Search results for: conditional random fields
3929 RASPE: Risk Advisory Smart System for Pipeline Projects in Egypt
Authors: Nael Y. Zabel, Maged E. Georgy, Moheeb E. Ibrahim
Abstract:
A knowledge-based expert system with the acronym RASPE is developed as an application tool to help decision makers in construction companies make informed decisions about managing risks in pipeline construction projects. Choosing to use expert systems from all available artificial intelligence techniques is due to the fact that an expert system is more suited to representing a domain’s knowledge and the reasoning behind domain-specific decisions. The knowledge-based expert system can capture the knowledge in the form of conditional rules which represent various project scenarios and potential risk mitigation/response actions. The built knowledge in RASPE is utilized through the underlying inference engine that allows the firing of rules relevant to a project scenario into consideration. This paper provides an overview of the knowledge acquisition process and goes about describing the knowledge structure which is divided up into four major modules. The paper shows one module in full detail for illustration purposes and concludes with insightful remarks.Keywords: expert system, knowledge management, pipeline projects, risk mismanagement
Procedia PDF Downloads 3133928 Fraud Detection in Credit Cards with Machine Learning
Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf
Abstract:
Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine
Procedia PDF Downloads 1493927 Electret: A Solution of Partial Discharge in High Voltage Applications
Authors: Farhina Haque, Chanyeop Park
Abstract:
The high efficiency, high field, and high power density provided by wide bandgap (WBG) semiconductors and advanced power electronic converter (PEC) topologies enabled the dynamic control of power in medium to high voltage systems. Although WBG semiconductors outperform the conventional Silicon based devices in terms of voltage rating, switching speed, and efficiency, the increased voltage handling properties, high dv/dt, and compact device packaging increase local electric fields, which are the main causes of partial discharge (PD) in the advanced medium and high voltage applications. PD, which occurs actively in voids, triple points, and airgaps, is an inevitable dielectric challenge that causes insulation and device aging. The aging process accelerates over time and eventually leads to the complete failure of the applications. Hence, it is critical to mitigating PD. Sharp edges, airgaps, triple points, and bubbles are common defects that exist in any medium to high voltage device. The defects are created during the manufacturing processes of the devices and are prone to high-electric-field-induced PD due to the low permittivity and low breakdown strength of the gaseous medium filling the defects. A contemporary approach of mitigating PD by neutralizing electric fields in high power density applications is introduced in this study. To neutralize the locally enhanced electric fields that occur around the triple points, airgaps, sharp edges, and bubbles, electrets are developed and incorporated into high voltage applications. Electrets are electric fields emitting dielectric materials that are embedded with electrical charges on the surface and in bulk. In this study, electrets are fabricated by electrically charging polyvinylidene difluoride (PVDF) films based on the widely used triode corona discharge method. To investigate the PD mitigation performance of the fabricated electret films, a series of PD experiments are conducted on both the charged and uncharged PVDF films under square voltage stimuli that represent PWM waveform. In addition to the use of single layer electrets, multiple layers of electrets are also experimented with to mitigate PD caused by higher system voltages. The electret-based approach shows great promise in mitigating PD by neutralizing the local electric field. The results of the PD measurements suggest that the development of an ultimate solution to the decades-long dielectric challenge would be possible with further developments in the fabrication process of electrets.Keywords: electrets, high power density, partial discharge, triode corona discharge
Procedia PDF Downloads 2033926 Pricing the Risk Associated to Weather of Variable Renewable Energy Generation
Authors: Jorge M. Uribe
Abstract:
We propose a methodology for setting the price of an insurance contract targeted to manage the risk associated with weather conditions that affect variable renewable energy generation. The methodology relies on conditional quantile regressions to estimate the weather risk of a solar panel. It is illustrated using real daily radiation and weather data for three cities in Spain (Valencia, Barcelona and Madrid) from February 2/2004 to January 22/2019. We also adapt the concepts of value at risk and expected short fall from finance to this context, to provide a complete panorama of what we label as weather risk. The methodology is easy to implement and can be used by insurance companies to price a contract with the aforementioned characteristics when data about similar projects and accurate cash flow projections are lacking. Our methodology assigns a higher price to an insurance product with the stated characteristics in Madrid, compared to Valencia and Barcelona. This is consistent with Madrid showing the largest interquartile range of operational deficits and it is unrelated to the average value deficit, which illustrates the importance of our proposal.Keywords: insurance, weather, vre, risk
Procedia PDF Downloads 1493925 Using Machine Learning as an Alternative for Predicting Exchange Rates
Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior
Abstract:
This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.Keywords: exchage rate, prediction, machine learning, deep learning
Procedia PDF Downloads 333924 Rejection Sensitivity and Romantic Relationships: A Systematic Review and Meta-Analysis
Authors: Mandira Mishra, Mark Allen
Abstract:
This meta-analysis explored whether rejection sensitivity relates to facets of romantic relationships. A comprehensive literature search identified 60 studies (147 effect sizes; 16,955 participants) that met inclusion criteria. Data were analysed using inverse-variance weighted random effects meta-analysis. Mean effect sizes from 21 meta-analyses provided evidence that more rejection sensitive individuals report lower levels of relationship satisfaction and relationship closeness, lower levels of perceived partner satisfaction, a greater likelihood of intimate partner violence (perpetration and victimization), higher levels of relationship concerns and relationship conflict, and higher levels of jealousy and self-silencing behaviours. There was also some evidence that rejection sensitive individuals are more likely to engage in risky sexual behaviour and are more prone to sexual compulsivity. There was no evidence of publication bias and various levels of heterogeneity in computed averages. Random effects meta-regression identified participant age and sex as important moderators of pooled mean effects. These findings provide a foundation for the theoretical development of rejection sensitivity in romantic relationships and should be of interest to relationship and marriage counsellors and other relationship professionals.Keywords: intimate partner violence, relationship satisfaction, commitment, sexual orientation, risky sexual behaviour
Procedia PDF Downloads 823923 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 1293922 Effect of Scattered Vachellia Tortilis (Umbrella Torn) and Vachellia nilotica (Gum Arabic) Trees on Selected Physio-Chemical Properties of the Soil and Yield of Sorghum (Sorghum bicolor (L.) Moench) in Ethiopia
Authors: Sisay Negash, Zebene Asfaw, Kibreselassie Daniel, Michael Zech
Abstract:
A significant portion of the Ethiopian landscape features scattered trees that are deliberately managed in crop fields to enhance soil fertility and crop yield in which the compatibility of crops with these trees varies depending on location, tree species, and annual crop type. This study aimed to examine the effects of scattered Vachellia tortilis and Vachellia nilotica trees on selected physico-chemical properties of the soil, as well as the yield and yield components of sorghum in Ethiopia. Vachellia tortilis and Vachellia nilotica were selected on abundance occurrence and managed in crop fields. A randomized complete block design was used, with a distance from the tree canopy (middle, edge, and outside) as a treatment, and five trees of each species served as replications. Sorghum was planted up to 15 meters in the east, west, south, and north directions from the tree trunk to assess growth and yield. Soil samples were collected from the two tree species, three distance factors, three soil depths(0-20cm, 20-40cm, and 40-60cm), and five replications, totaling 45 samples for each tree species. These samples were analyzed for physical and chemical properties. The results indicated that both V. tortilis and V. nilotica significantly affected soil physico-chemical properties and sorghum yield. Specifically, soil moisture content, EC, total nitrogen, organic carbon, available phosphorus and potassium, CEC, sorghum plant height, panicle length, biomass, and yield decreased with increasing distance from the canopy. Conversely, bulk density and pH increased. Under the canopy, sorghum yield increased by 66.4% and 53.5% for V. tortilis and V. nilotica, respectively, due to higher soil moisture and nutrient availability. The study recommends promoting trees in crop fields, management options for new saplings, and further research on root decomposition and nutrient supply.Keywords: canopy, crop yield, soil nutrient, soil organic matter, yield components
Procedia PDF Downloads 283921 Volatility Spillover Among the Stock Markets of South Asian Countries
Authors: Tariq Aziz, Suresh Kumar, Vikesh Kumar, Sheraz Mustafa, Jhanzeb Marwat
Abstract:
The paper provides an updated version of volatility spillover among the equity markets of South Asian countries, including Pakistan, India, Srilanka, and Bangladesh. The analysis uses both symmetric and asymmetric Generalized Autoregressive Conditional Heteroscedasticity models to investigate volatility persistence and leverage effect. The bivariate EGARCH model is used to test for volatility transmission between two equity markets. Weekly data for the period February 2013 to August 2019 is used for empirical analysis. The findings indicate that the leverage effect exists in the equity markets of all the countries except Bangladesh. The volatility spillover from the equity market of Bangladesh to all other countries is negative and significant whereas the volatility of the equity market of Sri-Lanka does influence the volatility of any other country’s equity market. Indian equity market influence only the volatility of the Sri-Lankan equity market; and there is bidirectional volatility spillover between the equity markets of Pakistan and Bangladesh. The findings are important for policy-makers and international investors.Keywords: volatility spillover, volatility persistence, garch, egarch
Procedia PDF Downloads 1403920 Application of Machine Learning on Google Earth Engine for Forest Fire Severity, Burned Area Mapping and Land Surface Temperature Analysis: Rajasthan, India
Authors: Alisha Sinha, Laxmi Kant Sharma
Abstract:
Forest fires are a recurring issue in many parts of the world, including India. These fires can have various causes, including human activities (such as agricultural burning, campfires, or discarded cigarettes) and natural factors (such as lightning). This study presents a comprehensive and advanced methodology for assessing wildfire susceptibility by integrating diverse environmental variables and leveraging cutting-edge machine learning techniques across Rajasthan, India. The primary goal of the study is to utilize Google Earth Engine to compare locations in Sariska National Park, Rajasthan (India), before and after forest fires. High-resolution satellite data were used to assess the amount and types of changes caused by forest fires. The present study meticulously analyzes various environmental variables, i.e., slope orientation, elevation, normalized difference vegetation index (NDVI), drainage density, precipitation, and temperature, to understand landscape characteristics and assess wildfire susceptibility. In addition, a sophisticated random forest regression model is used to predict land surface temperature based on a set of environmental parameters.Keywords: wildfire susceptibility mapping, LST, random forest, GEE, MODIS, climatic parameters
Procedia PDF Downloads 223919 Sirhindi Family's Islamic Movements in Sindh, Pakistan
Authors: Nasurullah Qureshi
Abstract:
Shaikh Ahmad Sirhindi Mujadid Alif Thani (1564-1624) and his philosophy had influenced sub-continent as the whole; its rulers and nation. In his reign, he convinced the rulers toward Islamic way of life and succeed in his goal. After his death in 1624, his family consecutively produced prominent scholars to present. Some of them moved to Afghanistan and Pakistan's cities i.e., Jalalabad, Qandhar, Peshawar, Queta, Shikarpur, Hyderabad, and Sehwan. They played a vital role in their areas and transmitted spiritual and legal Islamic teachings to people. This research is aimed to elaborate efforts of the family's Sindh settled branch from 1898-present in fields of politics and Islamic education. Their link with Shaikh Ahmad Sirhindi will be provided in the introduction. After that, the work will explain their scholarly published work briefly in different fields of Islamic studies such as Quran exegeses and its translation in Sindhi language, Hadith and its sciences, Islamic Jurisprudence, Sufism and etc. In addition, their political role will be briefly discussed in the research throughout the period, especially their noticeable role in the separate homeland for Muslims in the subcontinent. Furthermore, the impact of their scholarly work, political influence and spirituality will be enlightened. Lastly, the research will present the critical viewpoint on their struggle.Keywords: Shaikh Ahmad Sirhindi, Sirhindi scholars, Sindh, Sufism
Procedia PDF Downloads 2513918 Enhanced Tensor Tomographic Reconstruction: Integrating Absorption, Refraction and Temporal Effects
Authors: Lukas Vierus, Thomas Schuster
Abstract:
A general framework is examined for dynamic tensor field tomography within an inhomogeneous medium characterized by refraction and absorption, treated as an inverse source problem concerning the associated transport equation. Guided by Fermat’s principle, the Riemannian metric within the specified domain is determined by the medium's refractive index. While considerable literature exists on the inverse problem of reconstructing a tensor field from its longitudinal ray transform within a static Euclidean environment, limited inversion formulas and algorithms are available for general Riemannian metrics and time-varying tensor fields. It is established that tensor field tomography, akin to an inverse source problem for a transport equation, persists in dynamic scenarios. Framing dynamic tensor tomography as an inverse source problem embodies a comprehensive perspective within this domain. Ensuring well-defined forward mappings necessitates establishing existence and uniqueness for the underlying transport equations. However, the bilinear forms of the associated weak formulations fail to meet the coercivity condition. Consequently, recourse to viscosity solutions is taken, demonstrating their unique existence within suitable Sobolev spaces (in the static case) and Sobolev-Bochner spaces (in the dynamic case), under a specific assumption restricting variations in the refractive index. Notably, the adjoint problem can also be reformulated as a transport equation, with analogous results regarding uniqueness. Analytical solutions are expressed as integrals over geodesics, facilitating more efficient evaluation of forward and adjoint operators compared to solving partial differential equations. Certainly, here's the revised sentence in English: Numerical experiments are conducted using a Nesterov-accelerated Landweber method, encompassing various fields, absorption coefficients, and refractive indices, thereby illustrating the enhanced reconstruction achieved through this holistic modeling approach.Keywords: attenuated refractive dynamic ray transform of tensor fields, geodesics, transport equation, viscosity solutions
Procedia PDF Downloads 513917 Deconstructing Local Area Networks Using MaatPeace
Authors: Gerald Todd
Abstract:
Recent advances in random epistemologies and ubiquitous theory have paved the way for web services. Given the current status of linear-time communication, cyberinformaticians compellingly desire the exploration of link-level acknowledgements. In order to realize this purpose, we concentrate our efforts on disconfirming that DHTs and model checking are mostly incompatible.Keywords: LAN, cyberinformatics, model checking, communication
Procedia PDF Downloads 4033916 Effectiveness of Cranberry Ingesting for Prevention of Urinary Tract Infection: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Authors: Yu-Chieh Huang, Pei-Shih Chen, Tao-Hsin Tung
Abstract:
Background: Urinary tract infection is the most common bacterial infection to our best knowledge. Objective: This study is to investigate whether cranberry ingesting could improve the urinary tract infection. Methods: We searched the PubMed and Cochrane Library for relevant randomized controlled trials without language limitations between 9 March 1994 and June 30, 2017, with a priori defined inclusion and exclusion criteria. The search terms included (cranberry OR Vaccinium macrocarpon OR Vaccinium oxy-coccus OR Vaccinium microcarpum OR Vaccinium erythrocarpum OR Vaccinium) AND (urinary tract infection OR bacteriuria OR pyuria) AND (effect OR effective-ness OR efficacy) AND (random OR randomized). Results: There were 26 studies met the selection criteria included among 4709 eligible participants. We analyzed all trials in meta-analysis. The random-effects pooled risk ratio (RR) for the group using cranberry versus using placebo was 0.75; 95%CI[0.63, 0.880]; p-value=0.0002) and heterogeneity was 56%. Furthermore, we divided the subjects into different subgroup to analysis. Ingesting cranberry seemed to be more effective in some subgroups, including the patients with recurrent UTI (RR, 0.71; 95%CI[0.54,0.93]; p-value=0.002) (I²= 65%) and female population (RR, 0.73, 95%CI[0.58,0.92]; p-value=0.002) (I²= 59%). The prevention effect was not different between cranberry and trimethoprim (RR, 1.25, 95%CI[0.67, 2.33]; p-value=0.49) (I²= 68%). No matter the forms of cranberry were capsules or juice, the efficacy was useful. Conclusions: It is showed that cranberry ingesting is usefully associated with prevention UTI. There are more effective in prevention of UTI in some groups.Keywords: cranberry, effectiveness, prevention, urinary tract infect
Procedia PDF Downloads 4003915 Gaussian Probability Density for Forest Fire Detection Using Satellite Imagery
Authors: S. Benkraouda, Z. Djelloul-Khedda, B. Yagoubi
Abstract:
we present a method for early detection of forest fires from a thermal infrared satellite image, using the image matrix of the probability of belonging. The principle of the method is to compare a theoretical mathematical model to an experimental model. We considered that each line of the image matrix, as an embodiment of a non-stationary random process. Since the distribution of pixels in the satellite image is statistically dependent, we divided these lines into small stationary and ergodic intervals to characterize the image by an adequate mathematical model. A standard deviation was chosen to generate random variables, so each interval behaves naturally like white Gaussian noise. The latter has been selected as the mathematical model that represents a set of very majority pixels, which we can be considered as the image background. Before modeling the image, we made a few pretreatments, then the parameters of the theoretical Gaussian model were extracted from the modeled image, these settings will be used to calculate the probability of each interval of the modeled image to belong to the theoretical Gaussian model. The high intensities pixels are regarded as foreign elements to it, so they will have a low probability, and the pixels that belong to the background image will have a high probability. Finally, we did present the reverse of the matrix of probabilities of these intervals for a better fire detection.Keywords: forest fire, forest fire detection, satellite image, normal distribution, theoretical gaussian model, thermal infrared matrix image
Procedia PDF Downloads 1433914 Soil/Phytofisionomy Relationship in Southeast of Chapada Diamantina, Bahia, Brazil
Authors: Marcelo Araujo da Nóbrega, Ariel Moura Vilas Boas
Abstract:
This study aims to characterize the physicochemical aspects of the soils of southeastern Chapada Diamantina - Bahia related to the phytophysiognomies of this area, rupestrian field, small savanna (savanna fields), small dense savanna (savanna fields), savanna (Cerrado), dry thorny forest (Caatinga), dry thorny forest/savanna, scrub (Carrasco - ecotone), forest island (seasonal semi-deciduous forest - Capão) and seasonal semi-deciduous forest. To achieve the research objective, soil samples were collected in each plant formation and analyzed in the soil laboratory of ESALQ - USP in order to identify soil fertility through the determination of pH, organic matter, phosphorus, potassium, calcium, magnesium, potential acidity, sum of bases, cation exchange capacity and base saturation. The composition of soil particles was also checked; that is, the texture, step made in the terrestrial ecosystems laboratory of the Department of Ecology of USP and in the soil laboratory of ESALQ. Another important factor also studied was to show the variations in the vegetation cover in the region as a function of soil moisture in the different existing physiographic environments. Another study carried out was a comparison between the average soil moisture data with precipitation data from three locations with very different phytophysiognomies. The soils found in this part of Bahia can be classified into 5 classes, with a predominance of oxisols. All of these classes have a great diversity of physical and chemical properties, as can be seen in photographs and in particle size and fertility analyzes. The deepest soils are located in the Central Pediplano of Chapada Diamantina where the dirty field, the clean field, the executioner and the semideciduous seasonal forest (Capão) are located, and the shallower soils were found in the rupestrian field, dry thorny forest, and savanna fields, the latter located on a hillside. As for the variations in water in the region's soil, the data indicate that there were large spatial variations in humidity in both the rainy and dry periods.Keywords: Bahia, Brazil, chapada diamantina, phytophysiognomies, soils
Procedia PDF Downloads 1453913 A LED Warning Vest as Safety Smart Textile and Active Cooperation in a Working Group for Building a Normative Standard
Authors: Werner Grommes
Abstract:
The institute of occupational safety and health works in a working group for building a normative standard for illuminated warning vests and did a lot of experiments and measurements as basic work (cooperation). Intelligent car headlamps are able to suppress conventional warning vests with retro-reflective stripes as a disturbing light. Illuminated warning vests are therefore required for occupational safety. However, they must not pose any danger to the wearer or other persons. Here, the risks of the batteries (lithium types), the maximum brightness (glare) and possible interference radiation from the electronics on the implant carrier must be taken into account. The all-around visibility, as well as the required range, play an important role here. For the study, many luminance measurements of already commercially available LEDs and electroluminescent warning vests, as well as their electromagnetic interference fields and aspects of electrical safety, were measured. The results of this study showed that LED lighting is all far too bright and causes strong glare. The integrated controls with pulse modulation and switching regulators cause electromagnetic interference fields. Rechargeable lithium batteries can explode depending on the temperature range. Electroluminescence brings even more hazards. A test method was developed for the evaluation of visibility at distances of 50, 100, and 150 m, including the interview of test persons. A measuring method was developed for the detection of glare effects at close range with the assignment of the maximum permissible luminance. The electromagnetic interference fields were tested in the time and frequency ranges. A risk and hazard analysis were prepared for the use of lithium batteries. The range of values for luminance and risk analysis for lithium batteries were discussed in the standards working group. These will be integrated into the standard. This paper gives a brief overview of the topics of illuminated warning vests, which takes into account the risks and hazards for the vest wearer or othersKeywords: illuminated warning vest, optical tests and measurements, risks, hazards, optical glare effects, LED, E-light, electric luminescent
Procedia PDF Downloads 1133912 Solution-Processed Threshold Switching Selectors Based on Highly Flexible, Transparent and Scratchable Silver Nanowires Conductive Films
Authors: Peiyuan Guan, Tao Wan, Dewei Chu
Abstract:
With the flash memory approaching its physical limit, the emerging resistive random-access memory (RRAM) has been considered as one of the most promising candidates for the next-generation non-volatile memory. One selector-one resistor configuration has shown the most promising way to resolve the crosstalk issue without affecting the scalability and high-density integration of the RRAM array. By comparison with other candidates of selectors (such as diodes and nonlinear devices), threshold switching selectors dominated by formation/spontaneous rupture of fragile conductive filaments have been proved to possess low voltages, high selectivity, and ultra-low current leakage. However, the flexibility and transparency of selectors are barely mentioned. Therefore, it is a matter of urgency to develop a selector with highly flexible and transparent properties to assist the application of RRAM for a diversity of memory devices. In this work, threshold switching selectors were designed using a facilely solution-processed fabrication on AgNWs@PDMS composite films, which show high flexibility, transparency and scratch resistance. As-fabricated threshold switching selectors also have revealed relatively high selectivity (~107), low operating voltages (Vth < 1 V) and good switching performance.Keywords: flexible and transparent, resistive random-access memory, silver nanowires, threshold switching selector
Procedia PDF Downloads 1303911 Comparison between the Quadratic and the Cubic Linked Interpolation on the Mindlin Plate Four-Node Quadrilateral Finite Elements
Authors: Dragan Ribarić
Abstract:
We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral Mindlin plate finite elements with 12 external degrees of freedom. In the problem-independent linked interpolation, the interpolation functions are independent of any problem material parameters and the rotation fields are not expressed in terms of the nodal displacement parameters. On the contrary, in the problem-dependent linked interpolation, the interpolation functions depend on the material parameters and the rotation fields are expressed in terms of the nodal displacement parameters. Two cubic 4-node quadrilateral plate elements are presented, named Q4-U3 and Q4-U3R5. The first one is modelled with one displacement and two rotation degrees of freedom in every of the four element nodes and the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form and which can be statically condensed within the element. Both elements are able to pass the constant-bending patch test exactly as well as the non-zero constant-shear patch test on the oriented regular mesh geometry in the case of cylindrical bending. In any mesh shape, the elements have the correct rank and only the three eigenvalues, corresponding to the solid body motions are zero. There are no additional spurious zero modes responsible for instability of the finite element models. In comparison with the problem-independent cubic linked interpolation implemented in Q9-U3, the nine-node plate element, significantly less degrees of freedom are employed in the model while retaining the interpolation conformity between adjacent elements. The presented elements are also compared to the existing problem-independent quadratic linked-interpolation element Q4-U2 and to the other known elements that also use the quadratic or the cubic linked interpolation, by testing them on several benchmark examples. Simple functional upgrading from the quadratic to the cubic linked interpolation, implemented in Q4-U3 element, showed no significant improvement compared to the quadratic linked form of the Q4-U2 element. Only when the additional bubble terms are incorporated in the displacement and rotation function fields, which complete the full cubic linked interpolation form, qualitative improvement is fulfilled in the Q4-U3R5 element. Nevertheless, the locking problem exists even for the both presented elements, like in all pure displacement elements when applied to very thin plates modelled by coarse meshes. But good and even slightly better performance can be noticed for the Q4-U3R5 element when compared with elements from the literature, if the model meshes are moderately dense and the plate thickness not extremely thin. In some cases, it is comparable to or even better than Q9-U3 element which has as many as 12 more external degrees of freedom. A significant improvement can be noticed in particular when modeling very skew plates and models with singularities in the stress fields as well as circular plates with distorted meshes.Keywords: Mindlin plate theory, problem-independent linked interpolation, problem-dependent interpolation, quadrilateral displacement-based plate finite elements
Procedia PDF Downloads 3133910 Turbulent Channel Flow Synthesis using Generative Adversarial Networks
Authors: John M. Lyne, K. Andrea Scott
Abstract:
In fluid dynamics, direct numerical simulations (DNS) of turbulent flows require large amounts of nodes to appropriately resolve all scales of energy transfer. Due to the size of these databases, sharing these datasets amongst the academic community is a challenge. Recent work has been done to investigate the use of super-resolution to enable database sharing, where a low-resolution flow field is super-resolved to high resolutions using a neural network. Recently, Generative Adversarial Networks (GAN) have grown in popularity with impressive results in the generation of faces, landscapes, and more. This work investigates the generation of unique high-resolution channel flow velocity fields from a low-dimensional latent space using a GAN. The training objective of the GAN is to generate samples in which the distribution of the generated samplesis ideally indistinguishable from the distribution of the training data. In this study, the network is trained using samples drawn from a statistically stationary channel flow at a Reynolds number of 560. Results show that the turbulent statistics and energy spectra of the generated flow fields are within reasonable agreement with those of the DNS data, demonstrating that GANscan produce the intricate multi-scale phenomena of turbulence.Keywords: computational fluid dynamics, channel flow, turbulence, generative adversarial network
Procedia PDF Downloads 2073909 The Effect of Intimate Partner Violence on Child Abuse in South Korea: Focused on the Moderating Effects of Patriarchal Attitude and Informal Social Control
Authors: Hye Lin Yang, Clifton R. Emery
Abstract:
Purpose: The purpose of this study is to examine the effects of intimate partner violence on child abuse, whether patriarchal attitude and informal social control moderate the relationship between intimate partner violence and child abuse. This study was conducted with data from The Seoul Families and Neighborhoods Study (SFNS). The SFNS is a representative random probability 3-stage cluster sample of 541 cohabiting couples in Seoul, South Korea collected in 2012. To verify research models, Random effect analysis were used. All analyses were performed using the Stata program. Results: Crucial findings are the following. First, intimate partner violence showed a significantly positive relationship with Child abuse. Second, there are significant moderating effects of informal social control on intimate partner violence - child abuse. Third, there are significant moderating effects of patriarchal attitude on intimate partner violence - child abuse. In other words, Patriarchal attitude is a significant risk factor of child abuse and informal social control is a significant Protection factor of child abuse. Based on results, the policy and practical implications for preventing child abuse, promoting informal social control were discussed.Keywords: Intimate partner violence, child abuse, informal social control, patriarchal attitude
Procedia PDF Downloads 3023908 Viability of Irrigation Water Conservation Practices in the Low Desert of California
Authors: Ali Montazar
Abstract:
California and the Colorado River Basin are facing increasing uncertainty concerning water supplies. The Colorado River is the main source of irrigation water in the low desert of California. Currently, due to an increasing water-use competition and long-term drought at the Colorado River Basin, efficient use of irrigation water is one of the highest conservation priorities in the region. This study aims to present some of current irrigation technologies and management approaches in the low desert and assess the viability and potential of these water management practices. The results of several field experiments are used to assess five water conservation practices of sub-surface drip irrigation, automated surface irrigation, sprinkler irrigation, tail-water recovery system, and deficit irrigation strategy. The preliminary results of several ongoing studies at commercial fields are presented, particularly researches in alfalfa, sugar beets, kliengrass, sunflower, and spinach fields. The findings indicate that all these practices have significant potential to conserve water (an average of 1 ac-ft/ac) and enhance the efficiency of water use (15-25%). Further work is needed to better understand the feasibility of each of these applications and to help maintain profitable and sustainable agricultural production system in the low desert as water and labor costs, and environmental issues increase.Keywords: automated surface irrigation, deficit irrigation, low desert of California, sprinkler irrigation, sub-surface drip irrigation, tail-water recovery system
Procedia PDF Downloads 1583907 Studying the Beginnings of Strategic Behavior
Authors: Taher Abofol, Yaakov Kareev, Judith Avrahami, Peter M. Todd
Abstract:
Are children sensitive to their relative strength in competitions against others? Performance on tasks that require cooperation or coordination (e.g. the Ultimatum Game) indicates that early precursors of adult-like notions of fairness and reciprocity, as well as altruistic behavior, are evident at an early age. However, not much is known regarding developmental changes in interactive decision-making, especially in competitive interactions. Thus, it is important to study the developmental aspects of strategic behavior in these situations. The present research focused on cognitive-developmental changes in a competitive interaction. Specifically, it aimed at revealing how children engage in strategic interactions that involve the allocation of limited resources over a number of fields of competition, by manipulating relative strength. Relative strength refers to situations in which player strength changes midway through the game: the stronger player becomes the weaker one, while the weaker player becomes the stronger one. An experiment was conducted to find out if the behavior of children of different age groups differs in the following three aspects: 1. Perception of relative strength. 2. Ability to learn while gaining experience. 3. Ability to adapt to change in relative strength. The task was composed of a resource allocation game. After the players allocated their resources (privately and simultaneously), a competition field was randomly chosen for each player. The player who allocated more resources to the field chosen was declared the winner of that round. The resources available to the two competitors were unequal (or equal, for control). The theoretical solution for this game is that the weaker player should give up on a certain number of fields, depending on the stronger opponent’s relative strength, in order to be able to compete with the opponent on equal footing in the remaining fields. Participants were of three age groups, first-graders (N = 36, mean age = 6), fourth-graders (N = 36, mean age = 10), and eleventh-graders (N = 72, mean age = 16). The games took place between players of the same age and lasted for 16 rounds. There were two experimental conditions – a control condition, in which players were of equal strength, and an experimental condition, in which players differed in strength. In the experimental condition, players' strength was changed midway through the session. Results indicated that players in all age groups were sensitive to their relative strength, and played in line with the theoretical solution: the weaker players gave up on more fields than the stronger ones. This understanding, as well as the consequent difference in allocation between weak and strong players, was more pronounced among older participants. Experience led only to minimal behavioral change. Finally, the children from the two older groups, particularly the eleventh graders adapted quickly to the midway switch in relative strength. In contrast, the first-graders hardly changed their behavior with the change in their relative strength, indicating a limited ability to adapt. These findings highlight young children’s ability to consider their relative strength in strategic interactions and its boundaries.Keywords: children, competition, decision making, developmental changes, strategic behavior
Procedia PDF Downloads 3123906 Xeroderma Pigmentosum Group G: Gene Polymorphism and Risk of Breast Cancer
Authors: Malik SS, Masood N, Mubarik S, Khadim TM
Abstract:
Introduction: Xeroderma pigmentosum group G (XPG) gene plays a crucial role in the correction of UV-induced DNA damage through nucleotide excision repair pathway. Single nucleotide polymorphisms in XPG gene have been reported to be associated with different cancers. Current case-control study was designed to evaluate the relationship between one of the most frequently found XPG (rs1047768 T>C) polymorphism and breast cancer risk. Methodology: A total of 200 individuals were screened for this polymorphism including 100 pathologically confirmed breast cancer cases and age-matched 100 controls. Genotyping was carried out using Tetra amplification-refractory mutation system (ARMS) PCR and results were confirmed by gel electrophoresis. Results: Conditional logistic regression analysis showed significant association between TC genotype (OR: 8.9, CI: 2.0 – 38.7) and increased breast cancer risk. Although homozygous CC genotype was more frequent in patients as compared to controls, but it was statistically non-significant (OR: 3.9, CI: 0.4 – 35.7). Conclusion: In conclusion, XPG (rs1047768 T>C) polymorphism may contribute towards increased risk of breast cancer but other polymorphisms may also be evaluated to elucidate their role in breast cancer.Keywords: XPG, breast cancer, NER, ARMS-PCR
Procedia PDF Downloads 1893905 Nonlinear Analysis in Investigating the Complexity of Neurophysiological Data during Reflex Behavior
Authors: Juliana A. Knocikova
Abstract:
Methods of nonlinear signal analysis are based on finding that random behavior can arise in deterministic nonlinear systems with a few degrees of freedom. Considering the dynamical systems, entropy is usually understood as a rate of information production. Changes in temporal dynamics of physiological data are indicating evolving of system in time, thus a level of new signal pattern generation. During last decades, many algorithms were introduced to assess some patterns of physiological responses to external stimulus. However, the reflex responses are usually characterized by short periods of time. This characteristic represents a great limitation for usual methods of nonlinear analysis. To solve the problems of short recordings, parameter of approximate entropy has been introduced as a measure of system complexity. Low value of this parameter is reflecting regularity and predictability in analyzed time series. On the other side, increasing of this parameter means unpredictability and a random behavior, hence a higher system complexity. Reduced neurophysiological data complexity has been observed repeatedly when analyzing electroneurogram and electromyogram activities during defence reflex responses. Quantitative phrenic neurogram changes are also obvious during severe hypoxia, as well as during airway reflex episodes. Concluding, the approximate entropy parameter serves as a convenient tool for analysis of reflex behavior characterized by short lasting time series.Keywords: approximate entropy, neurophysiological data, nonlinear dynamics, reflex
Procedia PDF Downloads 3003904 The Theory behind Logistic Regression
Authors: Jan Henrik Wosnitza
Abstract:
The logistic regression has developed into a standard approach for estimating conditional probabilities in a wide range of applications including credit risk prediction. The article at hand contributes to the current literature on logistic regression fourfold: First, it is demonstrated that the binary logistic regression automatically meets its model assumptions under very general conditions. This result explains, at least in part, the logistic regression's popularity. Second, the requirement of homoscedasticity in the context of binary logistic regression is theoretically substantiated. The variances among the groups of defaulted and non-defaulted obligors have to be the same across the level of the aggregated default indicators in order to achieve linear logits. Third, this article sheds some light on the question why nonlinear logits might be superior to linear logits in case of a small amount of data. Fourth, an innovative methodology for estimating correlations between obligor-specific log-odds is proposed. In order to crystallize the key ideas, this paper focuses on the example of credit risk prediction. However, the results presented in this paper can easily be transferred to any other field of application.Keywords: correlation, credit risk estimation, default correlation, homoscedasticity, logistic regression, nonlinear logistic regression
Procedia PDF Downloads 4273903 Parkinson’s Disease Detection Analysis through Machine Learning Approaches
Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee
Abstract:
Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier
Procedia PDF Downloads 1303902 Treating Complex Pain and Addictions with Bioelectrode Therapy: An Acupuncture Point Stimulus Method for Relieving Human Suffering
Authors: Les Moncrieff
Abstract:
In a world awash with potent opioids flaming an international crisis, the need to explore safe alternatives has never been more urgent. Bio-electrode Therapy is a novel adjunctive treatment method for relieving acute opioid withdrawal symptoms and many types of complex acute and chronic pain (often the underlying cause of opioid dependence). By combining the science of developmental bioelectricity with Traditional Chinese Medicine’s theory of meridians, rapid relief from pain is routinely being achieved in the clinical setting. Human body functions are dependent on electrical factors, and acupuncture points on the body are known to have higher electrical conductivity than surrounding skin tissue. When tiny gold- and silver-plated electrodes are secured to the skin at specific acupuncture points using established Chinese Medicine principles and protocols, an enhanced microcurrent and electrical field are created between the electrodes, influencing the entire meridian and connecting meridians. No external power source or electrical devices are required. Endogenous DC electric fields are an essential fundamental component for development, regeneration, and wound healing. Disruptions in the normal ion-charge in the meridians and circulation of blood will manifest as pain and development of disease. With the application of these simple electrodes (gold acting as cathode and silver as anode) according to protocols, the resulting microcurrent is directed along the selected meridians to target injured or diseased organs and tissues. When injured or diseased cells have been stimulated by the microcurrent and electrical fields, the permeability of the cell membrane is affected, resulting in an immediate relief of pain, a rapid balancing of positive and negative ions (sodium, potassium, etc.) in the cells, the restoration of intracellular fluid levels, replenishment of electrolyte levels, pH balance, removal of toxins, and a re-establishment of homeostasis.Keywords: bioelectricity, electrodes, electrical fields, acupuncture meridians, complex pain, opioid withdrawal management
Procedia PDF Downloads 823901 The Relationship between the Use of Social Networks with Executive Functions and Academic Performance in High School Students in Tehran
Authors: Esmail Sadipour
Abstract:
The use of social networks is increasing day by day in all societies. The purpose of this research was to know the relationship between the use of social networks (Instagram, WhatsApp, and Telegram) with executive functions and academic performance in first-year female high school students. This research was applied in terms of purpose, quantitative in terms of data type, and correlational in terms of technique. The population of this research consisted of all female high school students in the first year of district 2 of Tehran. Using Green's formula, the sample size of 150 people was determined and selected by cluster random method. In this way, from all 17 high schools in district 2 of Tehran, 5 high schools were selected by a simple random method and then one class was selected from each high school, and a total of 155 students were selected. To measure the use of social networks, a researcher-made questionnaire was used, the Barclay test (2012) was used for executive functions, and last semester's GPA was used for academic performance. Pearson's correlation coefficient and multivariate regression were used to analyze the data. The results showed that there is a negative relationship between the amount of use of social networks and self-control, self-motivation and time self-management. In other words, the more the use of social networks, the fewer executive functions of students, self-control, self-motivation, and self-management of their time. Also, with the increase in the use of social networks, the academic performance of students has decreased.Keywords: social networks, executive function, academic performance, working memory
Procedia PDF Downloads 973900 Probabilistic Slope Stability Analysis of Excavation Induced Landslides Using Hermite Polynomial Chaos
Authors: Schadrack Mwizerwa
Abstract:
The characterization and prediction of landslides are crucial for assessing geological hazards and mitigating risks to infrastructure and communities. This research aims to develop a probabilistic framework for analyzing excavation-induced landslides, which is fundamental for assessing geological hazards and mitigating risks to infrastructure and communities. The study uses Hermite polynomial chaos, a non-stationary random process, to analyze the stability of a slope and characterize the failure probability of a real landslide induced by highway construction excavation. The correlation within the data is captured using the Karhunen-Loève (KL) expansion theory, and the finite element method is used to analyze the slope's stability. The research contributes to the field of landslide characterization by employing advanced random field approaches, providing valuable insights into the complex nature of landslide behavior and the effectiveness of advanced probabilistic models for risk assessment and management. The data collected from the Baiyuzui landslide, induced by highway construction, is used as an illustrative example. The findings highlight the importance of considering the probabilistic nature of landslides and provide valuable insights into the complex behavior of such hazards.Keywords: Hermite polynomial chaos, Karhunen-Loeve, slope stability, probabilistic analysis
Procedia PDF Downloads 78