Search results for: city-wide simulation
4379 Teaching Business Process Management using IBM’s INNOV8 BPM Simulation Game
Authors: Hossam Ali-Hassan, Michael Bliemel
Abstract:
This poster reflects upon our experiences using INNOV8, IBM’s Business Process Management (BPM) simulation game, in online MBA and undergraduate MIS classes over a period of 2 years. The game is designed to gives both business and information technology players a better understanding of how effective BPM impacts an entire business ecosystem. The game includes three different scenarios: Smarter Traffic, which is used to evaluate existing traffic patterns and re-route traffic based on incoming metrics; Smarter Customer Service where players develop more efficient ways to respond to customers in a call centre environment; and Smarter Supply Chains where players balance supply and demand and reduce environmental impact in a traditional supply chain model. We use the game as an experiential learning tool, where students have to act as managers making real time changes to business processes to meet changing business demands and environments. The students learn how information technology (IT) and information systems (IS) can be used to intelligently solve different problems and how computer simulations can be used to test different scenarios or models based on business decisions without having to actually make the potentially costly and/or disruptive changes to business processes. Moreover, when students play the three different scenarios, they quickly see how practical process improvements can help meet profitability, customer satisfaction and environmental goals while addressing real problems faced by municipalities and businesses today. After spending approximately two hours in the game, students reflect on their experience from it to apply several BPM principles that were presented in their textbook through the use of a structured set of assignment questions. For each final scenario students submit a screenshot of their solution followed by one paragraph explaining what criteria you were trying to optimize, and why they picked their input variables. In this poster we outline the course and the module’s learning objectives where we used the game to place this into context. We illustrate key features of the INNOV8 Simulation Game, and describe how we used them to reinforce theoretical concepts. The poster will also illustrate examples from the simulation, assignment, and learning outcomes.Keywords: experiential learning, business process management, BPM, INNOV8, simulation, game
Procedia PDF Downloads 3294378 Human Factors Simulation Approach to Analyze Older Drivers’ Performance in Intersections Left-Turn Scenarios
Authors: Yassir AbdelRazig, Eren Ozguven, Ren Moses
Abstract:
While there exists a greater understanding of the differences between the driving behaviors of older and younger drivers, there is still a need to further understand how the two groups perform when attempting to perform complex intersection maneuvers. This paper looks to determine if, and to what extent, these differences exist when drivers encounter permissive left-hand turns, pedestrian traffic, two and four-lane intersections, heavy fog, and night conditions. The study will utilize a driving simulator to develop custom drivable scenarios containing one or more of the previously mentioned conditions. 32 younger and 32 older (+65 years) participants perform driving simulation scenarios and have their velocity, time to the nearest oncoming vehicle, accepted and rejected gaps, etc., recorded. The data collected from the simulator is analyzed via Raff’s method and logistic regression in order to determine and compare the critical gaps values of the two cohorts. Out of the parameters considered for this study, only the age of the driver, their experience (if they are a younger driver), the size of a gap, and the presence of pedestrians on the crosswalk proved significant. The results did not support the hypothesis that older drivers would be significantly more conservative in their critical gaps judgment and acceptance.Keywords: older drivers, simulation, left-turn, human factors
Procedia PDF Downloads 2474377 Simulation-Based Evaluation of Indoor Air Quality and Comfort Control in Non-Residential Buildings
Authors: Torsten Schwan, Rene Unger
Abstract:
Simulation of thermal and electrical building performance more and more becomes part of an integrative planning process. Increasing requirements on energy efficiency, the integration of volatile renewable energy, smart control and storage management often cause tremendous challenges for building engineers and architects. This mainly affects commercial or non-residential buildings. Their energy consumption characteristics significantly distinguish from residential ones. This work focuses on the many-objective optimization problem indoor air quality and comfort, especially in non-residential buildings. Based on a brief description of intermediate dependencies between different requirements on indoor air treatment it extends existing Modelica-based building physics models with additional system states to adequately represent indoor air conditions. Interfaces to corresponding HVAC (heating, ventilation, and air conditioning) system and control models enable closed-loop analyzes of occupants' requirements and energy efficiency as well as profitableness aspects. A complex application scenario of a nearly-zero-energy school building shows advantages of presented evaluation process for engineers and architects. This way, clear identification of air quality requirements in individual rooms together with realistic model-based description of occupants' behavior helps to optimize HVAC system already in early design stages. Building planning processes can be highly improved and accelerated by increasing integration of advanced simulation methods. Those methods mainly provide suitable answers on engineers' and architects' questions regarding more exuberant and complex variety of suitable energy supply solutions.Keywords: indoor air quality, dynamic simulation, energy efficient control, non-residential buildings
Procedia PDF Downloads 2324376 Application of the Discrete-Event Simulation When Optimizing of Business Processes in Trading Companies
Authors: Maxat Bokambayev, Bella Tussupova, Aisha Mamyrova, Erlan Izbasarov
Abstract:
Optimization of business processes in trading companies is reviewed in the report. There is the presentation of the “Wholesale Customer Order Handling Process” business process model applicable for small and medium businesses. It is proposed to apply the algorithm for automation of the customer order processing which will significantly reduce labor costs and time expenditures and increase the profitability of companies. An optimized business process is an element of the information system of accounting of spare parts trading network activity. The considered algorithm may find application in the trading industry as well.Keywords: business processes, discrete-event simulation, management, trading industry
Procedia PDF Downloads 3444375 Approximate Confidence Interval for Effect Size Base on Bootstrap Resampling Method
Authors: S. Phanyaem
Abstract:
This paper presents the confidence intervals for the effect size base on bootstrap resampling method. The meta-analytic confidence interval for effect size is proposed that are easy to compute. A Monte Carlo simulation study was conducted to compare the performance of the proposed confidence intervals with the existing confidence intervals. The best confidence interval method will have a coverage probability close to 0.95. Simulation results have shown that our proposed confidence intervals perform well in terms of coverage probability and expected length.Keywords: effect size, confidence interval, bootstrap method, resampling
Procedia PDF Downloads 5964374 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review
Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari
Abstract:
The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency
Procedia PDF Downloads 1624373 Control of a Plane Jet Spread by Tabs at the Nozzle Exit
Authors: Makito Sakai, Takahiro Kiwata, Takumi Awa, Hiroshi Teramoto, Takaaki Kono, Kuniaki Toyoda
Abstract:
Using experimental and numerical results, this paper describes the effects of tabs on the flow characteristics of a plane jet at comparatively low Reynolds numbers while focusing on the velocity field and the vortical structure. The flow visualization and velocity measurements were respectively carried out using laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). In addition, three-dimensional (3D) plane jet numerical simulations were performed using ANSYS Fluent, a commercially available computational fluid dynamics (CFD) software application. We found that the spreads of jets perturbed by large delta tabs and round tabs were larger than those produced by the other tabs tested. Additionally, it was determined that a plane jet with square tabs had the smallest jet spread downstream, and the jet’s centerline velocity was larger than those of jets perturbed by the other tabs tested. It was also observed that the spanwise vortical structure of a plane jet with tabs disappeared completely. Good agreement was found between the experimental and numerical simulation velocity profiles in the area near the nozzle exit when the laminar flow model was used. However, we also found that large eddy simulation (LES) is better at predicting the developing flow field of a plane jet than the laminar and the standard k-ε turbulent models.Keywords: plane jet, flow control, tab, flow measurement, numerical simulation
Procedia PDF Downloads 3344372 Impact of Tourists on HIV (Human Immunodeficiency Virus) Incidence
Authors: Ofosuhene O. Apenteng, Noor Azina Ismail
Abstract:
Recently tourism is a major foreign exchange earner in the World. In this paper, we propose the mathematical model to study the impact of tourists on the spread of HIV incidences using compartmental differential equation models. Simulation studies of reproduction number are used to demonstrate new insights on the spread of HIV disease. The periodogram analysis of a time series was used to determine the speed at which the disease is spread. The results indicate that with the persistent flow of tourism into a country, the disease status has increased the epidemic rate. The result suggests that the government must put more control on illegal prostitution, unprotected sexual activity as well as to emphasis on prevention policies that include the safe sexual activity through the campaign by the tourism board.Keywords: HIV/AIDS, mathematical transmission modeling, tourists, stability, simulation
Procedia PDF Downloads 3914371 Modelling of Induction Motor Including Skew Effect Using MWFA for Performance Improvement
Authors: M. Harir, A. Bendiabdellah, A. Chaouch, N. Benouzza
Abstract:
This paper deals with the modelling and simulation of the squirrel cage induction motor by taking into account all space harmonic components, as well as the introduction of the bars skew, in the calculation of the linear evolution of the magnetomotive force (MMF) between the slots extremities. The model used is based on multiple coupled circuits and the modified winding function approach (MWFA). The effect of skewing is included in the calculation of motors inductances with an axial asymmetry in the rotor. The simulation results in both time and spectral domains show the effectiveness and merits of the model and the error that may be caused if the skew of the bars is neglected.Keywords: modeling, MWFA, skew effect, squirrel cage induction motor, spectral domain
Procedia PDF Downloads 4394370 Improving Young Learners' Vocabulary Acquisition: A Pilot Program in a Game-Based Environment
Authors: Vasiliki Stratidou
Abstract:
Modern simulation mobile games have the potential to enhance students’ interest, motivation and creativity. Research conducted on the effectiveness of digital games for educational purposes has shown that such games are also ideal at providing an appropriate environment for language learning. The paper examines the issue of simulation mobile games in regard to the potential positive impacts on L2 vocabulary learning. Sixteen intermediate level students, aged 10-14, participated in the experimental study for four weeks. The participants were divided into experimental (8 participants) and control group (8 participants). The experimental group was planned to learn some new vocabulary words via digital games while the control group used a reading passage to learn the same vocabulary words. The study investigated the effect of mobile games as well as the traditional learning methods on Greek EFL learners’ vocabulary learning in a pre-test, an immediate post-test, and a two-week delayed retention test. A teacher’s diary and learners’ interviews were also used as tools to estimate the effectiveness of the implementation. The findings indicated that the experimental group outperformed the control group in acquiring new words through mobile games. Therefore, digital games proved to be an effective tool in learning English vocabulary.Keywords: control group, digital games, experimental group, second language vocabulary learning, simulation games
Procedia PDF Downloads 2384369 Field Scale Simulation Study of Miscible Water Alternating CO2 Injection Process in Fractured Reservoirs
Authors: Hooman Fallah
Abstract:
Vast amounts of world oil reservoirs are in natural fractured reservoirs. There are different methods for increasing recovery from fractured reservoirs. Miscible injection of water alternating CO2 is a good choice among this methods. In this method, water and CO2 slugs are injected alternatively in reservoir as miscible agent into reservoir. This paper studies water injection scenario and miscible injection of water and CO2 in a two dimensional, inhomogeneous fractured reservoir. The results show that miscible water alternating CO2¬ gas injection leads to 3.95% increase in final oil recovery and total water production decrease of 3.89% comparing to water injection scenario.Keywords: simulation study, CO2, water alternating gas injection, fractured reservoirs
Procedia PDF Downloads 2914368 Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor
Authors: Shima Soleimani, Steven Eckels
Abstract:
One area of special importance for the surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fine height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling the inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fine height has a greater impact on performance factors than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer, and pressure drops up to 21% and 56% compared to a 2D one, respectfully.Keywords: three-dimensional micro-fin tube, heat transfer, friction factor, heat exchanger
Procedia PDF Downloads 1184367 Case Scenario Simulation concerning Eventual Ship Sourced Oil Spill, Expansion and Response Process in Istanbul Strait
Authors: Cihat Aşan
Abstract:
Istanbul Strait is a crucial and narrow waterway, not only having a role in linking two continents but also has a crossover mission for the petroleum, which is the biggest energy resource, between its supply and demand sources. Besides its substantial features, sensitivities like around 18 million populations in surroundings, military facilities, ports, oil lay down areas etc. also brings the high risk to use of Istanbul Strait. Based on the statistics of Turkish Ministry of Transportation, Maritime and Communication, although the number of vessel passage in Istanbul Strait is declining, tonnage of hazardous and flammable cargo like oil and chemical transportation is increasing and subsequently the risk of oil pollution, loss of life and property is also rising. Based on the mentioned above; it is crucial to be prepared for the initial and subsequent response to eventual ship sourced oil spill which may cause to block the Strait for an unbearable duration. In this study; preconditioned Istanbul Strait sensitive areas studies has been taken into account and possible oil spill scenario is loaded to PISCES 2 (Potential Incident Simulation Control and Evaluation System) decision support system for the determined specific sea area. Consequences of the simulation like oil expanding process, required number and types of assets to response, had in hand and evaluated.Keywords: Istanbul strait, oil spill, PISCES simulator, initial response
Procedia PDF Downloads 3434366 An Agent-Based Modeling and Simulation of Human Muscle
Authors: Sina Saadati, Mohammadreza Razzazi
Abstract:
In this article, we have tried to present an agent-based model of human muscle. A suitable model of muscle is necessary for the analysis of mankind's movements. It can be used by clinical researchers who study the influence of motion sicknesses, like Parkinson's disease. It is also useful in the development of a prosthesis that receives the electromyography signals and generates force as a reaction. Since we have focused on computational efficiency in this research, the model can compute the calculations very fast. As far as it concerns prostheses, the model can be known as a charge-efficient method. In this paper, we are about to illustrate an agent-based model. Then, we will use it to simulate the human gait cycle. This method can also be done reversely in the analysis of gait in motion sicknesses.Keywords: agent-based modeling and simulation, human muscle, gait cycle, motion sickness
Procedia PDF Downloads 1144365 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine
Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez
Abstract:
An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.Keywords: blade, dynamic, fsi, wind turbine
Procedia PDF Downloads 4824364 Internet of Things Edge Device Power Modelling and Optimization Simulator
Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh
Abstract:
Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting
Procedia PDF Downloads 1304363 Simulation of Polymeric Precursors Production from Wine Industrial Organic Wastes
Authors: Tanapoom Phuncharoen, Tawiwat Sriwongsa, Kanita Boonruang, Apichit Svang-Ariyaskul
Abstract:
The production of dimethyl acetal, isovaleradehyde, and pyridine were simulated using Aspen Plus simulation. Upgrading cleaning water from wine industrial production is the main objective of the project. The winery waste composes of acetaldehyde, methanol, ethyl acetate, 1-propanol, water, isoamyl alcohol, and isobutanol. The project is separated into three parts; separation, reaction, and purification. Various processes were considered to maximize the profit along with obtaining high purity and recovery of each component with optimum heat duty. The results show a significant value of the product with purity more than 75% and recovery over 98%.Keywords: dimethyl acetal, pyridine, wine, aspen plus, isovaleradehyde, polymeric precursors
Procedia PDF Downloads 3274362 Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices
Authors: Virendra J. Majarikar, Harikrishnan N. Unni
Abstract:
This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.Keywords: COMSOL Multiphysics®, electrokinetic, electroosmotic, microfluidics, zeta potential
Procedia PDF Downloads 2424361 Computational Fluid Dynamics Simulation Study of Flow near Moving Wall of Various Surface Types Using Moving Mesh Method
Authors: Khizir Mohd Ismail, Yu Jun Lim, Tshun Howe Yong
Abstract:
The study of flow behavior in an enclosed volume using Computational Fluid Dynamics (CFD) has been around for decades. However, due to the knowledge limitation of adaptive grid methods, the flow in an enclosed volume near the moving wall using CFD is less explored. A CFD simulation of flow in an enclosed volume near a moving wall was demonstrated and studied by introducing a moving mesh method and was modeled with Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach. A static enclosed volume with controlled opening size in the bottom was positioned against a moving, translational wall with sliding mesh features. Controlled variables such as smoothed, crevices and corrugated wall characteristics, the distance between the enclosed volume to the wall and the moving wall speed against the enclosed chamber were varied to understand how the flow behaves and reacts in between these two geometries. These model simulations were validated against experimental results and provided result confidence when the simulation had shown good agreement with the experimental data. This study had provided better insight into the flow behaving in an enclosed volume when various wall types in motion were introduced within the various distance between each other and create a potential opportunity of application which involves adaptive grid methods in CFD.Keywords: moving wall, adaptive grid methods, CFD, moving mesh method
Procedia PDF Downloads 1474360 Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan
Authors: Adil Balla Elkrail
Abstract:
Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development.Keywords: aquifers, model simulation, groundwater, calibrations, trail-and- error, prediction
Procedia PDF Downloads 2424359 Recognising and Managing Haematoma Following Thyroid Surgery: Simulation Teaching is Effective
Authors: Emily Moore, Dora Amos, Tracy Ellimah, Natasha Parrott
Abstract:
Postoperative haematoma is a well-recognised complication of thyroid surgery with an incidence of 1-5%. Haematoma formation causes progressive airway obstruction, necessitating emergency bedside haematoma evacuation in up to ¼ of patients. ENT UK, BAETS and DAS have developed consensus guidelines to improve perioperative care, recommending that all healthcare staff interacting with patients undergoing thyroid surgery should be trained in managing post-thyroidectomy haematoma. The aim was to assess the effectiveness of a hybrid simulation model in improving clinician’s confidence in dealing with this surgical emergency. A hybrid simulation was designed, consisting of a standardised patient wearing a part-task trainer to mimic a post-thyroidectomy haematoma in a real patient. The part-task trainer was an adapted C-spine collar with layers of silicone representing the skin and strap muscles and thickened jelly representing the haematoma. Both the skin and strap muscle layers had to be opened in order to evacuate the haematoma. Boxes have been implemented into the appropriate post operative areas (recovery and surgical wards), which contain a printed algorithm designed to assist in remembering a sequence of steps for haematoma evacuation using the ‘SCOOP’ method (skin exposure, cut sutures, open skin, open muscles, pack wound) along with all the necessary equipment to open the front of the neck. Small-group teaching sessions were delivered by ENT and anaesthetic trainees to members of the multidisciplinary team normally involved in perioperative patient care, which included ENT surgeons, anaesthetists, recovery nurses, HCAs and ODPs. The DESATS acronym of signs and symptoms to recognise (difficulty swallowing, EWS score, swelling, anxiety, tachycardia, stridor) was highlighted. Then participants took part in the hybrid simulation in order to practice this ‘SCOOP’ method of haematoma evacuation. Participants were surveyed using a Likert scale to assess their level of confidence pre- and post teaching session. 30 clinicians took part. Confidence (agreed/strongly agreed) in recognition of post thyroidectomy haematoma improved from 58.6% to 96.5%. Confidence in management improved from 27.5% to 89.7%. All participants successfully decompressed the haematoma. All participants agreed/strongly agreed, that the sessions were useful for their learning. Multidisciplinary team simulation teaching is effective at significantly improving confidence in both the recognition and management of postoperative haematoma. Hybrid simulation sessions are useful and should be incorporated into training for clinicians.Keywords: thyroid surgery, haematoma, teaching, hybrid simulation
Procedia PDF Downloads 964358 Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation
Authors: Samuel Ahamefula Mba
Abstract:
Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns.Keywords: turbulence, Navier-Stokes equation, Poisson pressure equation, numerical investigation, Chebyshev-finite difference, hybrid computational approach, large Eddy simulation with wall models, direct numerical simulation
Procedia PDF Downloads 944357 Virtual Assessment of Measurement Error in the Fractional Flow Reserve
Authors: Keltoum Chahour, Mickael Binois
Abstract:
Due to a lack of standardization during the invasive fractional flow reserve (FFR) procedure, the index is subject to many sources of uncertainties. In this paper, we investigate -through simulation- the effect of the (FFR) device position and configuration on the obtained value of the (FFR) fraction. For this purpose, we use computational fluid dynamics (CFD) in a 3D domain corresponding to a diseased arterial portion. The (FFR) pressure captor is introduced inside it with a given length and coefficient of bending to capture the (FFR) value. To get over the computational limitations, basically, the time of the simulation is about 2h 15min for one (FFR) value; we generate a Gaussian Process (GP) model for (FFR) prediction. The (GP) model indicates good accuracy and demonstrates the effective error in the measurement created by the random configuration of the pressure captor.Keywords: fractional flow reserve, Gaussian processes, computational fluid dynamics, drift
Procedia PDF Downloads 1344356 Study of a Developed Model Describing a Vacuum Membrane Distillation Unit Coupled to Solar Energy
Authors: Fatma Khaled, Khaoula Hidouri, Bechir Chaouachi
Abstract:
Desalination using solar energy coupled with membrane techniques such as vacuum membrane distillation (VMD) is considered as an interesting alternative for the production of pure water. During this work, a developed model of a polytetrafluoroethylene (PTFE) hollow fiber membrane module of a VMD unit of seawater was carried out. This simulation leads to establishing a comparison between the effects of two different equations of the vaporization latent heat on the membrane surface temperature and on the unit productivity. Besides, in order to study the effect of putting membrane modules in series on the outlet fluid temperature and on the productivity of the process, a simulation was executed.Keywords: vacuum membrane distillation, membrane module, membrane temperature, productivity
Procedia PDF Downloads 1914355 Thermomechanical Damage Modeling of F114 Carbon Steel
Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi
Abstract:
The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.Keywords: thermo-mechanical fatigue, failure, numerical simulation, fracture, damage
Procedia PDF Downloads 3934354 Numerical Solution of 1-D Shallow Water Equations at Junction for Sub-Critical and Super-Critical Flow
Authors: Mohamed Elshobaki, Alessandro Valiani, Valerio Caleffi
Abstract:
In this paper, we solve 1-D shallow water equation for sub-critical and super-critical water flow at junction. The water flow at junction has been studied for the last 50 years from the physical-hydraulic point of views and for numerical computations need more attention. For numerical simulation, we need to establish an inner boundary condition at the junction to avoid an oscillation which rise from the waves interactions at the junction. Indeed, we introduce a new boundary condition at the junction based on the mass conservation, total head, and the admissible wave relations between the flow parameters in the three branches to predict the water depths and discharges at the junction. These boundary conditions are valid for sub-critical flow and super-critical flow.Keywords: numerical simulation, junction flow, sub-critical flow, super-critical flow
Procedia PDF Downloads 5104353 Different Sampling Schemes for Semi-Parametric Frailty Model
Authors: Nursel Koyuncu, Nihal Ata Tutkun
Abstract:
Frailty model is a survival model that takes into account the unobserved heterogeneity for exploring the relationship between the survival of an individual and several covariates. In the recent years, proposed survival models become more complex and this feature causes convergence problems especially in large data sets. Therefore selection of sample from these big data sets is very important for estimation of parameters. In sampling literature, some authors have defined new sampling schemes to predict the parameters correctly. For this aim, we try to see the effect of sampling design in semi-parametric frailty model. We conducted a simulation study in R programme to estimate the parameters of semi-parametric frailty model for different sample sizes, censoring rates under classical simple random sampling and ranked set sampling schemes. In the simulation study, we used data set recording 17260 male Civil Servants aged 40–64 years with complete 10-year follow-up as population. Time to death from coronary heart disease is treated as a survival-time and age, systolic blood pressure are used as covariates. We select the 1000 samples from population using different sampling schemes and estimate the parameters. From the simulation study, we concluded that ranked set sampling design performs better than simple random sampling for each scenario.Keywords: frailty model, ranked set sampling, efficiency, simple random sampling
Procedia PDF Downloads 2114352 Design of Neural Predictor for Vibration Analysis of Drilling Machine
Authors: İkbal Eski
Abstract:
This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine.Keywords: artificial neural network, vibration analyses, drilling machine, robust
Procedia PDF Downloads 3924351 Retrofitting Cement Plants with Oxyfuel Technology for Carbon Capture
Authors: Peloriadi Konstantina, Fakis Dimitris, Grammelis Panagiotis
Abstract:
Methods for carbon capture and storage (CCS) can play a key role in the reduction of industrial CO₂ emissions, especially in the cement industry, which accounts for 7% of global emissions. Cement industries around the world have committed to address this problem by reaching carbon neutrality by the year 2050. The aim of the work to be presented was to contribute to the decarbonization strategy by integrating the 1st generation oxyfuel technology in cement production plants. This technology has been shown to improve fuel efficiency while providing one of the most cost-effective solutions when compared to other capture methods. A validated simulation of the cement plant was thus used as a basis to develop an oxyfuel retrofitted cement process. The process model for the oxyfuel technology is developed on the ASPEN (Advanced System for Process Engineering) PLUSTM simulation software. This process consists of an Air Separation Unit (ASU), an oxyfuel cement plant with coal and alternative solid fuel (ASF) as feedstock, and a carbon dioxide processing unit (CPU). A detailed description and analysis of the CPU will be presented, including the findings of a literature review and simulation results, regarding the effects of flue gas impurities during operation. Acknowledgment: This research has been conducted in the framework of the EU funded AC2OCEM project, which investigates first and the second generation oxyfuel concepts.Keywords: oxyfuel technology, carbon capture and storage, CO₂ processing unit, cement, aspen plus
Procedia PDF Downloads 1934350 Tribologycal Design by Molecular Dynamics Simulation- The Influence of Porous Surfaces on Wall Slip and Bulk Shear
Authors: Seyedmajid Mehrnia, Maximilan Kuhr, Peter F. Pelz
Abstract:
Molecular Dynamics (MD) simulation is a proven method to inspect behaviours of lubricant oils in nano-scale gaps. However, most MD simulations on tribology have been performed with atomically smooth walls to determine wall slip and friction properties. This study will investigate the effect of porosity, specifically nano-porous walls, on wall slip properties of hydrocarbon oils confined between two walls in a Couette flow. Different pore geometries will be modelled to investigate the effect on wall slip and bulk shear. In this paper, the Polyalphaolefin (PAO) molecules are confined to a stationary and a moving wall. A hybrid force field consisting of different potential energy functions was employed in this MD simulation. Newton’s law defines how those forces will influence the atoms' movements. The interactions among surface atoms were simulated with an Embedded Atom Method (EAM) potential function which can represent the characteristics of metallic arrangements very strongly. We implemented NERD forcefield for intramolecular potential energy function. Also, Lennard-Jones potential was employed for nonbonded intermolecular interaction.Keywords: slip length, molecular dynamics, critical shear rate, Couette flow
Procedia PDF Downloads 131