Search results for: automated vehicles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1995

Search results for: automated vehicles

1395 Magnetic Navigation in Underwater Networks

Authors: Kumar Divyendra

Abstract:

Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.

Keywords: clustering, deep learning, network backbone, parallel computing

Procedia PDF Downloads 98
1394 Application of Electrochromic Glazing for Reducing Peak Cooling Loads

Authors: Ranojoy Dutta

Abstract:

HVAC equipment capacity has a direct impact on occupant comfort and energy consumption of a building. Glazing gains, especially in buildings with high window area, can be a significant contributor to the total peak load on the HVAC system, leading to over-sized systems that mostly operate at poor part load efficiency. In addition, radiant temperature, which largely drives occupant comfort in glazed perimeter zones, is often not effectively controlled despite the HVAC being designed to meet the air temperature set-point. This is due to short wave solar radiation transmitted through windows, that is not sensed by the thermostat until much later when the thermal mass in the room releases the absorbed solar heat to the indoor air. The implication of this phenomenon is increased cooling energy despite poor occupant comfort. EC glazing can significantly eliminate direct solar transmission through windows, reducing both the space cooling loads for the building and improving comfort for occupants near glazing. This paper will review the exact mechanism of how EC glazing would reduce the peak load under design day conditions, leading to reduced cooling capacity vs regular high-performance glazing. Since glazing heat transfer only affects the sensible load, system sizing will be evaluated both with and without the availability of a DOAS to isolate the downsizing potential of the primary cooling equipment when outdoor air is conditioned separately. Given the dynamic nature of glazing gains due to the sun’s movement, effective peak load mitigation with EC requires an automated control system that can predict solar movement and radiation levels so that the right tint state with the appropriate SHGC is utilized at any given time for a given façade orientation. Such an automated EC product will be evaluated for a prototype commercial office model situated in four distinct climate zones.

Keywords: electrochromic glazing, peak sizing, thermal comfort, glazing load

Procedia PDF Downloads 130
1393 An Evolutionary Approach for Automated Optimization and Design of Vivaldi Antennas

Authors: Sahithi Yarlagadda

Abstract:

The design of antenna is constrained by mathematical and geometrical parameters. Though there are diverse antenna structures with wide range of feeds yet, there are many geometries to be tried, which cannot be customized into predefined computational methods. The antenna design and optimization qualify to apply evolutionary algorithmic approach since the antenna parameters weights dependent on geometric characteristics directly. The evolutionary algorithm can be explained simply for a given quality function to be maximized. We can randomly create a set of candidate solutions, elements of the function's domain, and apply the quality function as an abstract fitness measure. Based on this fitness, some of the better candidates are chosen to seed the next generation by applying recombination and permutation to them. In conventional approach, the quality function is unaltered for any iteration. But the antenna parameters and geometries are wide to fit into single function. So, the weight coefficients are obtained for all possible antenna electrical parameters and geometries; the variation is learnt by mining the data obtained for an optimized algorithm. The weight and covariant coefficients of corresponding parameters are logged for learning and future use as datasets. This paper drafts an approach to obtain the requirements to study and methodize the evolutionary approach to automated antenna design for our past work on Vivaldi antenna as test candidate. The antenna parameters like gain, directivity, etc. are directly caged by geometries, materials, and dimensions. The design equations are to be noted here and valuated for all possible conditions to get maxima and minima for given frequency band. The boundary conditions are thus obtained prior to implementation, easing the optimization. The implementation mainly aimed to study the practical computational, processing, and design complexities that incur while simulations. HFSS is chosen for simulations and results. MATLAB is used to generate the computations, combinations, and data logging. MATLAB is also used to apply machine learning algorithms and plotting the data to design the algorithm. The number of combinations is to be tested manually, so HFSS API is used to call HFSS functions from MATLAB itself. MATLAB parallel processing tool box is used to run multiple simulations in parallel. The aim is to develop an add-in to antenna design software like HFSS, CSTor, a standalone application to optimize pre-identified common parameters of wide range of antennas available. In this paper, we have used MATLAB to calculate Vivaldi antenna parameters like slot line characteristic impedance, impedance of stripline, slot line width, flare aperture size, dielectric and K means, and Hamming window are applied to obtain the best test parameters. HFSS API is used to calculate the radiation, bandwidth, directivity, and efficiency, and data is logged for applying the Evolutionary genetic algorithm in MATLAB. The paper demonstrates the computational weights and Machine Learning approach for automated antenna optimizing for Vivaldi antenna.

Keywords: machine learning, Vivaldi, evolutionary algorithm, genetic algorithm

Procedia PDF Downloads 110
1392 Navigating the Future: Evaluating the Market Potential and Drivers for High-Definition Mapping in the Autonomous Vehicle Era

Authors: Loha Hashimy, Isabella Castillo

Abstract:

In today's rapidly evolving technological landscape, the importance of precise navigation and mapping systems cannot be understated. As various sectors undergo transformative changes, the market potential for Advanced Mapping and Management Systems (AMMS) emerges as a critical focus area. The Galileo/GNSS-Based Autonomous Mobile Mapping System (GAMMS) project, specifically targeted toward high-definition mapping (HDM), endeavours to provide insights into this market within the broader context of the geomatics and navigation fields. With the growing integration of Autonomous Vehicles (AVs) into our transportation systems, the relevance and demand for sophisticated mapping solutions like HDM have become increasingly pertinent. The research employed a meticulous, lean, stepwise, and interconnected methodology to ensure a comprehensive assessment. Beginning with the identification of pivotal project results, the study progressed into a systematic market screening. This was complemented by an exhaustive desk research phase that delved into existing literature, data, and trends. To ensure the holistic validity of the findings, extensive consultations were conducted. Academia and industry experts provided invaluable insights through interviews, questionnaires, and surveys. This multi-faceted approach facilitated a layered analysis, juxtaposing secondary data with primary inputs, ensuring that the conclusions were both accurate and actionable. Our investigation unearthed a plethora of drivers steering the HD maps landscape. These ranged from technological leaps, nuanced market demands, and influential economic factors to overarching socio-political shifts. The meteoric rise of Autonomous Vehicles (AVs) and the shift towards app-based transportation solutions, such as Uber, stood out as significant market pull factors. A nuanced PESTEL analysis further enriched our understanding, shedding light on political, economic, social, technological, environmental, and legal facets influencing the HD maps market trajectory. Simultaneously, potential roadblocks were identified. Notable among these were barriers related to high initial costs, concerns around data quality, and the challenges posed by a fragmented and evolving regulatory landscape. The GAMMS project serves as a beacon, illuminating the vast opportunities that lie ahead for the HD mapping sector. It underscores the indispensable role of HDM in enhancing navigation, ensuring safety, and providing pinpoint, accurate location services. As our world becomes more interconnected and reliant on technology, HD maps emerge as a linchpin, bridging gaps and enabling seamless experiences. The research findings accentuate the imperative for stakeholders across industries to recognize and harness the potential of HD mapping, especially as we stand on the cusp of a transportation revolution heralded by Autonomous Vehicles and advanced geomatic solutions.

Keywords: high-definition mapping (HDM), autonomous vehicles, PESTEL analysis, market drivers

Procedia PDF Downloads 84
1391 Image Based Landing Solutions for Large Passenger Aircraft

Authors: Thierry Sammour Sawaya, Heikki Deschacht

Abstract:

In commercial aircraft operations, almost half of the accidents happen during approach or landing phases. Automatic guidance and automatic landings have proven to bring significant safety value added for this challenging landing phase. This is why Airbus and ScioTeq have decided to work together to explore the capability of image-based landing solutions as additional landing aids to further expand the possibility to perform automatic approach and landing to runways where the current guiding systems are either not fitted or not optimum. Current systems for automated landing often depend on radio signals provided by airport ground infrastructure on the airport or satellite coverage. In addition, these radio signals may not always be available with the integrity and performance required for safe automatic landing. Being independent from these radio signals would widen the operations possibilities and increase the number of automated landings. Airbus and ScioTeq are joining their expertise in the field of Computer Vision in the European Program called Clean Sky 2 Large Passenger Aircraft, in which they are leading the IMBALS (IMage BAsed Landing Solutions) project. The ultimate goal of this project is to demonstrate, develop, validate and verify a certifiable automatic landing system guiding an airplane during the approach and landing phases based on an onboard camera system capturing images, enabling automatic landing independent from radio signals and without precision instrument for landing. In the frame of this project, ScioTeq is responsible for the development of the Image Processing Platform (IPP), while Airbus is responsible for defining the functional and system requirements as well as the testing and integration of the developed equipment in a Large Passenger Aircraft representative environment. The aim of this paper will be to describe the system as well as the associated methods and tools developed for validation and verification.

Keywords: aircraft landing system, aircraft safety, autoland, avionic system, computer vision, image processing

Procedia PDF Downloads 101
1390 Data-Driven Simulations Tools for Der and Battery Rich Power Grids

Authors: Ali Moradiamani, Samaneh Sadat Sajjadi, Mahdi Jalili

Abstract:

Power system analysis has been a major research topic in the generation and distribution sections, in both industry and academia, for a long time. Several load flow and fault analysis scenarios have been normally performed to study the performance of different parts of the grid in the context of, for example, voltage and frequency control. Software tools, such as PSCAD, PSSE, and PowerFactory DIgSILENT, have been developed to perform these analyses accurately. Distribution grid had been the passive part of the grid and had been known as the grid of consumers. However, a significant paradigm shift has happened with the emergence of Distributed Energy Resources (DERs) in the distribution level. It means that the concept of power system analysis needs to be extended to the distribution grid, especially considering self sufficient technologies such as microgrids. Compared to the generation and transmission levels, the distribution level includes significantly more generation/consumption nodes thanks to PV rooftop solar generation and battery energy storage systems. In addition, different consumption profile is expected from household residents resulting in a diverse set of scenarios. Emergence of electric vehicles will absolutely make the environment more complicated considering their charging (and possibly discharging) requirements. These complexities, as well as the large size of distribution grids, create challenges for the available power system analysis software. In this paper, we study the requirements of simulation tools in the distribution grid and how data-driven algorithms are required to increase the accuracy of the simulation results.

Keywords: smart grids, distributed energy resources, electric vehicles, battery storage systsms, simulation tools

Procedia PDF Downloads 104
1389 Selectivity Mechanism of Cobalt Precipitation by an Imidazole Linker From an Old Battery Solution

Authors: Anna-Caroline Lavergne-Bril, Jean-François Colin, David Peralta, Pascale Maldivi

Abstract:

Cobalt is a critical material, widely used in Li-ion batteries. Due to the planned electrification of European vehicles, cobalt needs are expending – and resources are limited. To meet the needs in cobalt to come, it is necessary to develop new efficient ways to recycle cobalt. One of the biggest sources comes from old electrical vehicles batteries (batteries sold in 2019: 500 000 tons of waste to be). A closed loop process of cobalt recycling has been developed and this presentation aims to present the selectivity mechanism of cobalt over manganese and nickel in solution. Cobalt precipitation as a ZIF material (Zeolitic Imidazolate framework) from a starting solution composed of equimolar nickel, manganese and cobalt is studied. A 2-MeIm (2-methylimidazole) linker is introduced in a multimetallic Ni, Mn, Co solution and the resulting ZIF-67 is 100% pure Co among its metallic centers. Selectivity of Co over Ni is experimentally studied and DFT modelisation calculation are conducted to understand the geometry of ligand-metal-solvent complexes in solution. Selectivity of Co over Mn is experimentally studied, and DFT modelisation calcucation are conducted to understand the link between pKa of the ligand and precipitration of Mn impurities within the final material. Those calculation open the way to other ligand being used in the same process, with more efficiency. Experimental material are synthetized from bimetallic (Ni²⁺/Co²⁺, Mn²⁺/Co²⁺, Mn²⁺/Ni²⁺) solutions. Their crystallographic structure is analysed by XRD diffraction (Brüker AXS D8 diffractometer, Cu anticathode). Morphology is studied by scanning electron microscopy, using a LEO 1530 FE-SEM microscope. The chemical analysis is performed by using ICP-OES (Agilent Technologies 700 series ICP-OES). Modelisation calculation are DFT calculation (density functional theory), using B3LYP, conducted with Orca 4.2.

Keywords: MOFs, ZIFs, recycling, closed-loop, cobalt, li-ion batteries

Procedia PDF Downloads 137
1388 The Development of Traffic Devices Using Natural Rubber in Thailand

Authors: Weeradej Cheewapattananuwong, Keeree Srivichian, Godchamon Somchai, Wasin Phusanong, Nontawat Yoddamnern

Abstract:

Natural rubber used for traffic devices in Thailand has been developed and researched for several years. When compared with Dry Rubber Content (DRC), the quality of Rib Smoked Sheet (RSS) is better. However, the cost of admixtures, especially CaCO₃ and sulphur, is higher than the cost of RSS itself. In this research, Flexible Guideposts and Rubber Fender Barriers (RFB) are taken into consideration. In case of flexible guideposts, the materials used are both RSS and DRC60%, but for RFB, only RSS is used due to the controlled performance tests. The objective of flexible guideposts and RFB is to decrease a number of accidents, fatal rates, and serious injuries. Functions of both devices are to save road users and vehicles as well as to absorb impact forces from vehicles so as to decrease of serious road accidents. This leads to the mitigation methods to remedy the injury of motorists, form severity to moderate one. The solution is to find the best practice of traffic devices using natural rubber under the engineering concepts. In addition, the performances of materials, such as tensile strength and durability, are calculated for the modulus of elasticity and properties. In the laboratory, the simulation of crashes, finite element of materials, LRFD, and concrete technology methods are taken into account. After calculation, the trials' compositions of materials are mixed and tested in the laboratory. The tensile test, compressive test, and weathering or durability test are followed and based on ASTM. Furthermore, the Cycle-Repetition Test of Flexible Guideposts will be taken into consideration. The final decision is to fabricate all materials and have a real test section in the field. In RFB test, there will be 13 crash tests, 7 Pickup Truck tests, and 6 Motorcycle Tests. The test of vehicular crashes happens for the first time in Thailand, applying the trial and error methods; for example, the road crash test under the standard of NCHRP-TL3 (100 kph) is changed to the MASH 2016. This is owing to the fact that MASH 2016 is better than NCHRP in terms of speed, types, and weight of vehicles and the angle of crash. In the processes of MASH, Test Level 6 (TL-6), which is composed of 2,270 kg Pickup Truck, 100 kph, and 25 degree of crash-angle is selected. The final test for real crash will be done, and the whole system will be evaluated again in Korea. The researchers hope that the number of road accidents will decrease, and Thailand will be no more in the top tenth ranking of road accidents in the world.

Keywords: LRFD, load and resistance factor design, ASTM, american society for testing and materials, NCHRP, national cooperation highway research program, MASH, manual for assessing safety hardware

Procedia PDF Downloads 128
1387 Reducing CO2 Emission Using EDA and Weighted Sum Model in Smart Parking System

Authors: Rahman Ali, Muhammad Sajjad, Farkhund Iqbal, Muhammad Sadiq Hassan Zada, Mohammed Hussain

Abstract:

Emission of Carbon Dioxide (CO2) has adversely affected the environment. One of the major sources of CO2 emission is transportation. In the last few decades, the increase in mobility of people using vehicles has enormously increased the emission of CO2 in the environment. To reduce CO2 emission, sustainable transportation system is required in which smart parking is one of the important measures that need to be established. To contribute to the issue of reducing the amount of CO2 emission, this research proposes a smart parking system. A cloud-based solution is provided to the drivers which automatically searches and recommends the most preferred parking slots. To determine preferences of the parking areas, this methodology exploits a number of unique parking features which ultimately results in the selection of a parking that leads to minimum level of CO2 emission from the current position of the vehicle. To realize the methodology, a scenario-based implementation is considered. During the implementation, a mobile application with GPS signals, vehicles with a number of vehicle features and a list of parking areas with parking features are used by sorting, multi-level filtering, exploratory data analysis (EDA, Analytical Hierarchy Process (AHP)) and weighted sum model (WSM) to rank the parking areas and recommend the drivers with top-k most preferred parking areas. In the EDA process, “2020testcar-2020-03-03”, a freely available dataset is used to estimate CO2 emission of a particular vehicle. To evaluate the system, results of the proposed system are compared with the conventional approach, which reveal that the proposed methodology supersedes the conventional one in reducing the emission of CO2 into the atmosphere.

Keywords: car parking, Co2, Co2 reduction, IoT, merge sort, number plate recognition, smart car parking

Procedia PDF Downloads 146
1386 Aggregation of Electric Vehicles for Emergency Frequency Regulation of Two-Area Interconnected Grid

Authors: S. Agheb, G. Ledwich, G.Walker, Z.Tong

Abstract:

Frequency control has become more of concern for reliable operation of interconnected power systems due to the integration of low inertia renewable energy sources to the grid and their volatility. Also, in case of a sudden fault, the system has less time to recover before widespread blackouts. Electric Vehicles (EV)s have the potential to cooperate in the Emergency Frequency Regulation (EFR) by a nonlinear control of the power system in case of large disturbances. The time is not adequate to communicate with each individual EV on emergency cases, and thus, an aggregate model is necessary for a quick response to prevent from much frequency deviation and the occurrence of any blackout. In this work, an aggregate of EVs is modelled as a big virtual battery in each area considering various aspects of uncertainty such as the number of connected EVs and their initial State of Charge (SOC) as stochastic variables. A control law was proposed and applied to the aggregate model using Lyapunov energy function to maximize the rate of reduction of total kinetic energy in a two-area network after the occurrence of a fault. The control methods are primarily based on the charging/ discharging control of available EVs as shunt capacity in the distribution system. Three different cases were studied considering the locational aspect of the model with the virtual EV either in the center of the two areas or in the corners. The simulation results showed that EVs could help the generator lose its kinetic energy in a short time after a contingency. Earlier estimation of possible contributions of EVs can help the supervisory control level to transmit a prompt control signal to the subsystems such as the aggregator agents and the grid. Thus, the percentage of EVs contribution for EFR will be characterized in the future as the goal of this study.

Keywords: emergency frequency regulation, electric vehicle, EV, aggregation, Lyapunov energy function

Procedia PDF Downloads 100
1385 Development of an Optimised, Automated Multidimensional Model for Supply Chains

Authors: Safaa H. Sindi, Michael Roe

Abstract:

This project divides supply chain (SC) models into seven Eras, according to the evolution of the market’s needs throughout time. The five earliest Eras describe the emergence of supply chains, while the last two Eras are to be created. Research objectives: The aim is to generate the two latest Eras with their respective models that focus on the consumable goods. Era Six contains the Optimal Multidimensional Matrix (OMM) that incorporates most characteristics of the SC and allocates them into four quarters (Agile, Lean, Leagile, and Basic SC). This will help companies, especially (SMEs) plan their optimal SC route. Era Seven creates an Automated Multidimensional Model (AMM) which upgrades the matrix of Era six, as it accounts for all the supply chain factors (i.e. Offshoring, sourcing, risk) into an interactive system with Heuristic Learning that helps larger companies and industries to select the best SC model for their market. Methodologies: The data collection is based on a Fuzzy-Delphi study that analyses statements using Fuzzy Logic. The first round of Delphi study will contain statements (fuzzy rules) about the matrix of Era six. The second round of Delphi contains the feedback given from the first round and so on. Preliminary findings: both models are applicable, Matrix of Era six reduces the complexity of choosing the best SC model for SMEs by helping them identify the best strategy of Basic SC, Lean, Agile and Leagile SC; that’s tailored to their needs. The interactive heuristic learning in the AMM of Era seven will help mitigate error and aid large companies to identify and re-strategize the best SC model and distribution system for their market and commodity, hence increasing efficiency. Potential contributions to the literature: The problematic issue facing many companies is to decide which SC model or strategy to incorporate, due to the many models and definitions developed over the years. This research simplifies this by putting most definition in a template and most models in the Matrix of era six. This research is original as the division of SC into Eras, the Matrix of Era six (OMM) with Fuzzy-Delphi and Heuristic Learning in the AMM of Era seven provides a synergy of tools that were not combined before in the area of SC. Additionally the OMM of Era six is unique as it combines most characteristics of the SC, which is an original concept in itself.

Keywords: Leagile, automation, heuristic learning, supply chain models

Procedia PDF Downloads 389
1384 Mechanism Design and Dynamic Analysis of Active Independent Front Steering System

Authors: Cheng-Chi Yu, Yu-Shiue Wang, Kei-Lin Kuo

Abstract:

Active Independent Front Steering system is a steering system which can according to vehicle driving situation adjusts the relation of steering angle between inner wheel and outer wheel. In low-speed cornering, AIFS sets the steering angles of inner and outer wheel into Ackerman steering geometry to make vehicle has less cornering radius. Besides, AIFS changes the steering geometry to parallel or even anti-Ackerman steering geometry to keep vehicle stability in high-speed cornering. Therefore, based on the analysis of the vehicle steering behavior from different steering geometries, this study develops a new screw type of active independent front steering system to make vehicles best cornering performance at any speeds. The screw type of active independent front steering system keeps the pinion and separates the rack into main rack and second rack. Two racks connect by a screw. Extra screw rotated motion powered by assistant motor through coupler makes second rack move relative to main rack, which can adjust both steering ratio and steering geometry. First of all, this study distinguishes the steering geometry by using Ackerman percentage and utilizes the software of ADAMS/Car to construct diverse steering geometry models. The different steering geometries are compared at low-speed and high-speed cornering, and then control strategies of the active independent front steering systems could be formulated. Secondly, this study applies closed loop equation to analyze tire steering angles and carries out optimization calculations to make the steering geometry from traditional rack and pinion steering system near to Ackerman steering geometry. Steering characteristics of the optimum steering mechanism and motion characteristics of vehicle installed the steering mechanism are verified by ADAMS/Car models of front suspension and full vehicle respectively. By adding dual auxiliary rack and dual motor to the optimum steering mechanism, the active independent front steering system could be developed to achieve the functions of variable steering ratio and variable steering geometry. At last, this study uses ADAMS/Car and Matlab/Simulink to co-simulate the cornering motion of vehicles confirms the vehicle installed the Active Independent Front Steering (AIFS) system has better handling performance than that with Active Independent Steering (AFS) system or with Electric Power Steering (EPS) system. At low-speed cornering, the vehicles with AIFS system and with AFS system have better maneuverability, less cornering radius, than the traditional vehicle with EPS system because that AIFS and AFS systems both provide function of variable steering ratio. However, there is a slight penalty in the motor(s) power consumption. In addition, because of the capability of variable steering geometry, the vehicle with AIFS system has better high-speed cornering stability, trajectory keeping, and even less motor(s) power consumption than that with EPS system and also with AFS system.

Keywords: active front steering system, active independent front steering system, steering geometry, steering ratio

Procedia PDF Downloads 189
1383 Detection of Fuel Theft and Vehicle Position Using Third Party Monitoring Software

Authors: P. Senthilraja, C. Rukumani Khandhan, M. Palaniappan, S. L. Rama, P. Sai Sushimitha, R. Madhan, J. Vinumathi, N. Vijayarangan

Abstract:

Nowadays, the logistics achieve a vast improvement in efficient delivery of goods. The technology improvement also helps to improve its development, but still the owners of transport vehicles face problems, i.e., fuel theft in vehicles by the drivers or by an unknown person. There is no proper solution to overcome the problems. This scheme is to determine the amount of fuel that has been stolen and also to determine the position of the vehicle at a particular time using the technologies like GPS, GSM, ultrasonic fuel level sensor and numeric lock system. The ultrasonic sensor uses the ultrasonic waves to calculate the height of the tank up to which the fuel is available. Based on height it is possible to calculate the amount of fuel. The Global Positioning System (GPS) is a satellite-based navigation system. The scientific community uses GPS for its precision timing capability and position information. The GSM provides the periodic information about the fuel level. A numeric lock system has been provided for fuel tank opening lever. A password is provided to access the fuel tank lever and this is authenticated only by the driver and the owner. Once the fuel tank is opened an alert is sent to owner through a SMS including the timing details. Third party monitoring software is a user interface that updates the information automatically into the database which helps to retrieve the data as and when required. Third party monitoring software provides vehicle’s information to the owner and also shows the status of the vehicle. The techniques that are to be proposed will provide an efficient output. This project helps to overcome the theft and hence to put forth fuel economy.

Keywords: fuel theft, third party monitoring software, bioinformatics, biomedicine

Procedia PDF Downloads 391
1382 Development of Nanoparticulate Based Chimeric Drug Delivery System Using Drug Bioconjugated Plant Virus Capsid on Biocompatible Nanoparticles

Authors: Indu Barwal, Shloka Thakur, Subhash C. Yadav

Abstract:

The plant virus capsid protein based nanoparticles are extensively studied for their application in biomedical research for development of nanomedicines and drug delivery systems. We have developed a chimeric drug delivery system by controlled in vitro assembly of separately bioconjugated fluorescent dye (as reporting molecule), folic acid (as receptor binding biomolecule for targeted delivery) and doxorubicin (as anticancer drug) using modified EDC NHS chemistry on heterologously overexpressed (E. coli) capsid proteins of cowpea chlorotic mottle virus (CCMV). This chimeric vehicle was further encapsidated on gold nanoparticles (20nm) coated with 5≠ thiolated DNA probe to neutralize the positive charge of capsid proteins. This facilitates the in vitro assembly of modified capsid subunits on the gold nanoparticles to develop chimeric GNPs encapsidated targeted drug delivery system. The bioconjugation of functionalities, number of functionality on capsid subunits as well as virus like nanoparticles, structural stability and in vitro assembly were confirmed by SDS PAGE, relative absorbance, MALDI TOF, ESI-MS, Circular dichroism, intrinsic tryptophan fluorescence, zeta particle size analyzer and TEM imaging. This vehicle was stable at pH 4.0 to 8.0 suitable for many organelles targeting. This in vitro assembled chimeric plant virus like particles could be suitable for ideal drug delivery vehicles for subcutaneous cancer treatment and could be further modified for other type of cancer treatment by conjugating other functionalities (targeting, drug) on capsids.

Keywords: chimeric drug delivery vehicles, bioconjugated plant, virus, capsid

Procedia PDF Downloads 493
1381 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model

Authors: Gholba Niranjan Dilip, Anil Kumar

Abstract:

Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.

Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector

Procedia PDF Downloads 160
1380 Environmental Aspects of Alternative Fuel Use for Transport with Special Focus on Compressed Natural Gas (CNG)

Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej

Abstract:

The history of gaseous fuel use in the motive power of vehicles dates back to the second half of the nineteenth century, and thus the beginnings of the automotive industry. The engines were powered by coal gas and became the prototype for internal combustion engines built so far. It can thus be considered that this construction gave rise to the automotive industry. As the socio-economic development advances, so does the number of motor vehicles. Although, due to technological progress in recent decades, the emissions generated by internal combustion engines of cars have been reduced, a sharp increase in the number of cars and the rapidly growing traffic are an important source of air pollution and a major cause of acoustic threat, in particular in large urban agglomerations. One of the solutions, in terms of reducing exhaust emissions and improving air quality, is a more extensive use of alternative fuels: CNG, LNG, electricity and hydrogen. In the case of electricity use for transport, it should be noted that the environmental outcome depends on the structure of electricity generation. The paper shows selected regulations affecting the use of alternative fuels for transport (including Directive 2014/94/EU) and its dynamics between 2000 and 2015 in Poland and selected EU countries. The paper also gives a focus on the impact of alternative fuels on the environment by comparing the volume of individual emissions (compared to the emissions from conventional fuels: petrol and diesel oil). Bearing in mind that the extent of various alternative fuel use is determined in first place by economic conditions, the article describes the price relationships between alternative and conventional fuels in Poland and selected EU countries. It is pointed out that although Poland has a wealth of experience in using methane alternative fuels for transport, one of the main barriers to their development in Poland is the extensive use of LPG. In addition, a poorly developed network of CNG stations in Poland, which does not allow easy transport, especially in the northern part of the country, is a serious problem to a further development of CNG use as fuel for transport. An interesting solution to this problem seems to be the use of home CNG filling stations: Home Refuelling Appliance (HRA, refuelling time 8-10 hours) and Home Refuelling Station (HRS, refuelling time 8-10 minutes). The team is working on HRA and HRS technologies. The article also highlights the impact of alternative fuel use on energy security by reducing reliance on imports of crude oil and petroleum products.

Keywords: alternative fuels, CNG (Compressed Natural Gas), CNG stations, LNG (Liquefied Natural Gas), NGVs (Natural Gas Vehicles), pollutant emissions

Procedia PDF Downloads 227
1379 Applying Semi-Automatic Digital Aerial Survey Technology and Canopy Characters Classification for Surface Vegetation Interpretation of Archaeological Sites

Authors: Yung-Chung Chuang

Abstract:

The cultural layers of archaeological sites are mainly affected by surface land use, land cover, and root system of surface vegetation. For this reason, continuous monitoring of land use and land cover change is important for archaeological sites protection and management. However, in actual operation, on-site investigation and orthogonal photograph interpretation require a lot of time and manpower. For this reason, it is necessary to perform a good alternative for surface vegetation survey in an automated or semi-automated manner. In this study, we applied semi-automatic digital aerial survey technology and canopy characters classification with very high-resolution aerial photographs for surface vegetation interpretation of archaeological sites. The main idea is based on different landscape or forest type can easily be distinguished with canopy characters (e.g., specific texture distribution, shadow effects and gap characters) extracted by semi-automatic image classification. A novel methodology to classify the shape of canopy characters using landscape indices and multivariate statistics was also proposed. Non-hierarchical cluster analysis was used to assess the optimal number of canopy character clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy character classification (seven categories). Therefore, people could easily predict the forest type and vegetation land cover by corresponding to the specific canopy character category. The results showed that the semi-automatic classification could effectively extract the canopy characters of forest and vegetation land cover. As for forest type and vegetation type prediction, the average prediction accuracy reached 80.3%~91.7% with different sizes of test frame. It represented this technology is useful for archaeological site survey, and can improve the classification efficiency and data update rate.

Keywords: digital aerial survey, canopy characters classification, archaeological sites, multivariate statistics

Procedia PDF Downloads 142
1378 Green Design Study of Prefabricated Community Control Measures in Response to Public Health Emergencies

Authors: Enjia Zhang

Abstract:

During the prevention and control of the COVID-19 pandemic, all communities in China were gated and under strict management, which was highly effective in preventing the spread of the epidemic from spreading. Based on the TRIZ theory, this paper intends to propose green design strategies of community control in response to public health emergencies and to optimize community control facilities according to the principle of minimum transformation. Through the questionnaire method, this paper investigates and summarizes the situation and problems of community control during the COVID-19 pandemic. Based on these problems, the TRIZ theory is introduced to figure out the problems and associates them with prefabricated facilities. Afterward, the innovation points and solutions of prefabricated community control measures are proposed by using the contradiction matrix. This paper summarizes the current situation of community control under public health emergencies and concludes the problems such as simple forms of temporary roadblocks, sudden increase of community traffic pressure, and difficulties to access public spaces. The importance of entrance and exit control in community control is emphasized. Therefore, the community control measures are supposed to focus on traffic control, and the external access control measures, including motor vehicles, non-motor vehicles, residents and non-residents access control, and internal public space access control measures, including public space control shared with the society or adjacent communities, are proposed in order to make the community keep the open characteristics and have the flexibility to deal with sudden public health emergencies in the future.

Keywords: green design, community control, prefabricated structure, public health emergency

Procedia PDF Downloads 129
1377 Smart Mobility Planning Applications in Meeting the Needs of the Urbanization Growth

Authors: Caroline Atef Shoukry Tadros

Abstract:

Massive Urbanization growth threatens the sustainability of cities and the quality of city life. This raised the need for an alternate model of sustainability, so we need to plan the future cities in a smarter way with smarter mobility. Smart Mobility planning applications are solutions that use digital technologies and infrastructure advances to improve the efficiency, sustainability, and inclusiveness of urban transportation systems. They can contribute to meeting the needs of Urbanization growth by addressing the challenges of traffic congestion, pollution, accessibility, and safety in cities. Some example of a Smart Mobility planning application are Mobility-as-a-service: This is a service that integrates different transport modes, such as public transport, shared mobility, and active mobility, into a single platform that allows users to plan, book, and pay for their trips. This can reduce the reliance on private cars, optimize the use of existing infrastructure, and provide more choices and convenience for travelers. MaaS Global is a company that offers mobility-as-a-service solutions in several cities around the world. Traffic flow optimization: This is a solution that uses data analytics, artificial intelligence, and sensors to monitor and manage traffic conditions in real-time. This can reduce congestion, emissions, and travel time, as well as improve road safety and user satisfaction. Waycare is a platform that leverages data from various sources, such as connected vehicles, mobile applications, and road cameras, to provide traffic management agencies with insights and recommendations to optimize traffic flow. Logistics optimization: This is a solution that uses smart algorithms, blockchain, and IoT to improve the efficiency and transparency of the delivery of goods and services in urban areas. This can reduce the costs, emissions, and delays associated with logistics, as well as enhance the customer experience and trust. ShipChain is a blockchain-based platform that connects shippers, carriers, and customers and provides end-to-end visibility and traceability of the shipments. Autonomous vehicles: This is a solution that uses advanced sensors, software, and communication systems to enable vehicles to operate without human intervention. This can improve the safety, accessibility, and productivity of transportation, as well as reduce the need for parking space and infrastructure maintenance. Waymo is a company that develops and operates autonomous vehicles for various purposes, such as ride-hailing, delivery, and trucking. These are some of the ways that Smart Mobility planning applications can contribute to meeting the needs of the Urbanization growth. However, there are also various opportunities and challenges related to the implementation and adoption of these solutions, such as the regulatory, ethical, social, and technical aspects. Therefore, it is important to consider the specific context and needs of each city and its stakeholders when designing and deploying Smart Mobility planning applications.

Keywords: smart mobility planning, smart mobility applications, smart mobility techniques, smart mobility tools, smart transportation, smart cities, urbanization growth, future smart cities, intelligent cities, ICT information and communications technologies, IoT internet of things, sensors, lidar, digital twin, ai artificial intelligence, AR augmented reality, VR virtual reality, robotics, cps cyber physical systems, citizens design science

Procedia PDF Downloads 73
1376 Analysis of Fuel Adulteration Consequences in Bangladesh

Authors: Mahadehe Hassan

Abstract:

In most countries manufacturing, trading and distribution of gasoline and diesel fuels belongs to the most important sectors of national economy. For Bangladesh, a robust, well-functioning, secure and smartly managed national fuel distribution chain is an essential precondition for achieving Government top priorities in development and modernization of transportation infrastructure, protection of national environment and population health as well as, very importantly, securing due tax revenue for the State Budget. Bangladesh is a developing country with complex fuel supply network, high fuel taxes incidence and – till now - limited possibilities in application of modern, automated technologies for Government national fuel market control. Such environment allows dishonest physical and legal persons and organized criminals to build and profit from illegal fuel distribution schemes and fuel illicit trade. As a result, the market transparency and the country attractiveness for foreign investments, law-abiding economic operators, national consumers, State Budget and the Government ability to finance development projects, and the country at large suffer significantly. Research shows that over 50% of retail petrol stations in major agglomerations of Bangladesh sell adulterated fuels and/or cheat customers on the real volume of the fuel pumped into their vehicles. Other forms of detected fuel illicit trade practices include misdeclaration of fuel quantitative and qualitative parameters during internal transit and selling of non-declared and smuggled fuels. The aim of the study is to recommend the implementation of a National Fuel Distribution Integrity Program (FDIP) in Bangladesh to address and resolve fuel adulteration and illicit trade problems. The program should be customized according to the specific needs of the country and implemented in partnership with providers of advanced technologies. FDIP should enable and further enhance capacity of respective Bangladesh Government authorities in identification and elimination of all forms of fuel illicit trade swiftly and resolutely. FDIP high-technology, IT and automation systems and secure infrastructures should be aimed at the following areas (1) fuel adulteration, misdeclaration and non-declaration; (2) fuel quality and; (3) fuel volume manipulation at retail level. Furthermore, overall concept of FDIP delivery and its interaction with the reporting and management systems used by the Government shall be aligned with and support objectives of the Vision 2041 and Smart Bangladesh Government programs.

Keywords: fuel adulteration, octane, kerosene, diesel, petrol, pollution, carbon emissions

Procedia PDF Downloads 75
1375 Motion Planning and Simulation Design of a Redundant Robot for Sheet Metal Bending Processes

Authors: Chih-Jer Lin, Jian-Hong Hou

Abstract:

Industry 4.0 is a vision of integrated industry implemented by artificial intelligent computing, software, and Internet technologies. The main goal of industry 4.0 is to deal with the difficulty owing to competitive pressures in the marketplace. For today’s manufacturing factories, the type of production is changed from mass production (high quantity production with low product variety) to medium quantity-high variety production. To offer flexibility, better quality control, and improved productivity, robot manipulators are used to combine material processing, material handling, and part positioning systems into an integrated manufacturing system. To implement the automated system for sheet metal bending operations, motion planning of a 7-degrees of freedom (DOF) robot is studied in this paper. A virtual reality (VR) environment of a bending cell, which consists of the robot and a bending machine, is established using the virtual robot experimentation platform (V-REP) simulator. For sheet metal bending operations, the robot only needs six DOFs for the pick-and-place or tracking tasks. Therefore, this 7 DOF robot has more DOFs than the required to execute a specified task; it can be called a redundant robot. Therefore, this robot has kinematic redundancies to deal with the task-priority problems. For redundant robots, Pseudo-inverse of the Jacobian is the most popular motion planning method, but the pseudo-inverse methods usually lead to a kind of chaotic motion with unpredictable arm configurations as the Jacobian matrix lose ranks. To overcome the above problem, we proposed a method to formulate the motion planning problems as optimization problem. Moreover, a genetic algorithm (GA) based method is proposed to deal with motion planning of the redundant robot. Simulation results validate the proposed method feasible for motion planning of the redundant robot in an automated sheet-metal bending operations.

Keywords: redundant robot, motion planning, genetic algorithm, obstacle avoidance

Procedia PDF Downloads 146
1374 Material Use and Life Cycle GHG Emissions of Different Electrification Options for Long-Haul Trucks

Authors: Nafisa Mahbub, Hajo Ribberink

Abstract:

Electrification of long-haul trucks has been in discussion as a potential strategy to decarbonization. These trucks will require large batteries because of their weight and long daily driving distances. Around 245 million battery electric vehicles are predicted to be on the road by the year 2035. This huge increase in the number of electric vehicles (EVs) will require intensive mining operations for metals and other materials to manufacture millions of batteries for the EVs. These operations will add significant environmental burdens and there is a significant risk that the mining sector will not be able to meet the demand for battery materials, leading to higher prices. Since the battery is the most expensive component in the EVs, technologies that can enable electrification with smaller batteries sizes have substantial potential to reduce the material usage and associated environmental and cost burdens. One of these technologies is an ‘electrified road’ (eroad), where vehicles receive power while they are driving, for instance through an overhead catenary (OC) wire (like trolleybuses and electric trains), through wireless (inductive) chargers embedded in the road, or by connecting to an electrified rail in or on the road surface. This study assessed the total material use and associated life cycle GHG emissions of two types of eroads (overhead catenary and in-road wireless charging) for long-haul trucks in Canada and compared them to electrification using stationary plug-in fast charging. As different electrification technologies require different amounts of materials for charging infrastructure and for the truck batteries, the study included the contributions of both for the total material use. The study developed a bottom-up approach model comparing the three different charging scenarios – plug in fast chargers, overhead catenary and in-road wireless charging. The investigated materials for charging technology and batteries were copper (Cu), steel (Fe), aluminium (Al), and lithium (Li). For the plug-in fast charging technology, different charging scenarios ranging from overnight charging (350 kW) to megawatt (MW) charging (2 MW) were investigated. A 500 km of highway (1 lane of in-road charging per direction) was considered to estimate the material use for the overhead catenary and inductive charging technologies. The study considered trucks needing an 800 kWh battery under the plug-in charger scenario but only a 200 kWh battery for the OC and inductive charging scenarios. Results showed that overall the inductive charging scenario has the lowest material use followed by OC and plug-in charger scenarios respectively. The materials use for the OC and plug-in charger scenarios were 50-70% higher than for the inductive charging scenarios for the overall system including the charging infrastructure and battery. The life cycle GHG emissions from the construction and installation of the charging technology material were also investigated.

Keywords: charging technology, eroad, GHG emissions, material use, overhead catenary, plug in charger

Procedia PDF Downloads 51
1373 Autonomous Strategic Aircraft Deconfliction in a Multi-Vehicle Low Altitude Urban Environment

Authors: Loyd R. Hook, Maryam Moharek

Abstract:

With the envisioned future growth of low altitude urban aircraft operations for airborne delivery service and advanced air mobility, strategies to coordinate and deconflict aircraft flight paths must be prioritized. Autonomous coordination and planning of flight trajectories is the preferred approach to the future vision in order to increase safety, density, and efficiency over manual methods employed today. Difficulties arise because any conflict resolution must be constrained by all other aircraft, all airspace restrictions, and all ground-based obstacles in the vicinity. These considerations make pair-wise tactical deconfliction difficult at best and unlikely to find a suitable solution for the entire system of vehicles. In addition, more traditional methods which rely on long time scales and large protected zones will artificially limit vehicle density and drastically decrease efficiency. Instead, strategic planning, which is able to respond to highly dynamic conditions and still account for high density operations, will be required to coordinate multiple vehicles in the highly constrained low altitude urban environment. This paper develops and evaluates such a planning algorithm which can be implemented autonomously across multiple aircraft and situations. Data from this evaluation provide promising results with simulations showing up to 10 aircraft deconflicted through a relatively narrow low-altitude urban canyon without any vehicle to vehicle or obstacle conflict. The algorithm achieves this level of coordination beginning with the assumption that each vehicle is controlled to follow an independently constructed flight path, which is itself free of obstacle conflict and restricted airspace. Then, by preferencing speed change deconfliction maneuvers constrained by the vehicles flight envelope, vehicles can remain as close to the original planned path and prevent cascading vehicle to vehicle conflicts. Performing the search for a set of commands which can simultaneously ensure separation for each pair-wise aircraft interaction and optimize the total velocities of all the aircraft is further complicated by the fact that each aircraft's flight plan could contain multiple segments. This means that relative velocities will change when any aircraft achieves a waypoint and changes course. Additionally, the timing of when that aircraft will achieve a waypoint (or, more directly, the order upon which all of the aircraft will achieve their respective waypoints) will change with the commanded speed. Put all together, the continuous relative velocity of each vehicle pair and the discretized change in relative velocity at waypoints resembles a hybrid reachability problem - a form of control reachability. This paper proposes two methods for finding solutions to these multi-body problems. First, an analytical formulation of the continuous problem is developed with an exhaustive search of the combined state space. However, because of computational complexity, this technique is only computable for pairwise interactions. For more complicated scenarios, including the proposed 10 vehicle example, a discretized search space is used, and a depth-first search with early stopping is employed to find the first solution that solves the constraints.

Keywords: strategic planning, autonomous, aircraft, deconfliction

Procedia PDF Downloads 95
1372 Perception of Public Transport Quality of Service among Regular Private Vehicle Users in Five European Cities

Authors: Juan de Ona, Esperanza Estevez, Rocío de Ona

Abstract:

Urban traffic levels can be reduced by drawing travelers away from private vehicles over to using public transport. This modal change can be achieved by either introducing restrictions on private vehicles or by introducing measures which increase people’s satisfaction with public transport. For public transport users, quality of service affects customer satisfaction, which, in turn, influences the behavioral intentions towards the service. This paper intends to identify the main attributes which influence the perception private vehicle users have about the public transport services provided in five European cities: Berlin, Lisbon, London, Madrid and Rome. Ordinal logit models have been applied to an online panel survey with a sample size of 2,500 regular private vehicle users (approximately 500 inhabitants per city). To achieve a comprehensive analysis and to deal with heterogeneity in perceptions, 15 models have been developed for the entire sample and 14 user segments. The results show differences between the cities and among the segments. Madrid was taken as reference city and results indicate that the inhabitants are satisfied with public transport in Madrid and that the most important public transport service attributes for private vehicle users are frequency, speed and intermodality. Frequency is an important attribute for all the segments, while speed and intermodality are important for most of the segments. An analysis by segments has identified attributes which, although not important in most cases, are relevant for specific segments. This study also points out important differences between the five cities. Findings from this study can be used to develop policies and recommendations for persuading.

Keywords: service quality, satisfaction, public transportation, private vehicle users, car users, segmentation, ordered logit

Procedia PDF Downloads 117
1371 Drug Delivery Cationic Nano-Containers Based on Pseudo-Proteins

Authors: Sophio Kobauri, Temur Kantaria, Nina Kulikova, David Tugushi, Ramaz Katsarava

Abstract:

The elaboration of effective drug delivery vehicles is still topical nowadays since targeted drug delivery is one of the most important challenges of the modern nanomedicine. The last decade has witnessed enormous research focused on synthetic cationic polymers (CPs) due to their flexible properties, in particular as non-viral gene delivery systems, facile synthesis, robustness, not oncogenic and proven gene delivery efficiency. However, the toxicity is still an obstacle to the application in pharmacotherapy. For overcoming the problem, creation of new cationic compounds including the polymeric nano-size particles – nano-containers (NCs) loading with different pharmaceuticals and biologicals is still relevant. In this regard, a variety of NCs-based drug delivery systems have been developed. We have found that amino acid-based biodegradable polymers called as pseudo-proteins (PPs), which can be cleared from the body after the fulfillment of their function are highly suitable for designing pharmaceutical NCs. Among them, one of the most promising are NCs made of biodegradable Cationic PPs (CPPs). For preparing new cationic NCs (CNCs), we used CPPs composed of positively charged amino acid L-arginine (R). The CNCs were fabricated by two approaches using: (1) R-based homo-CPPs; (2) Blends of R-based CPPs with regular (neutral) PPs. According to the first approach NCs we prepared from CPPs 8R3 (composed of R, sebacic acid and 1,3-propanediol) and 8R6 (composed of R, sebacic acid and 1,6-hexanediol). The NCs prepared from these CPPs were 72-101 nm in size with zeta potential within +30 ÷ +35 mV at a concentration 6 mg/mL. According to the second approach, CPPs 8R6 was blended in organic phase with neutral PPs 8L6 (composed of leucine, sebacic acid and 1,6-hexanediol). The NCs prepared from the blends were 130-140 nm in size with zeta potential within +20 ÷ +28 mV depending on 8R6/8L6 ratio. The stability studies of fabricated NCs showed that no substantial change of the particle size and distribution and no big particles’ formation is observed after three months storage. In vitro biocompatibility study of the obtained NPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed both type cathionic NCs are biocompatible. The obtained data allow concluding that the obtained CNCs are promising for the application as biodegradable drug delivery vehicles. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 'New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications'.

Keywords: biodegradable polymers, cationic pseudo-proteins, nano-containers, drug delivery vehicles

Procedia PDF Downloads 155
1370 A Qualitative Research of Online Fraud Decision-Making Process

Authors: Semire Yekta

Abstract:

Many online retailers set up manual review teams to overcome the limitations of automated online fraud detection systems. This study critically examines the strategies they adapt in their decision-making process to set apart fraudulent individuals from non-fraudulent online shoppers. The study uses a mix method research approach. 32 in-depth interviews have been conducted alongside with participant observation and auto-ethnography. The study found out that all steps of the decision-making process are significantly affected by a level of subjectivity, personal understandings of online fraud, preferences and judgments and not necessarily by objectively identifiable facts. Rather clearly knowing who the fraudulent individuals are, the team members have to predict whether they think the customer might be a fraudster. Common strategies used are relying on the classification and fraud scorings in the automated fraud detection systems, weighing up arguments for and against the customer and making a decision, using cancellation to test customers’ reaction and making use of personal experiences and “the sixth sense”. The interaction in the team also plays a significant role given that some decisions turn into a group discussion. While customer data represent the basis for the decision-making, fraud management teams frequently make use of Google search and Google Maps to find out additional information about the customer and verify whether the customer is the person they claim to be. While this, on the one hand, raises ethical concerns, on the other hand, Google Street View on the address and area of the customer puts customers living in less privileged housing and areas at a higher risk of being classified as fraudsters. Phone validation is used as a final measurement to make decisions for or against the customer when previous strategies and Google Search do not suffice. However, phone validation is also characterized by individuals’ subjectivity, personal views and judgment on customer’s reaction on the phone that results in a final classification as genuine or fraudulent.

Keywords: online fraud, data mining, manual review, social construction

Procedia PDF Downloads 343
1369 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health

Procedia PDF Downloads 242
1368 Financial Ethics: A Review of 2010 Flash Crash

Authors: Omer Farooq, Salman Ahmed Khan, Sadaf Khalid

Abstract:

Modern day stock markets have almost entirely became automated. Even though it means increased profits for the investors by algorithms acting upon the slightest price change in order of microseconds, it also has given birth to many ethical dilemmas in the sense that slightest mistake can cause people to lose all of their livelihoods. This paper reviews one such event that happened on May 06, 2010 in which $1 trillion dollars disappeared from the Dow Jones Industrial Average. We are going to discuss its various aspects and the ethical dilemmas that have arisen due to it.

Keywords: flash crash, market crash, stock market, stock market crash

Procedia PDF Downloads 520
1367 Automated, Short Cycle Production of Polymer Composite Applications with Special Regards to the Complexity and Recyclability of Composite Elements

Authors: Peter Pomlenyi, Orsolya Semperger, Gergely Hegedus

Abstract:

The purpose of the project is to develop a complex composite component with visible class ‘A’ surface. It is going to integrate more functions, including continuous fiber reinforcement, foam core, injection molded ribs, and metal inserts. Therefore we are going to produce recyclable structural composite part from thermoplastic polymer in serial production with short cycle time for automotive applications. Our design of the process line is determined by the principles of Industry 4.0. Accordingly, our goal is to map in details the properties of the final product including the mechanical properties in order to replace metal elements used in automotive industry, with special regard to the effect of each manufacturing process step on the afore mentioned properties. Period of the project is 3 years, which lasts from the 1st of December 2016 to the 30th November 2019. There are four consortium members in the R&D project evopro systems engineering Ltd., Department of Polymer Engineering of the Budapest University of Technology and Economics, Research Centre for Natural Sciences of Hungarian Academy of Sciences and eCon Engineering Ltd. One of the most important result that we can obtain short cycle time (up to 2-3 min) with in-situ polymerization method, which is an innovation in the field of thermoplastic composite production. Because of the mentioned method, our fully automated production line is able to manufacture complex thermoplastic composite parts and satisfies the short cycle time required by the automotive industry. In addition to the innovative technology, we are able to design, analyze complex composite parts with finite element method, and validate our results. We are continuously collecting all the information, knowledge and experience to improve our technology and obtain even more accurate results with respect to the quality and complexity of the composite parts, the cycle time of the production, and the design and analyzing method of the composite parts.

Keywords: T-RTM technology, composite, automotive, class A surface

Procedia PDF Downloads 139
1366 Reinforcement-Learning Based Handover Optimization for Cellular Unmanned Aerial Vehicles Connectivity

Authors: Mahmoud Almasri, Xavier Marjou, Fanny Parzysz

Abstract:

The demand for services provided by Unmanned Aerial Vehicles (UAVs) is increasing pervasively across several sectors including potential public safety, economic, and delivery services. As the number of applications using UAVs grows rapidly, more and more powerful, quality of service, and power efficient computing units are necessary. Recently, cellular technology draws more attention to connectivity that can ensure reliable and flexible communications services for UAVs. In cellular technology, flying with a high speed and altitude is subject to several key challenges, such as frequent handovers (HOs), high interference levels, connectivity coverage holes, etc. Additional HOs may lead to “ping-pong” between the UAVs and the serving cells resulting in a decrease of the quality of service and energy consumption. In order to optimize the number of HOs, we develop in this paper a Q-learning-based algorithm. While existing works focus on adjusting the number of HOs in a static network topology, we take into account the impact of cells deployment for three different simulation scenarios (Rural, Semi-rural and Urban areas). We also consider the impact of the decision distance, where the drone has the choice to make a switching decision on the number of HOs. Our results show that a Q-learning-based algorithm allows to significantly reduce the average number of HOs compared to a baseline case where the drone always selects the cell with the highest received signal. Moreover, we also propose which hyper-parameters have the largest impact on the number of HOs in the three tested environments, i.e. Rural, Semi-rural, or Urban.

Keywords: drones connectivity, reinforcement learning, handovers optimization, decision distance

Procedia PDF Downloads 108