Search results for: Process models
19844 Laboratory Investigation of Alkali-Surfactant-Alternate Gas (ASAG) Injection – a Novel EOR Process for a Light Oil Sandstone Reservoir
Authors: Vidit Mohan, Ashwin P. Ramesh, Anirudh Toshniwal
Abstract:
Alkali-Surfactant-Alternate-Gas(ASAG) injection, a novel EOR process has the potential to improve displacement efficiency over Surfactant-Alternate-Gas(SAG) by addressing the problem of surfactant adsorption by clay minerals in rock matrix. A detailed laboratory investigation on ASAG injection process was carried out with encouraging results. To further enhance recovery over WAG injection process, SAG injection was investigated at laboratory scale. SAG injection yielded marginal incremental displacement efficiency over WAG process. On investigation, it was found that, clay minerals in rock matrix adsorbed the surfactants and were detrimental for SAG process. Hence, ASAG injection was conceptualized using alkali as a clay stabilizer. The experiment of ASAG injection with surfactant concentration of 5000 ppm and alkali concentration of 0.5 weight% yields incremental displacement efficiency of 5.42% over WAG process. The ASAG injection is a new process and has potential to enhance efficiency of WAG/SAG injection process.Keywords: alkali surfactant alternate gas (ASAG), surfactant alternate gas (SAG), laboratory investigation, EOR process
Procedia PDF Downloads 47919843 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria
Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova
Abstract:
Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.Keywords: cross-validation, decision tree, lagged variables, short-term forecasting
Procedia PDF Downloads 19419842 Fabrication of Electrospun Carbon Nanofibers-Reinforced Chitosan-Based Hydrogel for Environmental Applications
Authors: Badr M. Thamer
Abstract:
The use of hydrogels as adsorbents for pollutants removal from wastewater is limited due to their high swelling properties and the difficulty in recovering them after the adsorption process. To overcome these problems, a new hydrogel nanocomposite based on chitosan-g-polyacrylic acid/oxidized electrospun carbon nanofibers (CT-g-PAA/O-ECNFs) was prepared by in-situ grafting polymerization process. The prepared hydrogel nanocomposite was used as a novel effective and highly reusable adsorbent for the removal of methylene blue (MB) from polluted water with low cost. The morphology and the structure of CT-g-PAA/O-ECNFs were investigated by numerous techniques. The effect of incorporating O-ECNFs on the swelling capability of the prepared hydrogel was explored in distillated water and MB solution at normal pH. The effect of parameters including the ratio of O-ECNFs, contact time, pH, initial concentration, and temperature on the adsorption process were explored. The adsorption isotherm and kinetic were studied by numerous non-linear models. The obtained results confirmed that the incorporation of O-ECNFs into the hydrogel network improved its ability towards MB dye removal with decreasing their swelling capacity. The adsorption process depends on the pH value of the dye solution. Additionally, the adsorption and kinetic results were fitted using the Freundlich isotherm model and pseudo second order model (PSO), respectively. Moreover, the new adsorbents can be recycled for at least five cycles keeping its adsorption capacity and can be easily recovered without loss in its initial weight.Keywords: carbon nanofibers, hydrogels, nanocomposites, water treatment
Procedia PDF Downloads 14719841 An Evaluation on the Methodology of Manufacturing High Performance Organophilic Clay at the Most Efficient and Cost Effective Process
Authors: Siti Nur Izati Azmi, Zatil Afifah Omar, Kathi Swaran, Navin Kumar
Abstract:
Organophilic Clays, also known as Organoclays, is used as a viscosifier in Oil based Drilling fluids. Most often, Organophilic clay are produced from modified Sodium and Calcium based Bentonite. Many studies and data show that Organophilic Clay using Hectorite based clays provide the best yield and good fluid loss properties in an oil-based drilling fluid at a higher cost. In terms of the manufacturing process, the two common methods of manufacturing organophilic clays are a Wet Process and a Dry Process. Wet process is known to produce better performance product at a higher cost while Dry Process shorten the production time. Hence, the purpose of this study is to evaluate the various formulation of an organophilic clay and its performance vs. the cost, as well as to determine the most efficient and cost-effective method of manufacturing organophilic clays.Keywords: organophilic clay, viscosifier, wet process, dry process
Procedia PDF Downloads 22619840 Perfectionism, Self-Compassion, and Emotion Dysregulation: An Exploratory Analysis of Mediation Models in an Eating Disorder Sample
Authors: Sarah Potter, Michele Laliberte
Abstract:
As eating disorders are associated with high levels of chronicity, impairment, and distress, it is paramount to evaluate factors that may improve treatment outcomes in this group. Individuals with eating disorders exhibit elevated levels of perfectionism and emotion dysregulation, as well as reduced self-compassion. These variables are related to eating disorder outcomes, including shape/weight concerns and psychosocial impairment. Thus, these factors may be tenable targets for treatment within eating disorder populations. However, the relative contributions of perfectionism, emotion dysregulation, and self-compassion to the severity of shape/weight concerns and psychosocial impairment remain largely unexplored. In the current study, mediation analyses were conducted to clarify how perfectionism, emotion dysregulation, and self-compassion are linked to shape/weight concerns and psychosocial impairment. The sample was comprised of 85 patients from an outpatient eating disorder clinic. The patients completed self-report measures of perfectionism, self-compassion, emotion dysregulation, eating disorder symptoms, and psychosocial impairment. Specifically, emotion dysregulation was assessed as a mediator in the relationships between (1) perfectionism and shape/weight concerns, (2) self-compassion and shape/weight concerns, (3) perfectionism and psychosocial impairment, and (4) self-compassion and psychosocial impairment. It was postulated that emotion dysregulation would significantly mediate relationships in the former two models. An a priori hypothesis was not constructed in reference to the latter models, as these analyses were preliminary and exploratory in nature. The PROCESS macro for SPSS was utilized to perform these analyses. Emotion dysregulation fully mediated the relationships between perfectionism and eating disorder outcomes. In the link between self-compassion and psychosocial impairment, emotion dysregulation partially mediated this relationship. Finally, emotion dysregulation did not significantly mediate the relationship between self-compassion and shape/weight concerns. The results suggest that emotion dysregulation and self-compassion may be suitable targets to decrease the severity of psychosocial impairment and shape/weight concerns in individuals with eating disorders. Further research is required to determine the stability of these models over time, between diagnostic groups, and in nonclinical samples.Keywords: eating disorders, emotion dysregulation, perfectionism, self-compassion
Procedia PDF Downloads 14519839 A Generative Adversarial Framework for Bounding Confounded Causal Effects
Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu
Abstract:
Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning
Procedia PDF Downloads 19119838 JaCoText: A Pretrained Model for Java Code-Text Generation
Authors: Jessica Lopez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri
Abstract:
Pretrained transformer-based models have shown high performance in natural language generation tasks. However, a new wave of interest has surged: automatic programming language code generation. This task consists of translating natural language instructions to a source code. Despite the fact that well-known pre-trained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformer neural network. It aims to generate java source code from natural language text. JaCoText leverages the advantages of both natural language and code generation models. More specifically, we study some findings from state of the art and use them to (1) initialize our model from powerful pre-trained models, (2) explore additional pretraining on our java dataset, (3) lead experiments combining the unimodal and bimodal data in training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.Keywords: java code generation, natural language processing, sequence-to-sequence models, transformer neural networks
Procedia PDF Downloads 28419837 Changes in Textural Properties of Zucchini Slices Under Effects of Partial Predrying and Deep-Fat-Frying
Authors: E. Karacabey, Ş. G. Özçelik, M. S. Turan, C. Baltacıoğlu, E. Küçüköner
Abstract:
Changes in textural properties of any food material during processing is significant for further consumer’s evaluation and directly affects their decisions. Thus any food material should be considered in terms of textural properties after any process. In the present study zucchini slices were partially predried to control and reduce the product’s final oil content. A conventional oven was used for partially dehydration of zucchini slices. Following frying was carried in an industrial fryer having temperature controller. This study was based on the effect of this predrying process on textural properties of fried zucchini slices. Texture profile analysis was performed. Hardness, elasticity, chewiness, cohesiveness were studied texture parameters of fried zucchini slices. Temperature and weight loss were monitored parameters of predrying process, whereas, in frying, oil temperature and process time were controlled. Optimization of two successive processes was done by response surface methodology being one of the common used statistical process optimization tools. Models developed for each texture parameters displayed high success to predict their values as a function of studied processes’ conditions. Process optimization was performed according to target values for each property determined for directly fried zucchini slices taking the highest score from sensory evaluation. Results indicated that textural properties of predried and then fried zucchini slices could be controlled by well-established equations. This is thought to be significant for fried stuff related food industry, where controlling of sensorial properties are crucial to lead consumer’s perception and texture related ones are leaders. This project (113R015) has been supported by TUBITAK.Keywords: optimization, response surface methodology, texture profile analysis, conventional oven, modelling
Procedia PDF Downloads 43319836 Human Resource Utilization Models for Graceful Ageing
Authors: Chuang-Chun Chiou
Abstract:
In this study, a systematic framework of graceful ageing has been used to explore the possible human resource utilization models for graceful ageing purpose. This framework is based on the Chinese culture. We call ‘Nine-old’ target. They are ageing gracefully with feeding, accomplishment, usefulness, learning, entertainment, care, protection, dignity, and termination. This study is focused on two areas: accomplishment and usefulness. We exam the current practices of initiatives and laws of promoting labor participation. That is to focus on how to increase Labor Force Participation Rate of the middle aged as well as the elderly and try to promote the elderly to achieve graceful ageing. Then we present the possible models that support graceful ageing.Keywords: human resource utilization model, labor participation, graceful ageing, employment
Procedia PDF Downloads 39019835 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0
Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini
Abstract:
Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling
Procedia PDF Downloads 9419834 Environmental Modeling of Storm Water Channels
Authors: L. Grinis
Abstract:
Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering applications. It has been the subject of interest for many researchers. Some of these interests include the design of storm water channels. The design of these channels requires testing through physical models. The main practical limitation of physical models is the so called “scale effect”, that is, the fact that in many cases only primary physical mechanisms can be correctly represented, while secondary mechanisms are often distorted. These observations form the basis of our study, which centered on problems associated with the design of storm water channels near the Dead Sea, in Israel. To help reach a final design decision we used different physical models. Our research showed good coincidence with the results of laboratory tests and theoretical calculations, and allowed us to study different effects of fluid flow in an open channel. We determined that problems of this nature cannot be solved only by means of theoretical calculation and computer simulation. This study demonstrates the use of physical models to help resolve very complicated problems of fluid flow through baffles and similar structures. The study applies these models and observations to different construction and multiphase water flows, among them, those that include sand and stone particles, a significant attempt to bring to the testing laboratory a closer association with reality.Keywords: open channel, physical modeling, baffles, turbulent flow
Procedia PDF Downloads 28419833 Application of the Least Squares Method in the Adjustment of Chlorodifluoromethane (HCFC-142b) Regression Models
Authors: L. J. de Bessa Neto, V. S. Filho, J. V. Ferreira Nunes, G. C. Bergamo
Abstract:
There are many situations in which human activities have significant effects on the environment. Damage to the ozone layer is one of them. The objective of this work is to use the Least Squares Method, considering the linear, exponential, logarithmic, power and polynomial models of the second degree, to analyze through the coefficient of determination (R²), which model best fits the behavior of the chlorodifluoromethane (HCFC-142b) in parts per trillion between 1992 and 2018, as well as estimates of future concentrations between 5 and 10 periods, i.e. the concentration of this pollutant in the years 2023 and 2028 in each of the adjustments. A total of 809 observations of the concentration of HCFC-142b in one of the monitoring stations of gases precursors of the deterioration of the ozone layer during the period of time studied were selected and, using these data, the statistical software Excel was used for make the scatter plots of each of the adjustment models. With the development of the present study, it was observed that the logarithmic fit was the model that best fit the data set, since besides having a significant R² its adjusted curve was compatible with the natural trend curve of the phenomenon.Keywords: chlorodifluoromethane (HCFC-142b), ozone, least squares method, regression models
Procedia PDF Downloads 12319832 Metal-Oxide-Semiconductor-Only Process Corner Monitoring Circuit
Authors: Davit Mirzoyan, Ararat Khachatryan
Abstract:
A process corner monitoring circuit (PCMC) is presented in this work. The circuit generates a signal, the logical value of which depends on the process corner only. The signal can be used in both digital and analog circuits for testing and compensation of process variations (PV). The presented circuit uses only metal-oxide-semiconductor (MOS) transistors, which allow increasing its detection accuracy, decrease power consumption and area. Due to its simplicity the presented circuit can be easily modified to monitor parametrical variations of only n-type and p-type MOS (NMOS and PMOS, respectively) transistors, resistors, as well as their combinations. Post-layout simulation results prove correct functionality of the proposed circuit, i.e. ability to monitor the process corner (equivalently die-to-die variations) even in the presence of within-die variations.Keywords: detection, monitoring, process corner, process variation
Procedia PDF Downloads 52519831 Currency Exchange Rate Forecasts Using Quantile Regression
Authors: Yuzhi Cai
Abstract:
In this paper, we discuss a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. Together with a combining forecasts technique, we then predict USD to GBP currency exchange rates. Combined forecasts contain all the information captured by the fitted QAR models at different quantile levels and are therefore better than those obtained from individual models. Our results show that an unequally weighted combining method performs better than other forecasting methodology. We found that a median AR model can perform well in point forecasting when the predictive density functions are symmetric. However, in practice, using the median AR model alone may involve the loss of information about the data captured by other QAR models. We recommend that combined forecasts should be used whenever possible.Keywords: combining forecasts, MCMC, predictive density functions, quantile forecasting, quantile modelling
Procedia PDF Downloads 25619830 Confidence Intervals for Process Capability Indices for Autocorrelated Data
Authors: Jane A. Luke
Abstract:
Persistent pressure passed on to manufacturers from escalating consumer expectations and the ever growing global competitiveness have produced a rapidly increasing interest in the development of various manufacturing strategy models. Academic and industrial circles are taking keen interest in the field of manufacturing strategy. Many manufacturing strategies are currently centered on the traditional concepts of focused manufacturing capabilities such as quality, cost, dependability and innovation. Process capability indices was conducted assuming that the process under study is in statistical control and independent observations are generated over time. However, in practice, it is very common to come across processes which, due to their inherent natures, generate autocorrelated observations. The degree of autocorrelation affects the behavior of patterns on control charts. Even, small levels of autocorrelation between successive observations can have considerable effects on the statistical properties of conventional control charts. When observations are autocorrelated the classical control charts exhibit nonrandom patterns and lack of control. Many authors have considered the effect of autocorrelation on the performance of statistical process control charts. In this paper, the effect of autocorrelation on confidence intervals for different PCIs was included. Stationary Gaussian processes is explained. Effect of autocorrelation on PCIs is described in detail. Confidence intervals for Cp and Cpk are constructed for PCIs when data are both independent and autocorrelated. Confidence intervals for Cp and Cpk are computed. Approximate lower confidence limits for various Cpk are computed assuming AR(1) model for the data. Simulation studies and industrial examples are considered to demonstrate the results.Keywords: autocorrelation, AR(1) model, Bissell’s approximation, confidence intervals, statistical process control, specification limits, stationary Gaussian processes
Procedia PDF Downloads 38819829 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation
Authors: Zhidong Zhang
Abstract:
This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis
Procedia PDF Downloads 17819828 Comprehensive Assessment of Energy Efficiency within the Production Process
Authors: S. Kreitlein, N. Eder, J. Franke
Abstract:
The importance of energy efficiency within the production process increases steadily. Unfortunately, so far no tools for a comprehensive assessment of energy efficiency within the production process exist. Therefore the Institute for Factory Automation and Production Systems of the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency: EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state of the art as well as the developed approaches.Keywords: energy efficiency, energy efficiency value, energetic process efficiency, production
Procedia PDF Downloads 73319827 The Impact of Introspective Models on Software Engineering
Authors: Rajneekant Bachan, Dhanush Vijay
Abstract:
The visualization of operating systems has refined the Turing machine, and current trends suggest that the emulation of 32 bit architectures will soon emerge. After years of technical research into Web services, we demonstrate the synthesis of gigabit switches, which embodies the robust principles of theory. Loam, our new algorithm for forward-error correction, is the solution to all of these challenges.Keywords: software engineering, architectures, introspective models, operating systems
Procedia PDF Downloads 53819826 Process Performance and Nitrogen Removal Kinetics in Anammox Hybrid Reactor
Authors: Swati Tomar, Sunil Kumar Gupta
Abstract:
Anammox is a promising and cost effective alternative to conventional treatment systems that facilitates direct oxidation of ammonium nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of any external carbon sources. The present study investigates the process kinetics of laboratory scale anammox hybrid reactor (AHR) which combines the dual advantages of attached and suspended growth. The performance & behaviour of AHR was studied under varying hydraulic retention time (HRTs) and nitrogen loading rate (NLRs). The experimental unit consisted of 4 numbers of 5L capacity anammox hybrid reactor inoculated with mixed seed culture containing anoxic and activated sludge. Pseudo steady state (PSS) ammonium and nitrite removal efficiencies of 90.6% and 95.6%, respectively, were achieved during acclimation phase. After establishment of PSS, the performance of AHR was monitored at seven different HRTs of 3.0, 2.5, 2.0, 1.5, 1.0, 0.5 and 0.25 d with increasing NLR from 0.4 to 4.8 kg N/m3d. The results showed that with increase in NLR and decrease in HRT (3.0 to 0.25 d), AHR registered appreciable decline in nitrogen removal efficiency from 92.9% to 67.4 %, respectively. The HRT of 2.0 d was considered optimal to achieve substantial nitrogen removal of 89%, because on further decrease in HRT below 1.5 days, remarkable decline in the values of nitrogen removal efficiency were observed. Analysis of data indicated that attached growth system contributes an additional 15.4 % ammonium removal and reduced the sludge washout rate (additional 29% reduction). This enhanced performance may be attributed to 25% increase in sludge retention time due to the attached growth media. Three kinetic models, namely, first order, Monod and Modified Stover-Kincannon model were applied to assess the substrate removal kinetics of nitrogen removal in AHR. Validation of the models were carried out by comparing experimental set of data with the predicted values obtained from the respective models. For substrate removal kinetics, model validation revealed that Modified Stover-Kincannon is most precise (R2=0.943) and can be suitably applied to predict the kinetics of nitrogen removal in AHR. Lawrence and McCarty model described the kinetics of bacterial growth. The predicted value of yield coefficient and decay constant were in line with the experimentally observed values.Keywords: anammox, kinetics, modelling, nitrogen removal, sludge wash out rate, AHR
Procedia PDF Downloads 31419825 Towards Incorporating Context Awareness into Business Process Management
Authors: Xiaohui Zhao, Shahan Mafuz
Abstract:
Context-aware technologies provide system applications with the awareness of environmental conditions, customer behaviour, object movements, etc. Further, with such capability system applications can be smart to adapt intelligently their responses to the changing conditions. Concerning business operations, this promises businesses that their business processes can run more intelligently, adaptively and flexibly, and thereby either improve customer experience, enhance reliability of service delivery, or lower operational cost, to make the business more competitive and sustainable. Aiming at realizing such context-aware business process management, this paper firstly explores its potential benefit and then identifies some gaps between the current business process management support and the expected. In addition, some preliminary solutions are also discussed with context definition, rule-based process execution, run-time process evolution, etc. A framework is also presented to give a conceptual architecture of context-aware business process management system to guide system implementation.Keywords: business process adaptation, business process evolution, business process modelling, and context awareness
Procedia PDF Downloads 41219824 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates
Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera
Abstract:
Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR
Procedia PDF Downloads 21219823 Experience Report about the Inclusion of People with Disabilities in the Process of Testing an Accessible System for Learning Management
Authors: Marcos Devaner, Marcela Alves, Cledson Braga, Fabiano Alves, Wilton Bezerra
Abstract:
This article discusses the inclusion of people with disabilities in the process of testing an accessible system solution for distance education. The accessible system, team profile, methodologies and techniques covered in the testing process are presented. The testing process shown in this paper was designed from the experience with user. The testing process emerged from lessons learned from past experiences and the end user is present at all stages of the tests. Also, lessons learned are reported and how it was possible the maturing of the team and the methods resulting in a simple, productive and effective process.Keywords: experience report, accessible systems, software testing, testing process, systems, e-learning
Procedia PDF Downloads 39619822 Simulation-Based Evaluation of Indoor Air Quality and Comfort Control in Non-Residential Buildings
Authors: Torsten Schwan, Rene Unger
Abstract:
Simulation of thermal and electrical building performance more and more becomes part of an integrative planning process. Increasing requirements on energy efficiency, the integration of volatile renewable energy, smart control and storage management often cause tremendous challenges for building engineers and architects. This mainly affects commercial or non-residential buildings. Their energy consumption characteristics significantly distinguish from residential ones. This work focuses on the many-objective optimization problem indoor air quality and comfort, especially in non-residential buildings. Based on a brief description of intermediate dependencies between different requirements on indoor air treatment it extends existing Modelica-based building physics models with additional system states to adequately represent indoor air conditions. Interfaces to corresponding HVAC (heating, ventilation, and air conditioning) system and control models enable closed-loop analyzes of occupants' requirements and energy efficiency as well as profitableness aspects. A complex application scenario of a nearly-zero-energy school building shows advantages of presented evaluation process for engineers and architects. This way, clear identification of air quality requirements in individual rooms together with realistic model-based description of occupants' behavior helps to optimize HVAC system already in early design stages. Building planning processes can be highly improved and accelerated by increasing integration of advanced simulation methods. Those methods mainly provide suitable answers on engineers' and architects' questions regarding more exuberant and complex variety of suitable energy supply solutions.Keywords: indoor air quality, dynamic simulation, energy efficient control, non-residential buildings
Procedia PDF Downloads 23219821 Modelling Phase Transformations in Zircaloy-4 Fuel Cladding under Transient Heating Rates
Authors: Jefri Draup, Antoine Ambard, Chi-Toan Nguyen
Abstract:
Zirconium alloys exhibit solid-state phase transformations under thermal loading. These can lead to a significant evolution of the microstructure and associated mechanical properties of materials used in nuclear fuel cladding structures. Therefore, the ability to capture effects of phase transformation on the material constitutive behavior is of interest during conditions of severe transient thermal loading. Whilst typical Avrami, or Johnson-Mehl-Avrami-Kolmogorov (JMAK), type models for phase transformations have been shown to have a good correlation with the behavior of Zircaloy-4 under constant heating rates, the effects of variable and fast heating rates are not fully explored. The present study utilises the results of in-situ high energy synchrotron X-ray diffraction (SXRD) measurements in order to validate the phase transformation models for Zircaloy-4 under fast variable heating rates. These models are used to assess the performance of fuel cladding structures under loss of coolant accident (LOCA) scenarios. The results indicate that simple Avrami type models can provide a reasonable indication of the phase distribution in experimental test specimens under variable fast thermal loading. However, the accuracy of these models deteriorates under the faster heating regimes, i.e., 100Cs⁻¹. The studies highlight areas for improvement of simple Avrami type models, such as the inclusion of temperature rate dependence of the JMAK n-exponent.Keywords: accident, fuel, modelling, zirconium
Procedia PDF Downloads 14219820 A Comparative Evaluation of the SIR and SEIZ Epidemiological Models to Describe the Diffusion Characteristics of COVID-19 Polarizing Viewpoints on Online
Authors: Maryam Maleki, Esther Mead, Mohammad Arani, Nitin Agarwal
Abstract:
This study is conducted to examine how opposing viewpoints related to COVID-19 were diffused on Twitter. To accomplish this, six datasets using two epidemiological models, SIR (Susceptible, Infected, Recovered) and SEIZ (Susceptible, Exposed, Infected, Skeptics), were analyzed. The six datasets were chosen because they represent opposing viewpoints on the COVID-19 pandemic. Three of the datasets contain anti-subject hashtags, while the other three contain pro-subject hashtags. The time frame for all datasets is three years, starting from January 2020 to December 2022. The findings revealed that while both models were effective in evaluating the propagation trends of these polarizing viewpoints, the SEIZ model was more accurate with a relatively lower error rate (6.7%) compared to the SIR model (17.3%). Additionally, the relative error for both models was lower for anti-subject hashtags compared to pro-subject hashtags. By leveraging epidemiological models, insights into the propagation trends of polarizing viewpoints on Twitter were gained. This study paves the way for the development of methods to prevent the spread of ideas that lack scientific evidence while promoting the dissemination of scientifically backed ideas.Keywords: mathematical modeling, epidemiological model, seiz model, sir model, covid-19, twitter, social network analysis, social contagion
Procedia PDF Downloads 6219819 Computing Transition Intensity Using Time-Homogeneous Markov Jump Process: Case of South African HIV/AIDS Disposition
Authors: A. Bayaga
Abstract:
This research provides a technical account of estimating Transition Probability using Time-homogeneous Markov Jump Process applying by South African HIV/AIDS data from the Statistics South Africa. It employs Maximum Likelihood Estimator (MLE) model to explore the possible influence of Transition Probability of mortality cases in which case the data was based on actual Statistics South Africa. This was conducted via an integrated demographic and epidemiological model of South African HIV/AIDS epidemic. The model was fitted to age-specific HIV prevalence data and recorded death data using MLE model. Though the previous model results suggest HIV in South Africa has declined and AIDS mortality rates have declined since 2002 – 2013, in contrast, our results differ evidently with the generally accepted HIV models (Spectrum/EPP and ASSA2008) in South Africa. However, there is the need for supplementary research to be conducted to enhance the demographic parameters in the model and as well apply it to each of the nine (9) provinces of South Africa.Keywords: AIDS mortality rates, epidemiological model, time-homogeneous markov jump process, transition probability, statistics South Africa
Procedia PDF Downloads 49619818 Comparative Sustainability Performance Analysis of Australian Companies Using Composite Measures
Authors: Ramona Zharfpeykan, Paul Rouse
Abstract:
Organizational sustainability is important to both organizations themselves and their stakeholders. Despite its increasing popularity and increasing numbers of organizations reporting sustainability, research on evaluating and comparing the sustainability performance of companies is limited. The aim of this study was to develop models to measure sustainability performance for both cross-sectional and longitudinal comparisons across companies in the same or different industries. A secondary aim was to see if sustainability reports can be used to evaluate sustainability performance. The study used both a content analysis of Australian sustainability reports in mining and metals and financial services for 2011-2014 and a survey of Australian and New Zealand organizations. Two methods ranging from a composite index using uniform weights to data envelopment analysis (DEA) were employed to analyze the data and develop the models. The results show strong statistically significant relationships between the developed models, which suggests that each model provides a consistent, systematic and reasonably robust analysis. The results of the models show that for both industries, companies that had sustainability scores above or below the industry average stayed almost the same during the study period. These indices and models can be used by companies to evaluate their sustainability performance and compare it with previous years, or with other companies in the same or different industries. These methods can also be used by various stakeholders and sustainability ranking companies such as the Global Reporting Initiative (GRI).Keywords: data envelopment analysis, sustainability, sustainability performance measurement system, sustainability performance index, global reporting initiative
Procedia PDF Downloads 18119817 A Study of High Viscosity Oil-Gas Slug Flow Using Gamma Densitometer
Authors: Y. Baba, A. Archibong-Eso, H. Yeung
Abstract:
Experimental study of high viscosity oil-gas flows in horizontal pipelines published in literature has indicated that hydrodynamic slug flow is the dominant flow pattern observed. Investigations have shown that hydrodynamic slugging brings about high instabilities in pressure that can damage production facilities thereby making it inherent to study high viscous slug flow regime so as to improve the understanding of its flow dynamics. Most slug flow models used in the petroleum industry for the design of pipelines together with their closure relationships were formulated based on observations of low viscosity liquid-gas flows. New experimental investigations and data are therefore required to validate these models. In cases where these models underperform, improving upon or building new predictive models and correlations will also depend on the new experimental dataset and further understanding of the flow dynamics in high viscous oil-gas flows. In this study conducted at the Flow laboratory, Oil and Gas Engineering Centre of Cranfield University, slug flow variables such as pressure gradient, mean liquid holdup, frequency and slug length for oil viscosity ranging from 1..0 – 5.5 Pa.s are experimentally investigated and analysed. The study was carried out in a 0.076m ID pipe, two fast sampling gamma densitometer and pressure transducers (differential and point) were used to obtain experimental measurements. Comparison of the measured slug flow parameters to the existing slug flow prediction models available in the literature showed disagreement with high viscosity experimental data thus highlighting the importance of building new predictive models and correlations.Keywords: gamma densitometer, mean liquid holdup, pressure gradient, slug frequency and slug length
Procedia PDF Downloads 32919816 Concurrent Engineering Challenges and Resolution Mechanisms from Quality Perspectives
Authors: Grmanesh Gidey Kahsay
Abstract:
In modern technical engineering applications, quality is defined in two ways. The first one is that quality is the parameter that measures a product or service’s characteristics to meet and satisfy the pre-stated or fundamental needs (reliability, durability, serviceability). The second one is the quality of a product or service free of any defect or deficiencies. The American Society for Quality (ASQ) describes quality as a pursuit of optimal solutions to confirm successes and fulfillment to be accountable for the product or service's requirements and expectations. This article focuses on quality engineering tools in modern industrial applications. Quality engineering is a field of engineering that deals with the principles, techniques, models, and applications of the product or service to guarantee quality. Including the entire activities to analyze the product’s design and development, quality engineering emphasizes how to make sure that products and services are designed and developed to meet consumers’ requirements. This episode acquaints with quality tools such as quality systems, auditing, product design, and process control. The finding presents thoughts that aim to improve quality engineering proficiency and effectiveness by introducing essential quality techniques and tools in some selected industries.Keywords: essential quality tools, quality systems and models, quality management systems, and quality assurance
Procedia PDF Downloads 15219815 The Effect of Engineering Construction in Online Consultancy
Authors: Mariam Wagih Nagib Eskandar
Abstract:
The engineering design process is the activities formulation, to help an engineer raising a plan with a specified goal and performance. The engineering design process is a multi-stage course of action including the conceptualization, research, feasibility studies, establishment of design parameters, preliminary and finally the detailed design. It is a progression from the abstract to the concrete; starting with probably abstract ideas about need, and thereafter elaborating detailed specifications of the object that would satisfy the needs, identified. Engineering design issues, problems, and solutions are discussed in this paper using qualitative approach from an information structure perspective. The objective is to identify the problems, to analyze them and propose solutions by integrating; innovation, practical experience, time and resource management, communications skills, isolating the problem in coordination with all stakeholders. Consequently, this would be beneficial for the engineering community to improve the Engineering design practices.Keywords: education, engineering, math, performanceengineering design, architectural engineering, team-based learning, construction safetyrequirement engineering, models, practices, organizations
Procedia PDF Downloads 80