT, 1988) and the Synthetic-Wind method. The method uses the Davenport spectrum which is divided into a variety of frequencies to generate the temporal series of loads. Finally, the 47- story building was analyzed using both the three-dimensional finite element method through the SAP2000 V10 software and the shear building model. The models were loaded with Wind load generated by the Wind code NBR6123 (ABNT, 1988) and by the Synthetic-Wind method considering different wind directions. The displacements and internal forces in columns and beams were compared and a comparative study considering a situation of a full elevated reservoir is realized. As can be observed the displacements obtained by the SAP2000 V10 model are greater when loaded with NBR6123 (ABNT, 1988) wind load related to the permanent phase of the structure’s response.

Keywords: finite element method, synthetic wind, tall buildings, shear building

Procedia PDF Downloads 273
100 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification

Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran

Abstract:

The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.

Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM

Procedia PDF Downloads 250
99 Understanding the First Mental Breakdown from the Families’ Perspective Through Metaphors

Authors: Eli Buchbinder

Abstract:

Introduction. Language is the basis to our experience as human being. We use language in describing our experiences and construct meaning and narratives from experiences. Metaphors are a valuable linguistic tool commonly use. Metaphors link two domains that are ordinarily not related. Metaphors achieve simultaneously multi-level integration: abstract and concrete, rational and imaginative, familiar and the unfamiliar, conscious and preconscious/unconscious. As such, metaphors epistemological and ontological tool that are important in social work in every field and domain. Goals and Methods The presentation’s aim is to validate the value of metaphors through the first psychiatric breakdown is a traumatic for families. The presentation is based on two pooled qualitative studies. The first study focused on 12 spouses: 7 women and 5 men, between the ages of 22 and 57, regarding their experiences and meanings of the first psychiatric hospitalization of their partners diagnosed with affective disorders. The second study focused on 10 parents, between the ages of 47 and 62, regarding their experiences and meanings following their child's first psychotic breakdown during young adulthood. Results Two types of major metaphors evolved from the interviews in farming the trauma of the first mental breakdown. The first mode - orientation (spatial) metaphors, reflect symbolic expression of the loss of a secure base, represented in the physical environment, e.g., describing hospitalization as "falling into an abyss." The second mode- ontological metaphors, reflect how parents and spouses present their traumatic experiences of hospitalization in terms of discrete, powerful and coherent entities, e.g., describing the first hospitalization as "swimming against the tide." The two metaphors modes reflect the embodiment of the unpredictability, being mired in distress, shock, intense pain and the experience the collapse of continuity on the life course and cuts off the experience of control. Conclusions Metaphors are important and powerful guide in assessing individuals and families’ phenomenological reality. As such, metaphors are useful for understanding and orientated therapeutic intervening, in the studies above, with the first psychiatric hospitalization experienced, as well as in others social workers’ interventions.

Keywords: first mental breakdown, metaphors, family perspective, qualitative research

Procedia PDF Downloads 72
98 Localisation of Fluorescently Labelled Drug-Free Phospholipid Vesicles to the Cartilage Surface of Rat Synovial Joints

Authors: Sam Yurdakul, Nick Baverstock, Jim Mills

Abstract:

TDT 064 (FLEXISEQ®) is a drug-free gel used to treat osteoarthritis (OA)-associated pain and joint stiffness. It contains ultra-deformable phospholipid Sequessome™ vesicles, which can pass through the skin barrier intact. In six randomized OA studies, topical TDT 064 was well tolerated and improved joint pain, physical function and stiffness. In the largest study, these TDT 064-mediated effects were statistically significantly greater than oral placebo and equivalent to celecoxib. To understand the therapeutic effects of TDT 064, we investigated the localisation of the drug-free vesicles within rat synovial joints. TDT 064 containing DiO-labelled Sequessome™ vesicles was applied to the knees of four 6-week-old CD® hairless rats (10 mg/kg/ joint), 2–3 times/day, for 3 days (representing the recommended clinical dose). Eighteen hours later, the animals and one untreated control were sacrificed, and the knee joints isolated, flash frozen and embedded in Acrytol Mounting Media™. Approximately 15 sections (10 µm) from each joint were analysed by fluorescence microscopy. To investigate whether the localisation of DiO fluorescence was associated with intact vesicles, an anti-PEG monoclonal antibody (mAb) was used to detect Tween, a constituent of Sequessome™ vesicles. Sections were visualized at 484 nm (DiO) and 647 nm (anti-PEG mAb) and analysed using inForm 1.4 (Perkin Elmer, Inc.). Significant fluorescence was observed at 484 nm in sections from TDT 064-treated animals. No non-specific fluorescence was observed in control sections. Fluorescence was detected as discrete vesicles on the cartilage surfaces, inside the cartilaginous matrix and within the synovial space. The number of DiO-labelled vesicles in multiple fields of view was consistent and >100 in sections from four different treated knees. DiO and anti-PEG mAb co-localised within the collagenous tissues in four different joint sections. Under higher magnification (40x), vesicles were seen in the intercellular spaces of the synovial joint tissue, but no fluorescence was seen inside cells. These data suggest that the phospholipid vesicles in TDT 064 localize at the surface of the joint cartilage; these vesicles may therefore be supplementing the phospholipid deficiency reported in OA and acting as a biolubricant within the synovial joint.

Keywords: joint pain, osteoarthritis, phospholipid vesicles, TDT 064

Procedia PDF Downloads 443
97 A Strategy to Oil Production Placement Zones Based on Maximum Closeness

Authors: Waldir Roque, Gustavo Oliveira, Moises Santos, Tatiana Simoes

Abstract:

Increasing the oil recovery factor of an oil reservoir has been a concern of the oil industry. Usually, the production placement zones are defined after some analysis of geological and petrophysical parameters, being the rock porosity, permeability and oil saturation of fundamental importance. In this context, the determination of hydraulic flow units (HFUs) renders an important step in the process of reservoir characterization since it may provide specific regions in the reservoir with similar petrophysical and fluid flow properties and, in particular, techniques supporting the placement of production zones that favour the tracing of directional wells. A HFU is defined as a representative volume of a total reservoir rock in which petrophysical and fluid flow properties are internally consistent and predictably distinct of other reservoir rocks. Technically, a HFU is characterized as a rock region that exhibit flow zone indicator (FZI) points lying on a straight line of the unit slope. The goal of this paper is to provide a trustful indication for oil production placement zones for the best-fit HFUs. The FZI cloud of points can be obtained from the reservoir quality index (RQI), a function of effective porosity and permeability. Considering log and core data the HFUs are identified and using the discrete rock type (DRT) classification, a set of connected cell clusters can be found and by means a graph centrality metric, the maximum closeness (MaxC) cell is obtained for each cluster. Considering the MaxC cells as production zones, an extensive analysis, based on several oil recovery factor and oil cumulative production simulations were done for the SPE Model 2 and the UNISIM-I-D synthetic fields, where the later was build up from public data available from the actual Namorado Field, Campos Basin, in Brazil. The results have shown that the MaxC is actually technically feasible and very reliable as high performance production placement zones.

Keywords: hydraulic flow unit, maximum closeness centrality, oil production simulation, production placement zone

Procedia PDF Downloads 329
96 Assessment of Rangeland Condition in a Dryland System Using UAV-Based Multispectral Imagery

Authors: Vistorina Amputu, Katja Tielboerger, Nichola Knox

Abstract:

Primary productivity in dry savannahs is constraint by moisture availability and under increasing anthropogenic pressure. Thus, considering climate change and the unprecedented pace and scale of rangeland deterioration, methods for assessing the status of such rangelands should be easy to apply, yield reliable and repeatable results that can be applied over large spatial scales. Global and local scale monitoring of rangelands through satellite data and labor-intensive field measurements respectively, are limited in accurately assessing the spatiotemporal heterogeneity of vegetation dynamics to provide crucial information that detects degradation in its early stages. Fortunately, newly emerging techniques such as unmanned aerial vehicles (UAVs), associated miniaturized sensors and improving digital photogrammetric software provide an opportunity to transcend these limitations. Yet, they have not been extensively calibrated in natural systems to encompass their complexities if they are to be integrated for long-term monitoring. Limited research using drone technology has been conducted in arid savannas, for example to assess the health status of this dynamic two-layer vegetation ecosystem. In our study, we fill this gap by testing the relationship between UAV-estimated cover of rangeland functional attributes and field data collected in discrete sample plots in a Namibian dryland savannah along a degradation gradient. The first results are based on a supervised classification performed on the ultra-high resolution multispectral imagery to distinguish between rangeland functional attributes (bare, non-woody, and woody), with a relatively good match to the field observations. Integrating UAV-based observations to improve rangeland monitoring could greatly assist in climate-adapted rangeland management.

Keywords: arid savannah, degradation gradient, field observations, narrow-band sensor, supervised classification

Procedia PDF Downloads 134
95 Copula Autoregressive Methodology for Simulation of Solar Irradiance and Air Temperature Time Series for Solar Energy Forecasting

Authors: Andres F. Ramirez, Carlos F. Valencia

Abstract:

The increasing interest in renewable energies strategies application and the path for diminishing the use of carbon related energy sources have encouraged the development of novel strategies for integration of solar energy into the electricity network. A correct inclusion of the fluctuating energy output of a photovoltaic (PV) energy system into an electric grid requires improvements in the forecasting and simulation methodologies for solar energy potential, and the understanding not only of the mean value of the series but the associated underlying stochastic process. We present a methodology for synthetic generation of solar irradiance (shortwave flux) and air temperature bivariate time series based on copula functions to represent the cross-dependence and temporal structure of the data. We explore the advantages of using this nonlinear time series method over traditional approaches that use a transformation of the data to normal distributions as an intermediate step. The use of copulas gives flexibility to represent the serial variability of the real data on the simulation and allows having more control on the desired properties of the data. We use discrete zero mass density distributions to assess the nature of solar irradiance, alongside vector generalized linear models for the bivariate time series time dependent distributions. We found that the copula autoregressive methodology used, including the zero mass characteristics of the solar irradiance time series, generates a significant improvement over state of the art strategies. These results will help to better understand the fluctuating nature of solar energy forecasting, the underlying stochastic process, and quantify the potential of a photovoltaic (PV) energy generating system integration into a country electricity network. Experimental analysis and real data application substantiate the usage and convenience of the proposed methodology to forecast solar irradiance time series and solar energy across northern hemisphere, southern hemisphere, and equatorial zones.

Keywords: copula autoregressive, solar irradiance forecasting, solar energy forecasting, time series generation

Procedia PDF Downloads 323
94 Clinical and Microbiologic Efficacy and Safety of Imipenem Cilastatin Relebactam in Complicated Infections: A Meta-analysis

Authors: Syeda Sahra, Abdullah Jahangir, Rachelle Hamadi, Ahmad Jahangir, Allison Glaser

Abstract:

Background: Antimicrobial resistance is on the rise. The use of redundant and inappropriate antibiotics is contributing to recurrent infections and resistance. Newer antibiotics with more robust coverage for gram-negative bacteria are in great demand for complicated urinary tract infections (cUTIs), complicated intra-abdominal infections (cIAIs), hospital-acquired bacterial pneumonia (H.A.B.P.), and ventilator-associated bacterial pneumonia (V.A.B.P.). Objective: We performed this meta-analysis to evaluate the efficacy and safety profile of a new antibiotic, Imipenem/cilastatin/relebactam, compared to other broad-spectrum antibiotics for complicated infections. Search Strategy: We conducted a systemic review search on PubMed, Embase, and Central Cochrane Registry. Selection Criteria: We included randomized clinical trials (R.C.T.s) with the standard of care as comparator arm with Imipenem/cilastatin/relebactam as intervention arm. Analysis: For continuous variables, the mean difference was used. For discrete variables, we used the odds ratio. For effect sizes, we used a confidence interval of 95%. A p-value of less than 0.05 was used for statistical significance. Analysis was done using a random-effects model irrespective of heterogeneity. Heterogeneity was evaluated using the I2 statistic. Results: The authors observed similar efficacy at clinical and microbiologic response levels on early follow-up and late follow-up compared to the established standard of care. The incidence of drug-related adverse events, serious adverse events, and drug discontinuation due to adverse events were comparable across both groups. Conclusion: Imipenem/cilastatin/relebactam has a non-inferior safety and efficacy profile compared to peer antibiotics to treat severe bacterial infections (cUTIs, cIAIs, H.A.B.P., V.A.B.P.).

Keywords: bacterial pneumonia, complicated intra-abdominal infections, complicated urinary tract infection, Imipenem, cilastatin, relebactam

Procedia PDF Downloads 206
93 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions

Authors: Oscar E. Cariceo, Claudia V. Casal

Abstract:

Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.

Keywords: cyberbullying, evidence based practice, machine learning, social work research

Procedia PDF Downloads 168
92 Determinants of Hospital Obstetric Unit Closures in the United States 2002-2013: Loss of Hospital Obstetric Care 2002-2013

Authors: Peiyin Hung, Katy Kozhimannil, Michelle Casey, Ira Moscovice

Abstract:

Background/Objective: The loss of obstetric services has been a pressing concern in urban and rural areas nationwide. This study aims to determine factors that contribute to the loss of obstetric care through closures of a hospital or obstetric unit. Methods: Data from 2002-2013 American Hospital Association annual surveys were used to identify hospitals providing obstetric services. We linked these data to Medicare Healthcare Cost Report Information for hospital financial indicators, the US Census Bureau’s American Community Survey for zip-code level characteristics, and Area Health Resource files for county- level clinician supply measures. A discrete-time multinomial logit model was used to determine contributing factors to obstetric unit or hospital closures. Results: Of 3,551 hospitals providing obstetrics services during 2002-2013, 82% kept units open, 12% stopped providing obstetrics services, and 6% closed down completely. State-level variations existed. Factors that significantly increased hospitals’ probability of obstetric unit closures included lower than 250 annual birth volume (adjusted marginal effects [95% confidence interval]=34.1% [28%, 40%]), closer proximity to another hospital with obstetric services (per 10 miles: -1.5% [-2.4, -0.5%]), being in a county with lower family physician supply (-7.8% [-15.0%, -0.6%), being in a zip code with higher percentage of non-white females (per 10%: 10.2% [2.1%, 18.3%]), and with lower income (per $1,000 income: -0.14% [-0.28%, -0.01%]). Conclusions: Over the past 12 years, loss of obstetric services has disproportionately affected areas served by low-volume urban and rural hospitals, non-white and low-income communities, and counties with fewer family physicians, signaling a need to address maternity care access in these communities.

Keywords: access to care, obstetric care, service line discontinuation, hospital, obstetric unit closures

Procedia PDF Downloads 222
91 Asset Liability Modelling for Pension Funds by Introducing Leslie Model for Population Dynamics

Authors: Kristina Sutiene, Lina Dapkute

Abstract:

The paper investigates the current demographic trends that exert the sustainability of pension systems in most EU regions. Several drivers usually compose the demographic challenge, coming from the structure and trends of population in the country. As the case of research, three main variables of demographic risk in Lithuania have been singled out and have been used in making up the analysis. Over the last two decades, the country has presented a peculiar demographic situation characterized by pessimistic fertility trends, negative net migration rate and rising life expectancy that make the significant changes in labor-age population. This study, therefore, sets out to assess the relative impact of these risk factors both individually and in aggregate, while assuming economic trends to evolve historically. The evidence is presented using data of pension funds that operate in Lithuania and are financed by defined-contribution plans. To achieve this goal, the discrete-time pension fund’s value model is developed that reflects main operational modalities: contribution income from current participants and new entrants, pension disbursement and administrative expenses; it also fluctuates based on returns from investment activity. Age-structured Leslie population dynamics model has been integrated into the main model to describe the dynamics of fertility, migration and mortality rates upon age. Validation has concluded that Leslie model adequately fits the current population trends in Lithuania. The elasticity of pension system is examined using Loimaranta efficiency as a measure for comparison of plausible long-term developments of demographic risks. With respect to the research question, it was found that demographic risks have different levels of influence on future value of aggregated pension funds: The fertility rates have the highest importance, while mortality rates give only a minor impact. Further studies regarding the role of trying out different economic scenarios in the integrated model would be worthwhile.

Keywords: asset liability modelling, Leslie model, pension funds, population dynamics

Procedia PDF Downloads 269
90 The Numerical and Experimental Analysis of Compressed Composite Plate in Asymmetrical Arrangement of Layers

Authors: Katarzyna Falkowicz

Abstract:

The work focused on the original concept of a thin-walled plate element with a cut-out, for use as a spring or load-bearing element. The subject of the study were rectangular plates with a cut-out with variable geometrical parameters and with a variable angle of fiber arrangement, made of a carbon-epoxy composite with high strength properties in an asymmetrical arrangement, subjected to uniform compression. The influence of geometrical parameters of the cut-out and the angle of fiber arrangement on the value of critical load of the structure and buckling form was investigated. Uniform thin plates are relatively cheap to manufacture, however due to their low bending stiffness; they can carry relatively small loads. The lowest form of loss of plate stability, which is the bending form, leads to its rapid destruction due to high deflection increases, with a slight increase in compressive load - low rigidity of the structure. However, the stiffness characteristics of the structure change significantly when the work of plate is forcing according to the higher flexural-torsional form of buckling. The plate is able to carry a much higher compressive load while maintaining much stiffer work characteristics in the post-critical range. The calculations carried out earlier show that plates with forced higher form of buckling are characterized by stable, progressive paths of post-critical equilibrium, enabling their use as elastic elements. The characteristics of such elements can be designed in a wide range by changing the geometrical parameters of the cut-out, i.e. height and width as well as by changing the angle of fiber arrangement The commercial ABAQUS program using the finite element method was used to develop the discrete model and perform numerical calculations. The obtained results are of significant practical importance in the design of structures with elastic elements, allowing to achieve the required maintenance characteristics of the device.

Keywords: buckling mode, numerical method, unsymmetrical laminates, thin-walled elastic elements

Procedia PDF Downloads 105
89 Indirect Intergranular Slip Transfer Modeling Through Continuum Dislocation Dynamics

Authors: A. Kalaei, A. H. W. Ngan

Abstract:

In this study, a mesoscopic continuum dislocation dynamics (CDD) approach is applied to simulate the intergranular slip transfer. The CDD scheme applies an efficient kinematics equation to model the evolution of the “all-dislocation density,” which is the line-length of dislocations of each character per unit volume. As the consideration of every dislocation line can be a limiter for the simulation of slip transfer in large scales with a large quantity of participating dislocations, a coarse-grained, extensive description of dislocations in terms of their density is utilized to resolve the effect of collective motion of dislocation lines. For dynamics closure, namely, to obtain the dislocation velocity from a velocity law involving the effective glide stress, mutual elastic interaction of dislocations is calculated using Mura’s equation after singularity removal at the core of dislocation lines. The developed scheme for slip transfer can therefore resolve the effects of the elastic interaction and pile-up of dislocations, which are important physics omitted in coarser models like crystal plasticity finite element methods (CPFEMs). Also, the length and timescales of the simulationareconsiderably larger than those in molecular dynamics (MD) and discrete dislocation dynamics (DDD) models. The present work successfully simulates that, as dislocation density piles up in front of a grain boundary, the elastic stress on the other side increases, leading to dislocation nucleation and stress relaxation when the local glide stress exceeds the operation stress of dislocation sources seeded on the other side of the grain boundary. More importantly, the simulation verifiesa phenomenological misorientation factor often used by experimentalists, namely, the ease of slip transfer increases with the product of the cosines of misorientation angles of slip-plane normals and slip directions on either side of the grain boundary. Furthermore, to investigate the effects of the critical stress-intensity factor of the grain boundary, dislocation density sources are seeded at different distances from the grain boundary, and the critical applied stress to make slip transfer happen is studied.

Keywords: grain boundary, dislocation dynamics, slip transfer, elastic stress

Procedia PDF Downloads 123
88 Four-Electron Auger Process for Hollow Ions

Authors: Shahin A. Abdel-Naby, James P. Colgan, Michael S. Pindzola

Abstract:

A time-dependent close-coupling method is developed to calculate a total, double and triple autoionization rates for hollow atomic ions of four-electron systems. This work was motivated by recent observations of the four-electron Auger process in near K-edge photoionization of C+ ions. The time-dependent close-coupled equations are solved using lattice techniques to obtain a discrete representation of radial wave functions and all operators on a four-dimensional grid with uniform spacing. Initial excited states are obtained by relaxation of the Schrodinger equation in imaginary time using a Schmidt orthogonalization method involving interior subshells. The radial wave function grids are partitioned over the cores on a massively parallel computer, which is essential due to the large memory requirements needed to store the coupled-wave functions and the long run times needed to reach the convergence of the ionization process. Total, double, and triple autoionization rates are obtained by the propagation of the time-dependent close-coupled equations in real-time using integration over bound and continuum single-particle states. These states are generated by matrix diagonalization of one-electron Hamiltonians. The total autoionization rates for each L excited state is found to be slightly above the single autoionization rate for the excited configuration using configuration-average distorted-wave theory. As expected, we find the double and triple autoionization rates to be much smaller than the total autoionization rates. Future work can be extended to study electron-impact triple ionization of atoms or ions. The work was supported in part by grants from the American University of Sharjah and the US Department of Energy. Computational work was carried out at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California, USA.

Keywords: hollow atoms, autoionization, auger rates, time-dependent close-coupling method

Procedia PDF Downloads 153
87 Transit Facility Planning in Fringe Areas of Kolkata Metropolitan Region

Authors: Soumen Mitra, Aparna Saha

Abstract:

The perceived link between the city and the countryside is evolving rapidly and is getting shifted away from the assumptions of mainstream paradigms to new conceptual networks where rural-urban links are being redefined. In this conceptual field, the fringe interface is still considered as a transitional zone between city and countryside, and is defined as a diffused area rather than a discrete territory. In developing countries fringe areas are said to have both rural and urban characteristics but are devoid of basic municipal facilities. Again, when the urban core areas envelopes the fringe areas along with it the character of fringe changes but services are not well facilitated which in turn results to uneven growth, rapid and haphazard development. One of the major services present in fringe areas is inter-linkages in terms of transit corridors. Planning for the appropriate and sustainable future of fringe areas requires a sheer focus on these corridors pertaining to transit facility, for better accessibility and mobility. Inducing a transit facility plan enhances the various facilities and also increases their proximity for user groups. The study focuses on the western fringe region of Kolkata metropolis which is a major source of industrial hub and housing sector, thus converting the agricultural lands into non-agricultural use. The study emphasizes on providing transit facilities both physical (stops, sheds, terminals, etc.) and operational (ticketing system, route prioritization, integration of transit modes, etc.), to facilitate the region as well as accelerate the growth pattern systematically. Hence, the scope of this work is on the basis of prevailing conditions in fringe areas and attempts for an effective transit facility plan. The strategies and recommendations are in terms of road widening, service coverage, feeder route prioritization, bus stops facilitation, pedestrian facilities, etc, which in turn enhances the region’s growth pattern. Thus, this context of transit facility planning acts as a catalytic agent to avoid the future unplanned growth and accelerates it towards an integrated development.

Keywords: feeder route, fringe, municipal planning, transit facility

Procedia PDF Downloads 177
86 Inviscid Steady Flow Simulation Around a Wing Configuration Using MB_CNS

Authors: Muhammad Umar Kiani, Muhammad Shahbaz, Hassan Akbar

Abstract:

Simulation of a high speed inviscid steady ideal air flow around a 2D/axial-symmetry body was carried out by the use of mb_cns code. mb_cns is a program for the time-integration of the Navier-Stokes equations for two-dimensional compressible flows on a multiple-block structured mesh. The flow geometry may be either planar or axisymmetric and multiply-connected domains can be modeled by patching together several blocks. The main simulation code is accompanied by a set of pre and post-processing programs. The pre-processing programs scriptit and mb_prep start with a short script describing the geometry, initial flow state and boundary conditions and produce a discretized version of the initial flow state. The main flow simulation program (or solver as it is sometimes called) is mb_cns. It takes the files prepared by scriptit and mb_prep, integrates the discrete form of the gas flow equations in time and writes the evolved flow data to a set of output files. This output data may consist of the flow state (over the whole domain) at a number of instants in time. After integration in time, the post-processing programs mb_post and mb_cont can be used to reformat the flow state data and produce GIF or postscript plots of flow quantities such as pressure, temperature and Mach number. The current problem is an example of supersonic inviscid flow. The flow domain for the current problem (strake configuration wing) is discretized by a structured grid and a finite-volume approach is used to discretize the conservation equations. The flow field is recorded as cell-average values at cell centers and explicit time stepping is used to update conserved quantities. MUSCL-type interpolation and one of three flux calculation methods (Riemann solver, AUSMDV flux splitting and the Equilibrium Flux Method, EFM) are used to calculate inviscid fluxes across cell faces.

Keywords: steady flow simulation, processing programs, simulation code, inviscid flux

Procedia PDF Downloads 429
85 Bayesian Parameter Inference for Continuous Time Markov Chains with Intractable Likelihood

Authors: Randa Alharbi, Vladislav Vyshemirsky

Abstract:

Systems biology is an important field in science which focuses on studying behaviour of biological systems. Modelling is required to produce detailed description of the elements of a biological system, their function, and their interactions. A well-designed model requires selecting a suitable mechanism which can capture the main features of the system, define the essential components of the system and represent an appropriate law that can define the interactions between its components. Complex biological systems exhibit stochastic behaviour. Thus, using probabilistic models are suitable to describe and analyse biological systems. Continuous-Time Markov Chain (CTMC) is one of the probabilistic models that describe the system as a set of discrete states with continuous time transitions between them. The system is then characterised by a set of probability distributions that describe the transition from one state to another at a given time. The evolution of these probabilities through time can be obtained by chemical master equation which is analytically intractable but it can be simulated. Uncertain parameters of such a model can be inferred using methods of Bayesian inference. Yet, inference in such a complex system is challenging as it requires the evaluation of the likelihood which is intractable in most cases. There are different statistical methods that allow simulating from the model despite intractability of the likelihood. Approximate Bayesian computation is a common approach for tackling inference which relies on simulation of the model to approximate the intractable likelihood. Particle Markov chain Monte Carlo (PMCMC) is another approach which is based on using sequential Monte Carlo to estimate intractable likelihood. However, both methods are computationally expensive. In this paper we discuss the efficiency and possible practical issues for each method, taking into account the computational time for these methods. We demonstrate likelihood-free inference by performing analysing a model of the Repressilator using both methods. Detailed investigation is performed to quantify the difference between these methods in terms of efficiency and computational cost.

Keywords: Approximate Bayesian computation(ABC), Continuous-Time Markov Chains, Sequential Monte Carlo, Particle Markov chain Monte Carlo (PMCMC)

Procedia PDF Downloads 202
84 Association of Phosphorus and Magnesium with Fat Indices in Children with Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Metabolic syndrome (MetS) is a disease associated with obesity. It is a complicated clinical problem possibly affecting body composition as well as macrominerals. These parameters gain further attention, particularly in the pediatric population. The aim of this study is to investigate the amount of discrete body composition fractions in groups that differ in the severity of obesity. Also, the possible associations with calcium (Ca), phosphorus (P), magnesium (Mg) will be examined. The study population was divided into four groups. Twenty-eight, 29, 34, and 34 children were involved in Group 1 (healthy), 2 (obese), 3 (morbid obese), and 4 (MetS), respectively. Institutional Ethical Committee approved the study protocol. Informed consent forms were obtained from the participants. The classification of obese groups was performed based upon the recommendations of the World Health Organization. Metabolic syndrome components were defined. Serum Ca, P, Mg concentrations were measured. Within the scope of body composition, fat mass, fat-free mass, protein mass, mineral mass were determined by a body composition monitor using bioelectrical impedance analysis technology. Weight, height, waist circumference, hip circumference, head circumference, and neck circumference values were recorded. Body mass index, diagnostic obesity notation model assessment index, fat mass index, and fat-free mass index values were calculated. Data were statistically evaluated and interpreted. There was no statistically significant difference among the groups in terms of Ca and P concentrations. Magnesium concentrations differed between Group 1 and Group 4. Strong negative correlations were detected between P as well as Mg and fat mass index as well as diagnostic obesity notation model assessment index in Group 4, the group, which comprised morbid obese children with MetS. This study emphasized unique associations of P and Mg minerals with diagnostic obesity notation model assessment index and fat mass index during the evaluation of morbid obese children with MetS. It was also concluded that diagnostic obesity notation model assessment index and fat mass index were more proper indices in comparison with body mass index and fat-free mass index for the purpose of defining body composition in children.

Keywords: children, fat mass, fat-free mass, macrominerals, obesity

Procedia PDF Downloads 153
83 CFD-DEM Modelling of Liquid Fluidizations of Ellipsoidal Particles

Authors: Esmaeil Abbaszadeh Molaei, Zongyan Zhou, Aibing Yu

Abstract:

The applications of liquid fluidizations have been increased in many parts of industries such as particle classification, backwashing of granular filters, crystal growth, leaching and washing, and bioreactors due to high-efficient liquid–solid contact, favorable mass and heat transfer, high operation flexibilities, and reduced back mixing of phases. In most of these multiphase operations the particles properties, i.e. size, density, and shape, may change during the process because of attrition, coalescence or chemical reactions. Previous studies, either experimentally or numerically, mainly have focused on studies of liquid-solid fluidized beds containing spherical particles; however, the role of particle shape on the hydrodynamics of liquid fluidized beds is still not well-known. A three-dimensional Discrete Element Model (DEM) and Computational Fluid Dynamics (CFD) are coupled to study the influence of particles shape on particles and liquid flow patterns in liquid-solid fluidized beds. In the simulations, ellipsoid particles are used to study the shape factor since they can represent a wide range of particles shape from oblate and sphere to prolate shape particles. Different particle shapes from oblate (disk shape) to elongated particles (rod shape) are selected to investigate the effect of aspect ratio on different flow characteristics such as general particles and liquid flow pattern, pressure drop, and particles orientation. First, the model is verified based on experimental observations, then further detail analyses are made. It was found that spherical particles showed a uniform particle distribution in the bed, which resulted in uniform pressure drop along the bed height. However for particles with aspect ratios less than one (disk-shape), some particles were carried into the freeboard region, and the interface between the bed and freeboard was not easy to be determined. A few particle also intended to leave the bed. On the other hand, prolate particles showed different behaviour in the bed. They caused unstable interface and some flow channeling was observed for low liquid velocities. Because of the non-uniform particles flow pattern for particles with aspect ratios lower (oblate) and more (prolate) than one, the pressure drop distribution in the bed was not observed as uniform as what was found for spherical particles.

Keywords: CFD, DEM, ellipsoid, fluidization, multiphase flow, non-spherical, simulation

Procedia PDF Downloads 310
82 Ischemic Stroke Detection in Computed Tomography Examinations

Authors: Allan F. F. Alves, Fernando A. Bacchim Neto, Guilherme Giacomini, Marcela de Oliveira, Ana L. M. Pavan, Maria E. D. Rosa, Diana R. Pina

Abstract:

Stroke is a worldwide concern, only in Brazil it accounts for 10% of all registered deaths. There are 2 stroke types, ischemic (87%) and hemorrhagic (13%). Early diagnosis is essential to avoid irreversible cerebral damage. Non-enhanced computed tomography (NECT) is one of the main diagnostic techniques used due to its wide availability and rapid diagnosis. Detection depends on the size and severity of lesions and the time spent between the first symptoms and examination. The Alberta Stroke Program Early CT Score (ASPECTS) is a subjective method that increases the detection rate. The aim of this work was to implement an image segmentation system to enhance ischemic stroke and to quantify the area of ischemic and hemorrhagic stroke lesions in CT scans. We evaluated 10 patients with NECT examinations diagnosed with ischemic stroke. Analyzes were performed in two axial slices, one at the level of the thalamus and basal ganglion and one adjacent to the top edge of the ganglionic structures with window width between 80 and 100 Hounsfield Units. We used different image processing techniques such as morphological filters, discrete wavelet transform and Fuzzy C-means clustering. Subjective analyzes were performed by a neuroradiologist according to the ASPECTS scale to quantify ischemic areas in the middle cerebral artery region. These subjective analysis results were compared with objective analyzes performed by the computational algorithm. Preliminary results indicate that the morphological filters actually improve the ischemic areas for subjective evaluations. The comparison in area of the ischemic region contoured by the neuroradiologist and the defined area by computational algorithm showed no deviations greater than 12% in any of the 10 examination tests. Although there is a tendency that the areas contoured by the neuroradiologist are smaller than those obtained by the algorithm. These results show the importance of a computer aided diagnosis software to assist neuroradiology decisions, especially in critical situations as the choice of treatment for ischemic stroke.

Keywords: ischemic stroke, image processing, CT scans, Fuzzy C-means

Procedia PDF Downloads 366
81 Enhancing Signal Reception in a Mobile Radio Network Using Adaptive Beamforming Antenna Arrays Technology

Authors: Ugwu O. C., Mamah R. O., Awudu W. S.

Abstract:

This work is aimed at enhancing signal reception on a mobile radio network and minimizing outage probability in a mobile radio network using adaptive beamforming antenna arrays. In this research work, an empirical real-time drive measurement was done in a cellular network of Globalcom Nigeria Limited located at Ikeja, the headquarters of Lagos State, Nigeria, with reference base station number KJA 004. The empirical measurement includes Received Signal Strength and Bit Error Rate which were recorded for exact prediction of the signal strength of the network as at the time of carrying out this research work. The Received Signal Strength and Bit Error Rate were measured with a spectrum monitoring Van with the help of a Ray Tracer at an interval of 100 meters up to 700 meters from the transmitting base station. The distance and angular location measurements from the reference network were done with the help Global Positioning System (GPS). The other equipment used were transmitting equipment measurements software (Temsoftware), Laptops and log files, which showed received signal strength with distance from the base station. Results obtained were about 11% from the real-time experiment, which showed that mobile radio networks are prone to signal failure and can be minimized using an Adaptive Beamforming Antenna Array in terms of a significant reduction in Bit Error Rate, which implies improved performance of the mobile radio network. In addition, this work did not only include experiments done through empirical measurement but also enhanced mathematical models that were developed and implemented as a reference model for accurate prediction. The proposed signal models were based on the analysis of continuous time and discrete space, and some other assumptions. These developed (proposed) enhanced models were validated using MATLAB (version 7.6.3.35) program and compared with the conventional antenna for accuracy. These outage models were used to manage the blocked call experience in the mobile radio network. 20% improvement was obtained when the adaptive beamforming antenna arrays were implemented on the wireless mobile radio network.

Keywords: beamforming algorithm, adaptive beamforming, simulink, reception

Procedia PDF Downloads 41