Search results for: accidents predictions
545 Ergonomics: Solutions for the Prevention of Injuries
Authors: Muhamad Ammar Bin Mohd Asri, Muhammad Hamizan Bin Yusof, Muhammad Haziq Bin Abdul Khalil, Esman Hanief Bin Khairul Anuar, Muhammad Fikri Bin Ishak, Amril Azim Bin Mohd Norrahim, Muhammad Danial Fakhri Bin Fakhruddin, Muhammad Khairul Nizam in Hosnodin, Muhammad Ezzat Hariz Bin Norhisam
Abstract:
Ergonomics is the science of creating and arranging workplaces, products, and systems to increase human performance, comfort, and safety. This study researched ergonomics as a solution for preventing workplace injuries, specifically musculoskeletal disorders, among employers and employees. The method will be used in this project is a literature review which means conducting a study about ergonomics with peer-reviewed journal articles and books. It focuses on employees and employers who are in one company on other departments under the protection of Occupational Safety and Health (OSHA). These solutions include ergonomic assessments, workplace design improvements, effective training and education, and the use of ergonomic tools and equipment. Employers can build workplaces that are safer and more productive by putting these solutions in place, and employees can work comfortably and prevent accidents from bad ergonomics. Overall, the paper highlights how crucial it is to take injury prevention measures and consider ergonomics at work.Keywords: occupational safety and health, musculoskeletal disorders, ergonomic, ergonomic risk
Procedia PDF Downloads 221544 Stress Analysis of a Pressurizer in a Pressurized Water Reactor Using Finite Element Method
Authors: Tanvir Hasan, Minhaz Uddin, Anwar Sadat Anik
Abstract:
A pressurizer is a safety-related reactor component that maintains the reactor operating pressure to guarantee safety. Its structure is usually made of high thermal and pressure resistive material. The mechanical structure of these components should be maintained in all working settings, including transient to severe accidents conditions. The goal of this study is to examine the structural integrity and stress of the pressurizer in order to ensure its design integrity towards transient situations. For this, the finite element method (FEM) was used to analyze the mechanical stress on pressurizer components in this research. ANSYS MECHANICAL tool was used to analyze a 3D model of the pressurizer. The material for the body and safety relief nozzle is selected as low alloy steel i.e., SA-508 Gr.3 Cl.2. The model was put into ANSYS WORKBENCH and run under the boundary conditions of (internal Pressure, -17.2 MPa, inside radius, -1348mm, the thickness of the shell, -127mm, and the ratio of the outside radius to an inside radius, - 1.059). The theoretical calculation was done using the formulas and then the results were compared with the simulated results. When stimulated at design conditions, the findings revealed that the pressurizer stress analysis completely fulfilled the ASME standards.Keywords: pressurizer, stress analysis, finite element method, nuclear reactor
Procedia PDF Downloads 158543 Improvement of Frictional Coefficient of Modified Shoe Soles onto Icy and Snowy Road by Tilting of Added Glass Fibers into Rubber
Authors: Wakayama Shunya, Okubo Kazuya, Fujii Toru, Sakata Daisuke, Kado Noriyuki, Furutachi Hiroshi
Abstract:
The purpose of this study is to propose an effective method to improve frictional coefficient of modified shoe rubber soles with added glass fibers onto the icy and snowy road surfaces in order to prevent slip-and-fall accidents by the users. Added fibers in the rubber were uniformly tilted to the perpendicular direction of the frictional surface, where tilting angle was -60, -30, +30, +60, 90 degrees and 0 for usual specimen, respectively. It was found that horizontal arraignment was effective to improve the frictional coefficient when glass fibers were embedded in the shoe rubber, while the standing in normal direction of the embedded glass fibers on the shoe surface was also effective to do that once after they were exposed from the shoe rubber with its abrasion. These improvements were explained by the increase of stiffness against the shear deformation of the rubber at the critical frictional state and the enlargement of resistance force for extracting exposed fibers from the ice and snow, respectively. Current study suggested that effective arraignments in the tilting angle of the added fibers should be applied in designing rubber shoe soles to keep the safeties for uses in regions of cold climates.Keywords: frictional coefficient, shoe soles, icy and snowy road, glass fibers, tilting angle
Procedia PDF Downloads 492542 The Effects of Sleep Deprivation on Vigilance, Fatigue, and Performance during Simulated Train Driving
Authors: Clara Theresia, Hardianto Iridiastadi
Abstract:
Drowsiness is one of the main factors that contribute to the occurrence of accidents, particularly in the transportation sector. While the effects of sleep deprivation on cognitive functions have been reported, the exact relationships remain a critical issue. This study aimed at quantifying the effects of extreme sleep deprivation on vigilance, fatigue, and performance during simulated train driving. A total of 12 participants were asked to drive a train simulator continuously for 4 hours, either in a sleep deprived condition (2-hr of sleep) or normal (8-hr of sleep) condition. Dependent variables obtained during the task included Psychomotor Vigilance Task (PVT) parameters, degree of fatigue (assessed via Visual Analogue Scale/VAS) and sleepiness (reported using Karolinska Sleepiness Scale/KSS), and driving performance (the number of speed limit violations). Findings from this study demonstrated substantial decrements in vigilance in the sleep-deprived condition. This condition also resulted in 75% increase in speed violation and a two-fold increase in the degree of fatigue and sleepiness. Extreme sleep deprivation was clearly associated with substantially poorer response. The exact effects, however, were dependent upon the types of responses.Keywords: cognitive function, psychomotor vigilance task, sleep deprivation, train simulator
Procedia PDF Downloads 186541 Influence of Shield Positions on Thermo/Fluid Performance of Pin Fin Heat Sink
Authors: Ramy H. Mohammed
Abstract:
In heat sinks, the flow within the core exhibits separation and hence does not lend itself to simple analytical boundary layer or duct flow analysis of the wall friction. In this paper, I present some findings from an experimental and numerical study aimed to obtain physical insight into the influence of the presence of the shield and its position on the hydraulic and thermal performance of square pin fin heat sink without top by-pass. The variations of the Nusselt number and friction factor are obtained under varied parameters, such as the Reynolds number and the shield position. The numerical code is validated by comparing the numerical results with the available experimental data. It is shown that, there is a good agreement between the temperature predictions based on the model and the experimental data. Results show that, as the presence of the shield, the heat transfer of fin array is enhanced and the flow resistance increased. The surface temperature distribution of the heat sink base is more uniform when the dimensionless shield position equals to 1/3 or 2/3. The comprehensive performance evaluation approach based on identical pumping power criteria is adopted and shows that the optimum shield position is at x/l=0.43 where energy is saved.Keywords: shield, fin array, performance evaluation, heat transfer, energy
Procedia PDF Downloads 306540 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution
Authors: Haiyan Wu, Ying Liu, Shaoyun Shi
Abstract:
Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction
Procedia PDF Downloads 136539 Geo Spatial Database for Railway Assets Management
Authors: Muhammad Umar
Abstract:
Safety and Assets management is considering a backbone of every department. GIS in the Railway become very important to Manage Assets and Security through Digital Maps and Web based GIS Maps. It provides a complete frame of work to the organization for the management of assets. Pakistan Railway is the most common and safest mode of traveling in Pakistan. Due to ever-increasing demand of transporting huge amount of information generated from various sources and this information must be accurate. This creates problems for Passengers and Administration that causes finical and time loss. GIS Solve this problem by Digital Maps & Database. It provides you a real time Spatial and Statistical analysis that helps you to communicate and exchange the information in a sophisticated way to the users. GIS Based Web system provides a facility to different end user to make query at a time as per requirements. This GIS System provides an advancement in an organization for a complete Monitoring, Safety and Decision System for tracks, Stations and Junctions that further use for the Analysis of different areas i.e. analysis of tracks, junctions and Stations in case of reconstruction, Rescue for rail accidents and Natural disasters .This Research work helps to reduce the financial loss and reduce human mistakes helps you provide a complete security and Management system of assets.Keywords: Geographical Information System (GIS) for assets management, geo spatial database, railway assets management, Pakistan
Procedia PDF Downloads 491538 PLC Based Automatic Railway Crossing System for India
Authors: Tapan Upadhyay, Aqib Siddiqui, Sameer Khan
Abstract:
Railway crossing system in India is a manually operated level crossing system, either manned or unmanned. The main aim is to protect pedestrians and vehicles from colliding with trains, which pass at regular intervals, as India has the largest and busiest railway network. But because of human error and negligence, every year thousands of lives are lost due to accidents at railway crossings. To avoid this, we suggest a solution, by using Programmable Logical Controller (PLC) based automatic system, which will automatically control the barrier as well as roadblocks to stop people from crossing while security warning is given. Often people avoid security warning, and pass two-wheelers from beneath the barrier, while the train is at a distance away. This paper aims at reducing the fatality and accident rate by controlling barrier and roadblocks using sensors which sense the incoming train and vehicles and sends a signal to PLC. The PLC in return sends a signal to barrier and roadblocks. Once the train passes, the barrier and roadblocks retrieve back, and the passage is clear for vehicles and pedestrians to cross. PLC’s are used because they are very flexible, cost effective, space efficient, reduces complexity and minimises errors. Supervisory Control And Data Acquisition (SCADA) is used to monitor the functioning.Keywords: level crossing, PLC, sensors, SCADA
Procedia PDF Downloads 427537 Explainable Graph Attention Networks
Authors: David Pham, Yongfeng Zhang
Abstract:
Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.Keywords: explainable AI, graph attention network, graph neural network, node classification
Procedia PDF Downloads 198536 A Machine Learning Approach for Intelligent Transportation System Management on Urban Roads
Authors: Ashish Dhamaniya, Vineet Jain, Rajesh Chouhan
Abstract:
Traffic management is one of the gigantic issue in most of the urban roads in al-most all metropolitan cities in India. Speed is one of the critical traffic parameters for effective Intelligent Transportation System (ITS) implementation as it decides the arrival rate of vehicles on an intersection which are majorly the point of con-gestions. The study aimed to leverage Machine Learning (ML) models to produce precise predictions of speed on urban roadway links. The research objective was to assess how categorized traffic volume and road width, serving as variables, in-fluence speed prediction. Four tree-based regression models namely: Decision Tree (DT), Random Forest (RF), Extra Tree (ET), and Extreme Gradient Boost (XGB)are employed for this purpose. The models' performances were validated using test data, and the results demonstrate that Random Forest surpasses other machine learning techniques and a conventional utility theory-based model in speed prediction. The study is useful for managing the urban roadway network performance under mixed traffic conditions and effective implementation of ITS.Keywords: stream speed, urban roads, machine learning, traffic flow
Procedia PDF Downloads 70535 Machine Learning Approach for Mutation Testing
Authors: Michael Stewart
Abstract:
Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing
Procedia PDF Downloads 198534 Prediction of Saturated Hydraulic Conductivity Dynamics in an Iowan Agriculture Watershed
Authors: Mohamed Elhakeem, A. N. Thanos Papanicolaou, Christopher Wilson, Yi-Jia Chang
Abstract:
In this study, a physically-based, modelling framework was developed to predict saturated hydraulic conductivity (KSAT) dynamics in the Clear Creek Watershed (CCW), Iowa. The modelling framework integrated selected pedotransfer functions and watershed models with geospatial tools. A number of pedotransfer functions and agricultural watershed models were examined to select the appropriate models that represent the study site conditions. Models selection was based on statistical measures of the models’ errors compared to the KSAT field measurements conducted in the CCW under different soil, climate and land use conditions. The study has shown that the predictions of the combined pedotransfer function of Rosetta and the Water Erosion Prediction Project (WEPP) provided the best agreement to the measured KSAT values in the CCW compared to the other tested models. Therefore, Rosetta and WEPP were integrated with the Geographic Information System (GIS) tools for visualization of the data in forms of geospatial maps and prediction of KSAT variability in CCW due to the seasonal changes in climate and land use activities.Keywords: saturated hydraulic conductivity, pedotransfer functions, watershed models, geospatial tools
Procedia PDF Downloads 260533 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach
Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya
Abstract:
A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.Keywords: deep learning, hidden Markov model, pothole, speed breaker
Procedia PDF Downloads 144532 Near Shore Wave Manipulation for Electricity Generation
Authors: K. D. R. Jagath-Kumara, D. D. Dias
Abstract:
The sea waves carry thousands of GWs of power globally. Although there are a number of different approaches to harness offshore energy, they are likely to be expensive, practically challenging and vulnerable to storms. Therefore, this paper considers using the near shore waves for generating mechanical and electrical power. It introduces two new approaches, the wave manipulation and using a variable duct turbine, for intercepting very wide wave fronts and coping with the fluctuations of the wave height and the sea level, respectively. The first approach effectively allows capturing much more energy yet with a much narrower turbine rotor. The second approach allows using a rotor with a smaller radius but captures energy of higher wave fronts at higher sea levels yet preventing it from totally submerging. To illustrate the effectiveness of the approach, the paper contains a description and the simulation results of a scale model of a wave manipulator. Then, it includes the results of testing a physical model of the manipulator and a single duct, axial flow turbine, in a wave flume in the laboratory. The paper also includes comparisons of theoretical predictions, simulation results and wave flume tests with respect to the incident energy, loss in wave manipulation, minimal loss, brake torque and the angular velocity.Keywords: near-shore sea waves, renewable energy, wave energy conversion, wave manipulation
Procedia PDF Downloads 482531 Ignition Interlock Device for Motorcycles
Authors: Luisito L. Lacatan, Zacha Valerie G. Ancheta, Michelangelo A. Dorado, Lester Joseph M. Ochoa, Anthony Mark G. Tayabas
Abstract:
Ignition Interlock Device or IID is a mechanism installed inside a vehicle which requires the driver to breathe into the device before starting the vehicle. If the IID detects that the alcohol level or blood alcohol content (BAC) is higher than the accepted value, the engine will not start. If the driver is not able to provide a clean breath sample, the IID will log the event, warn the driver, and then start up an alarm. The purpose of the IID is to prevent accidents due to driving under the influence (DUI). With the rise of the two-wheeled vehicle in the Philippines due to its mobility and purchasing power, IIDs are still mainly installed on four-wheeled vehicles. Even though riding the motorcycle when drunk is more dangerous, there are only a small number of installed devices on motorcycles and scooters. The general objective of this study was to develop a system with hardware and software components that would implement IID on motorcycles. The study employed a descriptive method of research. The study also concluded the following: the infrared must have a point-to-point communication, the breathalyzer on the helmet should react to ethanol, the microcontroller on the motorcycle should accept all IR signals from the helmet and interpret it and the GPS shield should have an unobstructed line-of-sight communication with the GPS satellites.Keywords: blood alcohol content, breathalyser, driving under the influence, global positioning system, global system for mobile communication
Procedia PDF Downloads 326530 A Study on Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation and Artificial Neural Network
Authors: Min-Woo Kim, Ok-Kyun Na, Jun-Ho Byun, Jong-Hwan Park, Seung-Hwa Yang, Joon-Hong Park, Young-Chul Park
Abstract:
This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the Anti-Splash Device located under the P/V Valve and new concept design models using the CFD analysis and Artificial Neural Network. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-Splash Device is fitted to improve and prevent this problem in the shipbuilding industry. But the oil outflow accidents are still reported by ship owners. Thus, four types of new design model are presented by study. Then, comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the Anti-Splash Device. Therefore, the flow and velocity are grasped by transient analysis. And then it decided optimum model and design parameters to develop model. Later, it needs to develop an Anti-Splash Device by Flow Test to get certification and verification using experiment equipment.Keywords: anti-splash device, P/V valve, sloshing, artificial neural network
Procedia PDF Downloads 590529 Modified Plastic-Damage Model for FRP-Confined Repaired Concrete Columns
Authors: I. A Tijani, Y. F Wu, C.W. Lim
Abstract:
Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.Keywords: Concrete, FRP, Damage, Repairing, Plasticity, and Finite element method
Procedia PDF Downloads 137528 Determination of the Risks of Heart Attack at the First Stage as Well as Their Control and Resource Planning with the Method of Data Mining
Authors: İbrahi̇m Kara, Seher Arslankaya
Abstract:
Frequently preferred in the field of engineering in particular, data mining has now begun to be used in the field of health as well since the data in the health sector have reached great dimensions. With data mining, it is aimed to reveal models from the great amounts of raw data in agreement with the purpose and to search for the rules and relationships which will enable one to make predictions about the future from the large amount of data set. It helps the decision-maker to find the relationships among the data which form at the stage of decision-making. In this study, it is aimed to determine the risk of heart attack at the first stage, to control it, and to make its resource planning with the method of data mining. Through the early and correct diagnosis of heart attacks, it is aimed to reveal the factors which affect the diseases, to protect health and choose the right treatment methods, to reduce the costs in health expenditures, and to shorten the durations of patients’ stay at hospitals. In this way, the diagnosis and treatment costs of a heart attack will be scrutinized, which will be useful to determine the risk of the disease at the first stage, to control it, and to make its resource planning.Keywords: data mining, decision support systems, heart attack, health sector
Procedia PDF Downloads 356527 Assessment of Health and Safety Item on Construction Site in Ondo State
Authors: Ikumapayi Catherine Mayowa
Abstract:
The well-being of humans on a construction site is critical; abundant manpower had been lost through accidents which kill or make workers physically unfit to carry out construction activities, these, in turn, have multiple effects on the whole economy. Thus, it is necessary to put all safety items and regulations in place before construction activities can commence. This study was carried out in the Ondo state of Nigeria to investigate and analyze the state of health and safety of construction workers in the state. The study was done using first-hand observations, 50 construction project sites were visited in ten major towns of Ondo state, questionnaires were distributed, and the results were analyzed. The result shows that construction workers are being exposed to many construction site hazards due to lack of inadequate safety programs and lack of appropriate safety equipment for workers on site. From the data gotten from each site visited and the statistical analysis, it can be concluded that occurrences of an accident on construction sites depend significantly on the available safety facilities on the sites. The result of the regression statistics shows that the dependence of the frequency of occurrence of an accident on the availability of safety items on the site is 0.0362 which is less than 0.05 maximum significant level allowed. Therefore, a vital way of sustaining our building strategy is given a detail attention to the provision of adequate health and safety items on construction sites which will reduce the occurrence of accident, loss of manpower and death of skilled workers.Keywords: construction sites, health, safety, welfare
Procedia PDF Downloads 327526 Application of Adaptive Neuro Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel AASTM A516 Grade 70
Authors: Omar Al Denali, Abdelaziz Badi
Abstract:
The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of post-weld heat treatment (PWHT) experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556 %, which confirms the high accuracy of the model.Keywords: prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, mean absolute percentage error
Procedia PDF Downloads 153525 Distributed Acoustic Sensing Signal Model under Static Fiber Conditions
Authors: G. Punithavathy
Abstract:
The research proposes a statistical model for the distributed acoustic sensor interrogation units that broadcast a laser pulse into the fiber optics, where interactions within the fiber determine the localized acoustic energy that causes light reflections known as backscatter. The backscattered signal's amplitude and phase can be calculated using explicit equations. The created model makes amplitude signal spectrum and autocorrelation predictions that are confirmed by experimental findings. Phase signal characteristics that are useful for researching optical time domain reflectometry (OTDR) system sensing applications are provided and examined, showing good agreement with the experiment. The experiment was successfully done with the use of Python coding. In this research, we can analyze the entire distributed acoustic sensing (DAS) component parts separately. This model assumes that the fiber is in a static condition, meaning that there is no external force or vibration applied to the cable, that means no external acoustic disturbances present. The backscattered signal consists of a random noise component, which is caused by the intrinsic imperfections of the fiber, and a coherent component, which is due to the laser pulse interacting with the fiber.Keywords: distributed acoustic sensing, optical fiber devices, optical time domain reflectometry, Rayleigh scattering
Procedia PDF Downloads 70524 Traffic Congestions Modeling and Predictions by Social Networks
Authors: Bojan Najdenov, Danco Davcev
Abstract:
Reduction of traffic congestions and the effects of pollution and waste of resources that come with them has been a big challenge in the past decades. Having reliable systems to facilitate the process of modeling and prediction of traffic conditions would not only reduce the environmental pollution, but will also save people time and money. Social networks play big role of people’s lives nowadays providing them means of communicating and sharing thoughts and ideas, that way generating huge knowledge bases by crowdsourcing. In addition to that, crowdsourcing as a concept provides mechanisms for fast and relatively reliable data generation and also many services are being used on regular basis because they are mainly powered by the public as main content providers. In this paper we present the Social-NETS-Traffic-Control System (SNTCS) that should serve as a facilitator in the process of modeling and prediction of traffic congestions. The main contribution of our system is to integrate data from social networks as Twitter and also implements a custom created crowdsourcing subsystem with which users report traffic conditions using an android application. Our first experience of the usage of the system confirms that the integrated approach allows easy extension of the system with other social networks and represents a very useful tool for traffic control.Keywords: traffic, congestion reduction, crowdsource, social networks, twitter, android
Procedia PDF Downloads 481523 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria
Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah
Abstract:
The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models
Procedia PDF Downloads 35522 Dynamic Risk Model for Offshore Decommissioning Using Bayesian Belief Network
Authors: Ahmed O. Babaleye, Rafet E. Kurt
Abstract:
The global oil and gas industry is beginning to witness an increase in the number of installations moving towards decommissioning. Decommissioning of offshore installations is a complex, costly and hazardous activity, making safety one of the major concerns. Among existing removal options, complete and partial removal options pose the highest risks. Therefore, a dynamic risk model of the accidents from the two options is important to assess the risks on an overall basis. In this study, a risk-based safety model is developed to conduct quantitative risk analysis (QRA) for jacket structure systems failure. Firstly, bow-tie (BT) technique is utilised to model the causal relationship between the system failure and potential accident scenarios. Subsequently, to relax the shortcomings of BT, Bayesian Belief Networks (BBNs) were established to dynamically assess associated uncertainties and conditional dependencies. The BBN is developed through a similitude mapping of the developed bow-tie. The BBN is used to update the failure probabilities of the contributing elements through diagnostic analysis, thus, providing a case-specific and realistic safety analysis method when compared to a bow-tie. This paper presents the application of dynamic safety analysis to guide the allocation of risk control measures and consequently, drive down the avoidable cost of remediation.Keywords: Bayesian belief network, offshore decommissioning, dynamic safety model, quantitative risk analysis
Procedia PDF Downloads 280521 Characterization of Biosurfactant during Crude Oil Biodegradation Employing Pseudomonas sp. PG1: A Strain Isolated from Garage Soil
Authors: Kaustuvmani Patowary, Suresh Deka
Abstract:
Oil pollution accidents, nowadays, have become a common phenomenon and have caused ecological and social disasters. Microorganisms with high oil-degrading performance are essential for bioremediation of petroleum hydrocarbon. In this investigation, an effective biosurfactant producer and hydrocarbon degrading bacterial strain, Pseudomonas sp.PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated garage soil of Pathsala, Assam, India, using crude oil enrichment technique. The growth parameters such as pH and temperature were optimized for the strain and upto 81.8% degradation of total petroleum hydrocarbon (TPH) has been achieved after 5 weeks when grown in mineral salt media (MSM) containing 2% (w/v) crude oil as the carbon source. The biosurfactant production during the course of hydrocarbon degradation was monitored by surface tension measurement and emulsification activity. The produced biosurfactant had the ability to decrease the surface tension of MSM from 72 mN/m to 29.6 mN/m, with the critical micelle concentration (CMC)of 56 mg/L. The biosurfactant exhibited 100% emulsification activity on crude oil. FTIR spectroscopy and LCMS-MS analysis of the purified biosurfactant revealed that the biosurfactant is Rhamnolipidic in nature with several rhamnolipid congeners. Gas Chromatography-Mass spectroscopy (GC-MS) analysis clearly demonstrated that the strain PG1 efficiently degrade different hydrocarbon fractions of the crude oil. The study suggeststhat application of the biosurfactant producing strain PG1 as an appropriate candidate for bioremediation of crude oil contaminants.Keywords: petroleum hydrocarbon, hydrocarbon contamination, bioremediation, biosurfactant, rhamnolipid
Procedia PDF Downloads 354520 Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems
Authors: Ekrem Canli, Thomas Glade
Abstract:
The precise prediction of rainfall in space and time is a key element to most landslide early warning systems. Unfortunately, the spatial variability of rainfall in many early warning applications is often disregarded. A common simplification is to use uniformly distributed rainfall to characterize aerial rainfall intensity. With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on kriging. Because the application of kriging is usually a labor intensive task, a simplified and consequently automated variogram modeling procedure was applied to up-to-date rainfall data. The entire workflow was carried out purely with open source technology. Validation results, albeit promising, pointed out the challenges that are involved in pure distance based, automated geostatistical interpolation techniques for ever-changing environmental phenomena over short temporal and spatial extent.Keywords: kriging, landslide early warning system, spatial rainfall prediction, variogram modelling, web scraping
Procedia PDF Downloads 280519 Analysis of Slope in an Excavated Gneiss Rock Using Geological Strength Index (GSI) in Ilorin, Kwara State, Nigeria
Authors: S. A. Agbalajobi, W. A. Bello
Abstract:
The study carried out analysis on slope stability in an excavated gneiss rock using geological strength index (GSI) in Ilorin, Kwara State, Nigeria. A kinematic analysis of planar discontinuity sets in a gneiss deposit was carried out to ascertain the degree of slope stability. Discontinuity orientations in the rock mass were mapped using compass clinometers. The average result of physical and mechanical properties such as specific gravity, unit weight, uniaxial compressive strength, point load index, and Schmidt rebound value are 2.64 g/m3, 25.95 kN/m3, 156 MPa, 6.5 MPa, and 53.12 respectively. Also, a statistical model equation relating the rock strength was developed. The analyses states that the rock face is susceptible to wedge failures having all the geometrical conditions associated with the occurrence of such failures were noticeable. It can be concluded that analyses of discontinuity orientation in relation to cut face direction in rock excavation is essential for mine planning to forestall mine accidents. Assessment of excavated slope methods was evident that one excavation method (blasting and/or use of hydraulic hammer) is applicable for the given rock strength, the ease of excavation decreases as the rock mass quality increases, thus blasting most suitable for such operation.Keywords: slope stability, wedge failure, geological strength index (GSI), discontinuities and excavated slope
Procedia PDF Downloads 517518 Impact of Legs Geometry on the Efficiency of Thermoelectric Devices
Authors: Angel Fabian Mijangos, Jaime Alvarez Quintana
Abstract:
Key concepts like waste heat recycling or waste heat recovery are the basic ideas in thermoelectricity so as to the design the newest solid state sources of energy for a stable supply of electricity and environmental protection. According to several theoretical predictions; at device level, the geometry and configuration of the thermoelectric legs are crucial in the thermoelectric performance of the thermoelectric modules. Thus, in this work, it has studied the geometry effect of legs on the thermoelectric figure of merit ZT of the device. First, asymmetrical legs are proposed in order to reduce the overall thermal conductance of the device so as to increase the temperature gradient in the legs, as well as by harnessing the Thomson effect, which is generally neglected in conventional symmetrical thermoelectric legs. It has been developed a novel design of a thermoelectric module having asymmetrical legs, and by first time it has been validated experimentally its thermoelectric performance by realizing a proof-of-concept device which shows to have almost twofold the thermoelectric figure of merit as compared to conventional one. Moreover, it has been also varied the length of thermoelectric legs in order to analyze its effect on the thermoelectric performance of the device. Along with this, it has studied the impact of contact resistance in these systems. Experimental results show that device architecture can improve up to twofold the thermoelectric performance of the device.Keywords: asymmetrical legs, heat recovery, heat recycling, thermoelectric module, Thompson effect
Procedia PDF Downloads 241517 Application of the Electrical Resistivity Tomography and Tunnel Seismic Prediction 303 Methods for Detection Fracture Zones Ahead of Tunnel: A Case Study
Authors: Nima Dastanboo, Xiao-Qing Li, Hamed Gharibdoost
Abstract:
The purpose of this study is to investigate about the geological properties ahead of a tunnel face with using Electrical Resistivity Tomography ERT and Tunnel Seismic Prediction TSP303 methods. In deep tunnels with hydro-geological conditions, it is important to study the geological structures of the region before excavating tunnels. Otherwise, it would lead to unexpected accidents that impose serious damage to the project. For constructing Nosoud tunnel in west of Iran, the ERT and TSP303 methods are employed to predict the geological conditions dynamically during the excavation. In this paper, based on the engineering background of Nosoud tunnel, the important results of applying these methods are discussed. This work demonstrates seismic method and electrical tomography as two geophysical techniques that are able to detect a tunnel. The results of these two methods were being in agreement with each other but the results of TSP303 are more accurate and quality. In this case, the TSP 303 method was a useful tool for predicting unstable geological structures ahead of the tunnel face during excavation. Thus, using another geophysical method together with TSP303 could be helpful as a decision support in excavating, especially in complicated geological conditions.Keywords: tunnel seismic prediction (TSP303), electrical resistivity tomography (ERT), seismic wave, velocity analysis, low-velocity zones
Procedia PDF Downloads 148516 Importance of Occupational Safety and Health in Dam Construction Site
Authors: Naci Büyükkaraciğan, Yildirim Akyol
Abstract:
Large plants that covering the back and accumulate water of a river valley for energy production, drinking, irrigation water supply, economic benefits that serve many purposes, such as regulation of flood protection, are called dams. Place, in which unites in order to achieve an optimum balance between manpower for Lowest cost and economic as belonging to that structure to create machines, materials and construction of the project, is called as the site. Dam construction sites are combined sites in together in many businesses. Therefore, there can be found in the many workers and machines are many accidents in this type of construction sites. The necessity of systematic and scientific studies due to various reasons arises in order to be protected from conditions that could damage the health, During the execution of the work on construction sites. Occupational health and safety of the study, called the case, also in the European Union has begun to be addressed by weight since the 1980s. In particular, issued in 1989 89/391/EEC on occupational health and safety directive, occupational health and adopted the Directive within the framework of the security field, and then exposed to a large number of individual directive within this framework on the basis of the directive. Turkey's Law No. 6331 entered into force in June 2012 on the subject. In this study, measures related to the construction site of the dam should be taken with occupational safety and health have been examined and tried to put forward recommendations on the subject.Keywords: civil engineering, dam, occupational safety and health, site organizations
Procedia PDF Downloads 333