Search results for: automatic built-in-stabilizers
296 Comprehensive Evaluation of COVID-19 Through Chest Images
Authors: Parisa Mansour
Abstract:
The coronavirus disease 2019 (COVID-19) was discovered and rapidly spread to various countries around the world since the end of 2019. Computed tomography (CT) images have been used as an important alternative to the time-consuming RT. PCR test. However, manual segmentation of CT images alone is a major challenge as the number of suspected cases increases. Thus, accurate and automatic segmentation of COVID-19 infections is urgently needed. Because the imaging features of the COVID-19 infection are different and similar to the background, existing medical image segmentation methods cannot achieve satisfactory performance. In this work, we try to build a deep convolutional neural network adapted for the segmentation of chest CT images with COVID-19 infections. First, we maintain a large and novel chest CT image database containing 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of an infected lung can be improved by global intensity adjustment, we introduce a feature variable block into the proposed deep CNN, which adjusts the global features of features to segment the COVID-19 infection. The proposed PV array can effectively and adaptively improve the performance of functions in different cases. We combine features of different scales by proposing a progressive atrocious space pyramid fusion scheme to deal with advanced infection regions with various aspects and shapes. We conducted experiments on data collected in China and Germany and showed that the proposed deep CNN can effectively produce impressive performance.Keywords: chest, COVID-19, chest Image, coronavirus, CT image, chest CT
Procedia PDF Downloads 58295 Destination Port Detection For Vessels: An Analytic Tool For Optimizing Port Authorities Resources
Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin
Abstract:
Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/ unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages AIS messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring Automatic Identification System (AIS) messages. Our RRoT method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measure to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Fr´echet Distance (DFD), Dynamic Time Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an fmeasure of 99.08% using Dynamic Time Warping (DTW) similarity measure.Keywords: spatial temporal data mining, trajectory mining, trajectory similarity, resource optimization
Procedia PDF Downloads 122294 Humans Trust Building in Robots with the Help of Explanations
Authors: Misbah Javaid, Vladimir Estivill-Castro, Rene Hexel
Abstract:
The field of robotics is advancing rapidly to the point where robots have become an integral part of the modern society. These robots collaborate and contribute productively with humans and compensate some shortcomings from human abilities and complement them with their skills. Effective teamwork of humans and robots demands to investigate the critical issue of trust. The field of human-computer interaction (HCI) has already examined trust humans place in technical systems mostly on issues like reliability and accuracy of performance. Early work in the area of expert systems suggested that automatic generation of explanations improved trust and acceptability of these systems. In this work, we augmented a robot with the user-invoked explanation generation proficiency. To measure explanations effect on human’s level of trust, we collected subjective survey measures and behavioral data in a human-robot team task into an interactive, adversarial and partial information environment. The results showed that with the explanation capability humans not only understand and recognize robot as an expert team partner. But, it was also observed that human's learning and human-robot team performance also significantly improved because of the meaningful interaction with the robot in the human-robot team. Moreover, by observing distinctive outcomes, we expect our research outcomes will also provide insights into further improvement of human-robot trustworthy relationships.Keywords: explanation interface, adversaries, partial observability, trust building
Procedia PDF Downloads 201293 Energy Management Method in DC Microgrid Based on the Equivalent Hydrogen Consumption Minimum Strategy
Authors: Ying Han, Weirong Chen, Qi Li
Abstract:
An energy management method based on equivalent hydrogen consumption minimum strategy is proposed in this paper aiming at the direct-current (DC) microgrid consisting of photovoltaic cells, fuel cells, energy storage devices, converters and DC loads. The rational allocation of fuel cells and battery devices is achieved by adopting equivalent minimum hydrogen consumption strategy with the full use of power generated by photovoltaic cells. Considering the balance of the battery’s state of charge (SOC), the optimal power of the battery under different SOC conditions is obtained and the reference output power of the fuel cell is calculated. And then a droop control method based on time-varying droop coefficient is proposed to realize the automatic charge and discharge control of the battery, balance the system power and maintain the bus voltage. The proposed control strategy is verified by RT-LAB hardware-in-the-loop simulation platform. The simulation results show that the designed control algorithm can realize the rational allocation of DC micro-grid energy and improve the stability of system.Keywords: DC microgrid, equivalent minimum hydrogen consumption strategy, energy management, time-varying droop coefficient, droop control
Procedia PDF Downloads 303292 Screening Deformed Red Blood Cells Irradiated by Ionizing Radiations Using Windowed Fourier Transform
Authors: Dahi Ghareab Abdelsalam Ibrahim, R. H. Bakr
Abstract:
Ionizing radiation, such as gamma radiation and X-rays, has many applications in medical diagnoses and cancer treatment. In this paper, we used the windowed Fourier transform to extract the complex image of the deformed red blood cells. The real values of the complex image are used to extract the best fitting of the deformed cell boundary. Male albino rats are irradiated by γ-rays from ⁶⁰Co. The male albino rats are anesthetized with ether, and then blood samples are collected from the eye vein by heparinized capillary tubes for studying the radiation-damaging effect in-vivo by the proposed windowed Fourier transform. The peripheral blood films are prepared according to the Brown method. The peripheral blood film is photographed by using an Automatic Image Contour Analysis system (SAMICA) from ELBEK-Bildanalyse GmbH, Siegen, Germany. The SAMICA system is provided with an electronic camera connected to a computer through a built-in interface card, and the image can be magnified up to 1200 times and displayed by the computer. The images of the peripheral blood films are then analyzed by the windowed Fourier transform method to extract the precise deformation from the best fitting. Based on accurate deformation evaluation of the red blood cells, diseases can be diagnosed in their primary stages.Keywords: windowed Fourier transform, red blood cells, phase wrapping, Image processing
Procedia PDF Downloads 85291 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction
Authors: Andrey Khalov
Abstract:
The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER
Procedia PDF Downloads 18290 Study on the Stability of Large Space Expandable Parabolic Cylindrical Antenna
Authors: Chuanzhi Chen, Wenjing Yu
Abstract:
Parabolic cylindrical deployable antenna has the characteristics of wide cutting width, strong directivity, high gain, and easy automatic beam scanning. While, due to its large size, high flexibility, and strong coupling, the deployment process of parabolic cylindrical deployable antenna presents such problems as unsynchronized deployment speed, large local deformation and discontinuous switching of deployment state. A large deployable parabolic cylindrical antenna is taken as the research object, and the problem of unfolding process instability of cylindrical antenna is studied in the paper, which is caused by multiple factors such as multiple closed loops, elastic deformation, motion friction, and gap collision. Firstly, the multi-flexible system dynamics model of large-scale parabolic cylindrical antenna is established to study the influence of friction and elastic deformation on the stability of large multi-closed loop antenna. Secondly, the evaluation method of antenna expansion stability is studied, and the quantitative index of antenna configuration design is proposed to provide a theoretical basis for improving the overall performance of the antenna. Finally, through simulation analysis and experiment, the development dynamics and stability of large-scale parabolic cylindrical antennas are verified by in-depth analysis, and the principles for improving the stability of antenna deployment are summarized.Keywords: multibody dynamics, expandable parabolic cylindrical antenna, stability, flexible deformation
Procedia PDF Downloads 147289 An Examination of the Powers of the Executive to Continued Detention of Suspects in Disobedience to Court Orders
Authors: Chukwuemeka Castro Nwabuzor
Abstract:
The 2015 Administration of Criminal Justice Act in Nigeria clearly sets out conditions for bail for felonies, lesser offenses and capital offenses. Even where the conditions for bail are met, granting an application for bail is not automatic as it is subject to the discretion of the court. Where the court, however, grants bail to an accused, the detaining authority which usually is the executive arm of government is bound to comply with the order of the court. This paper discusses the constitutionality of the continued detention of criminal suspects in disobedience to an order of the court and in the absence of an appeal. Particularly, the paper looks at the rights to personal liberty, the dignity of the human person and also the presumption of innocence which remains one of the crucial pillars of our criminal jurisprudence. The paper analyses the reasons posed by the executive for the continued detention of a suspect including State security and security of the suspect and questions whether the reasons are reasonable justifiable in a constitutional democratic society and whether they breach the principles of separation of powers. The paper concludes that the continued detention criminal of suspects in disobedience to court orders constitutes contempt of court and dishonours the principles of separation of powers enshrined in the Nigerian Constitution. This paper makes a strong case for the donation of more enforceable powers to the judiciary particularly with regards to the granting of compensation orders against the executive and ensuring compliance by the executive to bail orders.Keywords: breach of fundamental rights, contempt of court, discretion of court, right to bail, separation of powers
Procedia PDF Downloads 165288 Polymorphisms of STAT5A and DGAT1 Genes and Their Associations with Milk Trait in Egyptian Goats
Authors: Othman Elmahdy Othman
Abstract:
The objectives of this study were to identify polymorphisms in the STAT5A using Restriction Fragment Length Polymorphism and DGAT1 using Single-Strand Conformation Polymorphism genes among three Egyptian goat breeds (Barki, Zaraibi, and Damascus) as well as investigate the effect of their genotypes on milk composition traits of Zaraibi goats. One hundred and fifty blood samples were collected for DNA extraction, 60 from Zaraibi, 40 from Damascus and 50 from Barki breeds. Fat, protein and lactose percentages were determined in Zaraibi goat milk using an automatic milk analyzer. Two genotypes, CC and CT (for STAT5A) and C-C- and C-C+ (for DGAT1), were identified in the three Egyptian goat breeds with different frequencies. The associations between these genotypes and milk fat, protein and lactose were determined in Zaraibi breed. The results showed that the STAT5A genotypes had significant effects on milk yield, protein, fat and lactose with the superiority of CT genotype over CC. Regarding DGAT1 polymorphism, the result showed the only association between it with milk fat where the animals with C-C+ genotype had greater milk fat than animals possess C-C- genotype. The association of combined genotypes with milk trait declared that the does with heterozygous genotypes for both genes are preferred than does with homozygous genotypes where the animals with CTC-C+ have more milk yield, fat and protein than those with CCC-C- genotype. In conclusion, the result showed that C/T and C-/C+ SNPs of STAT5A and DGAT1 genes respectively may be useful markers for assisted selection programs to improve goat milk compositionKeywords: DGAT1, genetic polymorphism, milk trait, STAT5A
Procedia PDF Downloads 163287 Automated Feature Detection and Matching Algorithms for Breast IR Sequence Images
Authors: Chia-Yen Lee, Hao-Jen Wang, Jhih-Hao Lai
Abstract:
In recent years, infrared (IR) imaging has been considered as a potential tool to assess the efficacy of chemotherapy and early detection of breast cancer. Regions of tumor growth with high metabolic rate and angiogenesis phenomenon lead to the high temperatures. Observation of differences between the heat maps in long term is useful to help assess the growth of breast cancer cells and detect breast cancer earlier, wherein the multi-time infrared image alignment technology is a necessary step. Representative feature points detection and matching are essential steps toward the good performance of image registration and quantitative analysis. However, there is no clear boundary on the infrared images and the subject's posture are different for each shot. It cannot adhesive markers on a body surface for a very long period, and it is hard to find anatomic fiducial markers on a body surface. In other words, it’s difficult to detect and match features in an IR sequence images. In this study, automated feature detection and matching algorithms with two type of automatic feature points (i.e., vascular branch points and modified Harris corner) are developed respectively. The preliminary results show that the proposed method could identify the representative feature points on the IR breast images successfully of 98% accuracy and the matching results of 93% accuracy.Keywords: Harris corner, infrared image, feature detection, registration, matching
Procedia PDF Downloads 304286 A Fuzzy Control System for Reducing Urban Stormwater Runoff by a Stormwater Storage Tank
Authors: Pingping Zhang, Yanpeng Cai, Jianlong Wang
Abstract:
Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. At present, it is difficult to perform the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormwater runoff. Firstly, the design of SST was investigated. A catchment area and a return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff were analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.Keywords: stormwater runoff, stormwater storage tank, real-time control, fuzzy control
Procedia PDF Downloads 204285 Unattended Crowdsensing Method to Monitor the Quality Condition of Dirt Roads
Authors: Matias Micheletto, Rodrigo Santos, Sergio F. Ochoa
Abstract:
In developing countries, the most roads in rural areas are dirt road. They require frequent maintenance since are affected by erosive events, such as rain or wind, and the transit of heavy-weight trucks and machinery. Early detection of damages on the road condition is a key aspect, since it allows to reduce the main-tenance time and cost, and also the limitations for other vehicles to travel through. Most proposals that help address this problem require the explicit participation of drivers, a permanent internet connection, or important instrumentation in vehicles or roads. These constraints limit the suitability of these proposals when applied into developing regions, like in Latin America. This paper proposes an alternative method, based on unattended crowdsensing, to determine the quality of dirt roads in rural areas. This method involves the use of a mobile application that complements the road condition surveys carried out by organizations in charge of the road network maintenance, giving them early warnings about road areas that could be requiring maintenance. Drivers can also take advantage of the early warnings while they move through these roads. The method was evaluated using information from a public dataset. Although they are preliminary, the results indicate the proposal is potentially suitable to provide awareness about dirt roads condition to drivers, transportation authority and road maintenance companies.Keywords: dirt roads automatic quality assessment, collaborative system, unattended crowdsensing method, roads quality awareness provision
Procedia PDF Downloads 201284 A Large Language Model-Driven Method for Automated Building Energy Model Generation
Authors: Yake Zhang, Peng Xu
Abstract:
The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.Keywords: artificial intelligence, building energy modelling, building simulation, large language model
Procedia PDF Downloads 28283 Application of GPRS in Water Quality Monitoring System
Authors: V. Ayishwarya Bharathi, S. M. Hasker, J. Indhu, M. Mohamed Azarudeen, G. Gowthami, R. Vinoth Rajan, N. Vijayarangan
Abstract:
Identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. The traditional method of water quality testing is to collect samples manually and then send to laboratory for analysis. However, it has been unable to meet the demands of water quality monitoring today. So a set of automatic measurement and reporting system of water quality has been developed. In this project specifies Water quality parameters collected by multi-parameter water quality probe are transmitted to data processing and monitoring center through GPRS wireless communication network of mobile. The multi parameter sensor is directly placed above the water level. The monitoring center consists of GPRS and micro-controller which monitor the data. The collected data can be monitor at any instant of time. In the pollution control board they will monitor the water quality sensor data in computer using Visual Basic Software. The system collects, transmits and processes water quality parameters automatically, so production efficiency and economy benefit are improved greatly. GPRS technology can achieve well within the complex environment of poor water quality non-monitored, and more specifically applicable to the collection point, data transmission automatically generate the field of water analysis equipment data transmission and monitoring.Keywords: multiparameter sensor, GPRS, visual basic software, RS232
Procedia PDF Downloads 414282 Higher Relative Humidity from Pipping Increases Physical Problems in the Broiler Chicks
Authors: M. A. Nogueira, M. Thimotheo, G. C. Ripamonte, S. C. C. Aguiar, M. H. S. Ulian, J. C. Goncalves Netto, I. C. Boleli
Abstract:
Increasing in the relative humidity during the last incubation day is a usual practice in the commercial hatchery to facilitate hatching. This study analyzed whether higher relative humidity improves eclodibility as well as chick quality, and alters the hatch window. Fertile eggs (65- 67g) produced by 53 weeks old broiler breeders (Cobb 500®) were incubated at 37.5°C and 31°C in the wet bulb in incubators with automatic control of temperature and egg turning (1 each hour). Two-hundred ten were distributed randomly in three treatments: 31°C in the wet bulb from internal pipping (BI-31), 33°C from internal pipping (BI-33), and 33°C from external pipping (BE-33), all three hatchers maintained at 37.5°C and without egg turning. For this, eggs were checked for internal pipping by ovoscopy and external pipping by visual observation through the transparent cover of the incubators each hour from day 18 of incubation. No significant differences in the hatchability (BI-31:79.61%, BI-33:77.63%, BE-33:80.77%; by Q-square test, P > 0.05). Absence of significant effects of the treatments were also observed for incubation duration (BI-31:488.58 h, BI-33:488.30 h, BE-33:489.04 h), and chick body weight (BI-31: 49.40g, BI-33: 49.74g, BE-33: 49.34g) and quality scores (BI-31: 90.02, BI-33: 87.56, BE-33: 92.28 points), by variance analysis (P > 0.05). However, BI-33 increased the incidence of feathering and leg problems and remaining of alantoic membrane, and BE-33 increased the incidence of problems with feathering, navel and yolk sac and reduced the leg problems, compared to BI-31. In sum, the results show higher relative humidity from internal or external pipping did not influence hatchability and incubation duration, but reduced chick quality, affecting the incubation efficiency.Keywords: chick quality, hatchability, hatcher humidity, incubation duration
Procedia PDF Downloads 173281 Inclusive Cultural Heritage Tourism Project
Authors: L. Cruz-Lopes, M. Sell, P. Escudeiro, B. Esteves
Abstract:
It might be difficult for deaf people to communicate since spoken and written languages are different from sign language. When it comes to getting information, going to places of cultural heritage, or using services and infrastructure, there is a clear lack of inclusiveness. By creating assistive technology that enables deaf individuals to get around communication hurdles and encourage inclusive tourism, the ICHT- Inclusive Cultural Heritage Tourism initiative hopes to increase knowledge of sign language. The purpose of the Inclusive Cultural Heritage Tourism (ICHT) project is to develop online and on-site sign language tools and material for usage at popular tourist destinations in the northern region of Portugal, including Torre dos Clérigos, the Lello bookstore, Maia Zoo, Porto wine cellars, and São Pedro do Sul (Viseu) thermae. The ICHT system consists of an application using holography, a mobile game, an online platform for collaboration with deaf and hearing users, and a collection of International Sign training courses. The project also offers a prospect for a more inclusive society by introducing a method of teaching sign languages to tourism industry professionals. As a result, the teaching and learning of sign language along with the assistive technology tools created by the project sets up an inclusive environment for the deaf community, producing results in the area of automatic sign language translation and aiding in the global recognition of the Portuguese tourism industry.Keywords: inclusive tourism, games, international sign training, deaf community
Procedia PDF Downloads 116280 Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices
Authors: Mirvat Shamseddine, Issam Lakkis
Abstract:
We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows.Keywords: DSMC, oct-tree hierarchical grid, ray tracing, spatial-temporal adaptivity scheme, unsteady rarefied gas flows
Procedia PDF Downloads 300279 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle
Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel
Abstract:
Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network
Procedia PDF Downloads 210278 Highly Accurate Target Motion Compensation Using Entropy Function Minimization
Authors: Amin Aghatabar Roodbary, Mohammad Hassan Bastani
Abstract:
One of the defects of stepped frequency radar systems is their sensitivity to target motion. In such systems, target motion causes range cell shift, false peaks, Signal to Noise Ratio (SNR) reduction and range profile spreading because of power spectrum interference of each range cell in adjacent range cells which induces distortion in High Resolution Range Profile (HRRP) and disrupt target recognition process. Thus Target Motion Parameters (TMPs) effects compensation should be employed. In this paper, such a method for estimating TMPs (velocity and acceleration) and consequently eliminating or suppressing the unwanted effects on HRRP based on entropy minimization has been proposed. This method is carried out in two major steps: in the first step, a discrete search method has been utilized over the whole acceleration-velocity lattice network, in a specific interval seeking to find a less-accurate minimum point of the entropy function. Then in the second step, a 1-D search over velocity is done in locus of the minimum for several constant acceleration lines, in order to enhance the accuracy of the minimum point found in the first step. The provided simulation results demonstrate the effectiveness of the proposed method.Keywords: automatic target recognition (ATR), high resolution range profile (HRRP), motion compensation, stepped frequency waveform technique (SFW), target motion parameters (TMPs)
Procedia PDF Downloads 153277 Implicit and Explicit Mechanisms of Emotional Contagion
Authors: Andres Pinilla Palacios, Ricardo Tamayo
Abstract:
Emotional contagion is characterized as an automatic tendency to synchronize behaviors that facilitate emotional convergence among humans. It might thus play a pivotal role to understand the dynamics of key social interactions. However, a few research has investigated its potential mechanisms. We suggest two complementary but independent processes that may underlie emotional contagion. The efficient contagion hypothesis, based on fast and implicit bottom-up processes, modulated by familiarity and spread of activation in the emotional associative networks of memory. Secondly, the emotional contrast hypothesis, based on slow and explicit top-down processes guided by deliberated appraisal and hypothesis-testing. In order to assess these two hypotheses, an experiment with 39 participants was conducted. In the first phase, participants were induced (between-groups) to an emotional state (positive, neutral or negative) using a standardized video taken from the FilmStim database. In the second phase, participants classified and rated (within-subject) the emotional state of 15 faces (5 for each emotional state) taken from the POFA database. In the third phase, all participants were returned to a baseline emotional state using the same neutral video used in the first phase. In a fourth phase, participants classified and rated a new set of 15 faces. The accuracy in the identification and rating of emotions was partially explained by the efficient contagion hypothesis, but the speed with which these judgments were made was partially explained by the emotional contrast hypothesis. However, results are ambiguous, so a follow-up experiment is proposed in which emotional expressions and activation of the sympathetic system will be measured using EMG and EDA respectively.Keywords: electromyography, emotional contagion, emotional valence, identification of emotions, imitation
Procedia PDF Downloads 317276 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment
Procedia PDF Downloads 229275 Evaluation of Vehicle Classification Categories: Florida Case Study
Authors: Ren Moses, Jaqueline Masaki
Abstract:
This paper addresses the need for accurate and updated vehicle classification system through a thorough evaluation of vehicle class categories to identify errors arising from the existing system and proposing modifications. The data collected from two permanent traffic monitoring sites in Florida were used to evaluate the performance of the existing vehicle classification table. The vehicle data were collected and classified by the automatic vehicle classifier (AVC), and a video camera was used to obtain ground truth data. The Federal Highway Administration (FHWA) vehicle classification definitions were used to define vehicle classes from the video and compare them to the data generated by AVC in order to identify the sources of misclassification. Six types of errors were identified. Modifications were made in the classification table to improve the classification accuracy. The results of this study include the development of updated vehicle classification table with a reduction in total error by 5.1%, a step by step procedure to use for evaluation of vehicle classification studies and recommendations to improve FHWA 13-category rule set. The recommendations for the FHWA 13-category rule set indicate the need for the vehicle classification definitions in this scheme to be updated to reflect the distribution of current traffic. The presented results will be of interest to States’ transportation departments and consultants, researchers, engineers, designers, and planners who require accurate vehicle classification information for planning, designing and maintenance of transportation infrastructures.Keywords: vehicle classification, traffic monitoring, pavement design, highway traffic
Procedia PDF Downloads 181274 Comparison of Corneal Curvature Measurements Conducted with Tomey AO-2000® and the Current Standard Biometer IOL Master®
Authors: Mohd Radzi Hilmi, Khairidzan Mohd Kamal, Che Azemin Mohd Zulfaezal, Ariffin Azrin Esmady
Abstract:
Purpose: Corneal curvature (CC) is an important anterior segment parameter. This study compared CC measurements conducted with two optical devices in phakic eyes. Methods: Sixty phakic eyes of 30 patients were enrolled in this study. CC was measured three times with the optical biometer and topography-keratometer Tomey AO-2000 (Tomey Corporation, Nagoya, Japan), then with the standard partial optical coherence interferometry (PCI) IOL Master (Carl Zeiss Meditec, Dublin, CA) and data were statistically analysed. Results: The measurements resulted in a mean CC of 43.86 ± 1.57 D with Tomey AO-2000 and 43.84 ± 1.55 D with IOL Master. Distribution of data is normal, and no significance difference in CC values was detected (P = 0.952) between the two devices. Correlation between CC measurements was highly significant (r = 0. 99; P < 0.0001). The mean difference of CC values between devices was 0.017 D and 95% limit of agreement was -0.088 to 0.12. Duration taken for measurements with the standard biometer IOL Master was longer (55.17 ± 2.24 seconds) than with Tomey AO-2000 (39.88 ± 2.38 seconds) in automatic mode. Duration of manual measurement with Tomey AO-2000 in manual mode was the shortest (28.57 ± 2.71 seconds). Conclusion: In phakic eyes, CC measured with Tomey AO-2000 and IOL Master showed similar values, and high correlation was observed between these two devices. This shows that both devices can be used interchangeably. Tomey AO-2000 is better in terms of faster to operate and has its own topography systems.Keywords: corneal topography, corneal curvature, IOL Master, Tomey AO2000
Procedia PDF Downloads 387273 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov
Abstract:
Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 102272 Enhanced Planar Pattern Tracking for an Outdoor Augmented Reality System
Authors: L. Yu, W. K. Li, S. K. Ong, A. Y. C. Nee
Abstract:
In this paper, a scalable augmented reality framework for handheld devices is presented. The presented framework is enabled by using a server-client data communication structure, in which the search for tracking targets among a database of images is performed on the server-side while pixel-wise 3D tracking is performed on the client-side, which, in this case, is a handheld mobile device. Image search on the server-side adopts a residual-enhanced image descriptors representation that gives the framework a scalability property. The tracking algorithm on the client-side is based on a gravity-aligned feature descriptor which takes the advantage of a sensor-equipped mobile device and an optimized intensity-based image alignment approach that ensures the accuracy of 3D tracking. Automatic content streaming is achieved by using a key-frame selection algorithm, client working phase monitoring and standardized rules for content communication between the server and client. The recognition accuracy test performed on a standard dataset shows that the method adopted in the presented framework outperforms the Bag-of-Words (BoW) method that has been used in some of the previous systems. Experimental test conducted on a set of video sequences indicated the real-time performance of the tracking system with a frame rate at 15-30 frames per second. The presented framework is exposed to be functional in practical situations with a demonstration application on a campus walk-around.Keywords: augmented reality framework, server-client model, vision-based tracking, image search
Procedia PDF Downloads 275271 Development of Automatic Laser Scanning Measurement Instrument
Authors: Chien-Hung Liu, Yu-Fen Chen
Abstract:
This study used triangular laser probe and three-axial direction mobile platform for surface measurement, programmed it and applied it to real-time analytic statistics of different measured data. This structure was used to design a system integration program: using triangular laser probe for scattering or reflection non-contact measurement, transferring the captured signals to the computer through RS-232, and using RS-485 to control the three-axis platform for a wide range of measurement. The data captured by the laser probe are formed into a 3D surface. This study constructed an optical measurement application program in the concept of visual programming language. First, the signals are transmitted to the computer through RS-232/RS-485, and then the signals are stored and recorded in graphic interface timely. This programming concept analyzes various messages, and makes proper presentation graphs and data processing to provide the users with friendly graphic interfaces and data processing state monitoring, and identifies whether the present data are normal in graphic concept. The major functions of the measurement system developed by this study are thickness measurement, SPC, surface smoothness analysis, and analytical calculation of trend line. A result report can be made and printed promptly. This study measured different heights and surfaces successfully, performed on-line data analysis and processing effectively, and developed a man-machine interface for users to operate.Keywords: laser probe, non-contact measurement, triangulation measurement principle, statistical process control, labVIEW
Procedia PDF Downloads 360270 Hand Gesture Recognition for Sign Language: A New Higher Order Fuzzy HMM Approach
Authors: Saad M. Darwish, Magda M. Madbouly, Murad B. Khorsheed
Abstract:
Sign Languages (SL) are the most accomplished forms of gestural communication. Therefore, their automatic analysis is a real challenge, which is interestingly implied to their lexical and syntactic organization levels. Hidden Markov models (HMM’s) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. In this paper, several results concerning static hand gesture recognition using an algorithm based on Type-2 Fuzzy HMM (T2FHMM) are presented. The features used as observables in the training as well as in the recognition phases are based on Singular Value Decomposition (SVD). SVD is an extension of Eigen decomposition to suit non-square matrices to reduce multi attribute hand gesture data to feature vectors. SVD optimally exposes the geometric structure of a matrix. In our approach, we replace the basic HMM arithmetic operators by some adequate Type-2 fuzzy operators that permits us to relax the additive constraint of probability measures. Therefore, T2FHMMs are able to handle both random and fuzzy uncertainties existing universally in the sequential data. Experimental results show that T2FHMMs can effectively handle noise and dialect uncertainties in hand signals besides a better classification performance than the classical HMMs. The recognition rate of the proposed system is 100% for uniform hand images and 86.21% for cluttered hand images.Keywords: hand gesture recognition, hand detection, type-2 fuzzy logic, hidden Markov Model
Procedia PDF Downloads 463269 An Automatic Bayesian Classification System for File Format Selection
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.Keywords: data mining, digital libraries, digital preservation, file format
Procedia PDF Downloads 499268 Mastering Test Automation: Bridging Gaps for Seamless QA
Authors: Rohit Khankhoje
Abstract:
The rapid evolution of software development practices has given rise to an increasing demand for efficient and effective test automation. The paper titled "Mastering Test Automation: Bridging Gaps for Seamless QA" delves into the crucial aspects of test automation, addressing the obstacles faced by organizations in achieving flawless quality assurance. The paper highlights the importance of bridging knowledge gaps within organizations, emphasizing the necessity for management to acquire a deeper comprehension of test automation scenarios, coverage, report trends, and the importance of communication. To tackle these challenges, this paper introduces innovative solutions, including the development of an automation framework that seamlessly integrates with test cases and reporting tools like TestRail and Jira. This integration facilitates the automatic recording of bugs in Jira, enhancing bug reporting and communication between manual QA and automation teams as well as TestRail have all newly added automated testcases as soon as it is part of the automation suite. The paper demonstrates how this framework empowers management by providing clear insights into ongoing automation activities, bug origins, trend analysis, and test case specifics. "Mastering Test Automation" serves as a comprehensive guide for organizations aiming to enhance their quality assurance processes through effective test automation. It not only identifies the common pitfalls and challenges but also offers practical solutions to bridge the gaps, resulting in a more streamlined and efficient QA process.Keywords: automation framework, API integration, test automation, test management tools
Procedia PDF Downloads 76267 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market
Authors: Cristian Păuna
Abstract:
After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction
Procedia PDF Downloads 184