Search results for: IT applications
5801 Clustering Using Cooperative Multihop Mini-Groups in Wireless Sensor Network: A Novel Approach
Authors: Virender Ranga, Mayank Dave, Anil Kumar Verma
Abstract:
Recently wireless sensor networks (WSNs) are used in many real life applications like environmental monitoring, habitat monitoring, health monitoring etc. Due to power constraint cheaper devices used in these applications, the energy consumption of each device should be kept as low as possible such that network operates for longer period of time. One of the techniques to prolong the network lifetime is an intelligent grouping of sensor nodes such that they can perform their operation in cooperative and energy efficient manner. With this motivation, we propose a novel approach by organize the sensor nodes in cooperative multihop mini-groups so that the total global energy consumption of the network can be reduced and network lifetime can be improved. Our proposed approach also reduces the number of transmitted messages inside the WSNs, which further minimizes the energy consumption of the whole network. The experimental simulations show that our proposed approach outperforms over the state-of-the-art approach in terms of stability period and aggregated data.Keywords: clustering, cluster-head, mini-group, stability period
Procedia PDF Downloads 3575800 The Integration and Automation of EDA Tools in an Integrated Circuit Design Environment
Authors: Rohaya Abdul Wahab, Raja Mohd Fuad Tengku Aziz, Nazaliza Othman, Sharifah Saleh, Nabihah Razali, Rozaimah Baharim, M. Hanif M. Nasir
Abstract:
This paper will discuss how EDA tools are integrated and automated in an Integrated Circuit Design Environment. Some of the problems face in our current environment is that users need to configure manually on the library paths, start-up files and project directories. Certain manual processes that happen between the users and applications can be automated but they must be transparent to the users. For example, the users can run the applications directly after login without knowing the library paths and start-up files locations. The solution to these problems is to automate the processes using standard configuration files which will benefit the users and EDA support. This paper will discuss how the implementation is done to automate the process using scripting languages such as Perl, Tcl, Scheme and Shell Script. These scripting tools are great assets for design engineers to build a robust and powerful design flow and this technique is widely used to integrate all the tools together.Keywords: EDA tools, Integrated Circuits, scripting, integration, automation
Procedia PDF Downloads 3245799 Hydroxyapatite-Chitosan Composites for Tissue Engineering Applications
Authors: Georgeta Voicu, Cristina Daniela Ghitulica, Andreia Cucuruz, Cristina Busuioc
Abstract:
In the field of tissue engineering, the compositional and microstructural features of the employed materials play an important role, with implications on the mechanical and biological behaviour of the medical devices. In this context, the development of apatite - natural biopolymer composites represents a choice of many scientific groups. Thus, hydroxyapatite powders were synthesized by a wet method, namely co-precipitation, starting from high purity reagents (CaO, MgO, and H3PO4). Moreover, the substitution of calcium with magnesium have been approached, in the 5 - 10 wt.% range. Afterward, the phosphate powders were integrated in two types of composites with chitosan, different from morphological point of view. First, 3D porous scaffolds were obtained by a freeze-drying procedure. Second, uniform, compact films were achieved by film casting. The influence of chitosan molecular weight (low, medium and high), as well as apatite powder to polymer ratio (1:1 and 1:2) on the morphological properties, were analysed in detail. In conclusion, the reported biocomposites, prepared by a straightforward route are suitable for bone substitution or repairing applications.Keywords: bone reconstruction, chitosan, composite scaffolds, hydroxyapatite
Procedia PDF Downloads 3225798 Magnesium Alloys Containing Y, Gd and Ca with Enhanced Ignition Temperature and Mechanical Properties for Aviation Applications
Authors: Jiří Kubásek, Peter Minárik, Klára Hosová, Stanislav Šašek, Jozef Veselý, Jitka Stráská, Drahomír Dvorský, Dalibor Vojtěch, Miloš Janeček
Abstract:
Mg-2Y-2Gd-1Ca and Mg-4Y-4Gd-2Ca alloys were processed by extrusion or equal channel angular pressing (ECAP) to analyse the effect of the microstructure on ignition temperature, mechanical properties and corrosion resistance. The alloys are characterized by good mechanical properties and exceptionally high ignition temperature, which is a critical safety measure. The effect of extrusion and ECAP on the microstructure, mechanical properties and ignition temperature was studied. The obtained results indicated a substantial effect of the processing conditions on the average grain size, the recrystallized fraction and texture formation. Both alloys featured a high strength, depending on the composition and processing condition, and a high ignition temperature of ≈1100 °C (Mg-4Y-4Gd-2Ca) and ≈950 °C (Mg-2Y-2Gd-1Ca), which was attributed to the synergic effect of Y, Gd and Ca oxides, with the dominant effect of Y₂O₃. The achieved combination of enhanced mechanical properties and the ignition temperature makes these alloys a prominent candidate for aircraft applications.Keywords: magnesium alloys, enhanced ignition temperature, mechanical properties, ECAP
Procedia PDF Downloads 1095797 Scalable Cloud-Based LEO Satellite Constellation Simulator
Authors: Karim Sobh, Khaled El-Ayat, Fady Morcos, Amr El-Kadi
Abstract:
Distributed applications deployed on LEO satellites and ground stations require substantial communication between different members in a constellation to overcome the earth coverage barriers imposed by GEOs. Applications running on LEO constellations suffer the earth line-of-sight blockage effect. They need adequate lab testing before launching to space. We propose a scalable cloud-based net-work simulation framework to simulate problems created by the earth line-of-sight blockage. The framework utilized cloud IaaS virtual machines to simulate LEO satellites and ground stations distributed software. A factorial ANOVA statistical analysis is conducted to measure simulator overhead on overall communication performance. The results showed a very low simulator communication overhead. Consequently, the simulation framework is proposed as a candidate for testing LEO constellations with distributed software in the lab before space launch.Keywords: LEO, cloud computing, constellation, satellite, network simulation, netfilter
Procedia PDF Downloads 3865796 Heuristic of Style Transfer for Real-Time Detection or Classification of Weather Conditions from Camera Images
Authors: Hamed Ouattara, Pierre Duthon, Frédéric Bernardin, Omar Ait Aider, Pascal Salmane
Abstract:
In this article, we present three neural network architectures for real-time classification of weather conditions (sunny, rainy, snowy, foggy) from images. Inspired by recent advances in style transfer, two of these architectures -Truncated ResNet50 and Truncated ResNet50 with Gram Matrix and Attention- surpass the state of the art and demonstrate re-markable generalization capability on several public databases, including Kaggle (2000 images), Kaggle 850 images, MWI (1996 images) [1], and Image2Weather [2]. Although developed for weather detection, these architectures are also suitable for other appearance-based classification tasks, such as animal species recognition, texture classification, disease detection in medical images, and industrial defect identification. We illustrate these applications in the section “Applications of Our Models to Other Tasks” with the “SIIM-ISIC Melanoma Classification Challenge 2020” [3].Keywords: weather simulation, weather measurement, weather classification, weather detection, style transfer, Pix2Pix, CycleGAN, CUT, neural style transfer
Procedia PDF Downloads 25795 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand
Authors: Neeta Kumari, Gopal Pathak
Abstract:
Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination
Procedia PDF Downloads 5505794 Design of a Surveillance Drone with Computer Aided Durability
Authors: Maram Shahad Dana Anfal
Abstract:
This research paper presents the design of a surveillance drone with computer-aided durability and model analyses that provides a cost-effective and efficient solution for various applications. The quadcopter's design is based on a lightweight and strong structure made of materials such as aluminum and titanium, which provide a durable structure for the quadcopter. The structure of this product and the computer-aided durability system are both designed to ensure frequent repairs or replacements, which will save time and money in the long run. Moreover, the study discusses the drone's ability to track, investigate, and deliver objects more quickly than traditional methods, makes it a highly efficient and cost-effective technology. In this paper, a comprehensive analysis of the quadcopter's operation dynamics and limitations is presented. In both simulation and experimental data, the computer-aided durability system and the drone's design demonstrate their effectiveness, highlighting the potential for a variety of applications, such as search and rescue missions, infrastructure monitoring, and agricultural operations. Also, the findings provide insights into possible areas for improvement in the design and operation of the drone. Ultimately, this paper presents a reliable and cost-effective solution for surveillance applications by designing a drone with computer-aided durability and modeling. With its potential to save time and money, increase reliability, and enhance safety, it is a promising technology for the future of surveillance drones. operation dynamic equations have been evaluated successfully for different flight conditions of a quadcopter. Also, CAE modeling techniques have been applied for the modal risk assessment at operating conditions.Stress analysis have been performed under the loadings of the worst-case combined motion flight conditions.Keywords: drone, material, solidwork, hypermesh
Procedia PDF Downloads 1445793 High Level Synthesis of Canny Edge Detection Algorithm on Zynq Platform
Authors: Hanaa M. Abdelgawad, Mona Safar, Ayman M. Wahba
Abstract:
Real-time image and video processing is a demand in many computer vision applications, e.g. video surveillance, traffic management and medical imaging. The processing of those video applications requires high computational power. Therefore, the optimal solution is the collaboration of CPU and hardware accelerators. In this paper, a Canny edge detection hardware accelerator is proposed. Canny edge detection is one of the common blocks in the pre-processing phase of image and video processing pipeline. Our presented approach targets offloading the Canny edge detection algorithm from processing system (PS) to programmable logic (PL) taking the advantage of High Level Synthesis (HLS) tool flow to accelerate the implementation on Zynq platform. The resulting implementation enables up to a 100x performance improvement through hardware acceleration. The CPU utilization drops down and the frame rate jumps to 60 fps of 1080p full HD input video stream.Keywords: high level synthesis, canny edge detection, hardware accelerators, computer vision
Procedia PDF Downloads 4785792 Movement Optimization of Robotic Arm Movement Using Soft Computing
Authors: V. K. Banga
Abstract:
Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic
Procedia PDF Downloads 2975791 Augmented Reality in Advertising and Brand Communication: An Experimental Study
Authors: O. Mauroner, L. Le, S. Best
Abstract:
Digital technologies offer many opportunities in the design and implementation of brand communication and advertising. Augmented reality (AR) is an innovative technology in marketing communication that focuses on the fact that virtual interaction with a product ad offers additional value to consumers. AR enables consumers to obtain (almost) real product experiences by the way of virtual information even before the purchase of a certain product. Aim of AR applications in relation with advertising is in-depth examination of product characteristics to enhance product knowledge as well as brand knowledge. Interactive design of advertising provides observers with an intense examination of a specific advertising message and therefore leads to better brand knowledge. The elaboration likelihood model and the central route to persuasion strongly support this argumentation. Nevertheless, AR in brand communication is still in an initial stage and therefore scientific findings about the impact of AR on information processing and brand attitude are rare. The aim of this paper is to empirically investigate the potential of AR applications in combination with traditional print advertising. To that effect an experimental design with different levels of interactivity is built to measure the impact of interactivity of an ad on different variables o advertising effectiveness.Keywords: advertising effectiveness, augmented reality, brand communication, brand recall
Procedia PDF Downloads 3025790 Artificial Intelligence for Cloud Computing
Authors: Sandesh Achar
Abstract:
Artificial intelligence is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remain a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights excellent investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.Keywords: artificial intelligence, cloud computing, deep learning, machine learning, internet of things
Procedia PDF Downloads 1095789 Social Networking Application: What Is Their Quality and How Can They Be Adopted in Open Distance Learning Environments?
Authors: Asteria Nsamba
Abstract:
Social networking applications and tools have become compelling platforms for generating and sharing knowledge across the world. Social networking applications and tools refer to a variety of social media platforms which include Facebook, Twitter WhatsApp, blogs and Wikis. The most popular of these platforms are Facebook, with 2.41 billion active users on a monthly basis, followed by WhatsApp with 1.6 billion users and Twitter with 330 million users. These communication platforms have not only impacted social lives but have also impacted students’ learning, across different delivery modes in higher education: distance, conventional and blended learning modes. With this amount of interest in these platforms, knowledge sharing has gained importance within the context in which it is required. In open distance learning (ODL) contexts, social networking platforms can offer students and teachers the platform on which to create and share knowledge, and form learning collaborations. Thus, they can serve as support mechanisms to increase interactions and reduce isolation and loneliness inherent in ODL. Despite this potential and opportunity, research indicates that many ODL teachers are not inclined to using social media tools in learning. Although it is unclear why these tools are uncommon in these environments, concerns raised in the literature have indicated that many teachers have not mastered the art of teaching with technology. Using technological, pedagogical content knowledge (TPCK) and product quality theory, and Bloom’s Taxonomy as lenses, this paper is aimed at; firstly, assessing the quality of three social media applications: Facebook, Twitter and WhatsApp, in order to determine the extent to which they are suitable platforms for teaching and learning, in terms of content generation, information sharing and learning collaborations. Secondly, the paper demonstrates the application of teaching, learning and assessment using Bloom’s Taxonomy.Keywords: distance education, quality, social networking tools, TPACK
Procedia PDF Downloads 1245788 Synthesis and Characterization of Silver/Graphene Oxide Co-Decorated TiO2 Nanotubular Arrays for Biomedical Applications
Authors: Alireza Rafieerad, Bushroa Abd Razak, Bahman Nasiri Tabrizi, Jamunarani Vadivelu
Abstract:
Recently, reports on the fabrication of nanotubular arrays have generated considerable scientific interest, owing to the broad range of applications of the oxide nanotubes in solar cells, orthopedic and dental implants, photocatalytic devices as well as lithium-ion batteries. A more attractive approach for the fabrication of oxide nanotubes with controllable morphology is the electrochemical anodization of substrate in a fluoride-containing electrolyte. Consequently, titanium dioxide nanotubes (TiO2 NTs) have been highly considered as an applicable material particularly in the district of artificial implants. In addition, regarding long-term efficacy and reasons of failing and infection after surgery of currently used dental implants required to enhance the cytocompatibility properties of Ti-based bone-like tissue. As well, graphene oxide (GO) with relevant biocompatibility features in tissue sites, osseointegration and drug delivery functionalization was fully understood. Besides, the boasting antibacterial ability of silver (Ag) remarkably provided for implantable devices without infection symptoms. Here, surface modification of Ti–6Al–7Nb implants (Ti67IMP) by the development of Ag/GO co-decorated TiO2 NTs was examined. Initially, the anodic TiO2 nanotubes obtained at a constant potential of 60 V were annealed at 600 degree centigrade for 2 h to improve the adhesion of the coating. Afterward, the Ag/GO co-decorated TiO2 NTs were developed by spin coating on Ti67IM. The microstructural features, phase composition and wettability behavior of the nanostructured coating were characterized comparably. In a nutshell, the results of the present study may contribute to the development of the nanostructured Ti67IMP with improved surface properties.Keywords: anodic tio2 nanotube, biomedical applications, graphene oxide, silver, spin coating
Procedia PDF Downloads 3255787 More Than a Game: An Educational Application Where Students Compete to Learn
Authors: Kadir Özsoy
Abstract:
Creating a moderately competitive learning environment is believed to have positive effects on student interest and motivation. The best way today to attract young learners to get involved in a fun, competitive learning experience is possible through mobile applications as these learners mostly rely on games and applications on their phones and tablets to have fun, communicate, look for information and study. In this study, a mobile application called ‘QuizUp’ is used to create a specific game topic for elementary level students at Anadolu University Preparatory School. The topic is specially designed with weekly-added questions in accordance with the course syllabus. Students challenge their classmates or randomly chosen opponents to answer questions related to their course subjects. They also chat and post on the topic’s wall in English. The study aims at finding out students’ perceptions towards the use of the application as a classroom and extra-curricular activity through a survey. The study concludes that educational games boost students’ motivation, lead to increased effort, and positively change their studying habits.Keywords: competitive learning, educational application, effort, motivation 'QuizUp', study habits
Procedia PDF Downloads 3585786 Quantum Dot Biosensing for Advancing Precision Cancer Detection
Authors: Sourav Sarkar, Manashjit Gogoi
Abstract:
In the evolving landscape of cancer diagnostics, optical biosensing has emerged as a promising tool due to its sensitivity and specificity. This study explores the potential of CdS/ZnS core-shell quantum dots (QDs) capped with 3-Mercaptopropionic acid (3-MPA), which aids in the linking chemistry of QDs to various cancer antibodies. The QDs, with their unique optical and electronic properties, have been integrated into the biosensor design. Their high quantum yield and size-dependent emission spectra have been exploited to improve the sensor’s detection capabilities. The study presents the design of this QD-enhanced optical biosensor. The use of these QDs can also aid multiplexed detection, enabling simultaneous monitoring of different cancer biomarkers. This innovative approach holds significant potential for advancing cancer diagnostics, contributing to timely and accurate detection. Future work will focus on optimizing the biosensor design for clinical applications and exploring the potential of QDs in other biosensing applications. This study underscores the potential of integrating nanotechnology and biosensing for cancer research, paving the way for next-generation diagnostic tools. It is a step forward in our quest for achieving precision oncology.Keywords: quantum dots, biosensing, cancer, device
Procedia PDF Downloads 565785 Analyzing the Use of Augmented Reality and Image Recognition in Cultural Education: Use Case of Sintra Palace Treasure Hunt Application
Authors: Marek Maruszczak
Abstract:
Gamified applications have been used successfully in education for years. The rapid development of technologies such as augmented reality and image recognition increases their availability and reduces their prices. Thus, there is an increasing possibility and need for a wide use of such applications in education. The main purpose of this article is to present the effects of work on a mobile application with augmented reality, the aim of which is to motivate tourists to pay more attention to the attractions and increase the likelihood of moving from one attraction to the next while visiting the Palácio Nacional de Sintra in Portugal. Work on the application was carried out together with the employees of Parques de Sintra from 2019 to 2021. Their effect was the preparation of a mobile application using augmented reality and image recognition. The application was tested on the palace premises by both Parques de Sintra employees and tourists visiting Palácio Nacional de Sintra. The collected conclusions allowed for the formulation of good practices and guidelines that can be used when designing gamified apps for the purpose of cultural education.Keywords: augmented reality, cultural education, gamification, image recognition, mobile games
Procedia PDF Downloads 1905784 A Nonlinear Dynamical System with Application
Authors: Abdullah Eqal Al Mazrooei
Abstract:
In this paper, a nonlinear dynamical system is presented. This system is a bilinear class. The bilinear systems are very important kind of nonlinear systems because they have many applications in real life. They are used in biology, chemistry, manufacturing, engineering, and economics where linear models are ineffective or inadequate. They have also been recently used to analyze and forecast weather conditions. Bilinear systems have three advantages: First, they define many problems which have a great applied importance. Second, they give us approximations to nonlinear systems. Thirdly, they have a rich geometric and algebraic structures, which promises to be a fruitful field of research for scientists and applications. The type of nonlinearity that is treated and analyzed consists of bilinear interaction between the states vectors and the system input. By using some properties of the tensor product, these systems can be transformed to linear systems. But, here we discuss the nonlinearity when the state vector is multiplied by itself. So, this model will be able to handle evolutions according to the Lotka-Volterra models or the Lorenz weather models, thus enabling a wider and more flexible application of such models. Here we apply by using an estimator to estimate temperatures. The results prove the efficiency of the proposed system.Keywords: Lorenz models, nonlinear systems, nonlinear estimator, state-space model
Procedia PDF Downloads 2545783 Design and Implementation of Smart Watch Textile Antenna for Wi-Fi Bio-Medical Applications in Millimetric Wave Band
Authors: M. G. Ghanem, A. M. M. A. Allam, Diaa E. Fawzy, Mehmet Faruk Cengiz
Abstract:
This paper is devoted to the design and implementation of a smartwatch textile antenna for Wi-Fi bio-medical applications in millimetric wave bands. The antenna is implemented on a leather textile-based substrate to be embedded in a smartwatch. It enables the watch to pick Wi-Fi signals without the need to be connected to a mobile through Bluetooth. It operates at 60 GHz or WiGig (Wireless Gigabit Alliance) band with a wide band for higher rate applications. It also could be implemented over many stratified layers of the body organisms to be used in the diagnosis of many diseases like diabetes and cancer. The structure is designed and simulated using CST (Studio Suite) program. The wearable patch antenna has an octagon shape, and it is implemented on leather material that acts as a flexible substrate with a size of 5.632 x 6.4 x 2 mm3, a relative permittivity of 2.95, and a loss tangent of 0.006. The feeding is carried out using differential feed (discrete port in CST). The work provides five antenna implementations; antenna without ground, a ground is added at the back of the antenna in order to increase the antenna gain, the substrate dimensions are increased to 15 x 30 mm2 to resemble the real hand watch size, layers of skin and fat are added under the ground of the antenna to study the effect of human body tissues human on the antenna performance. Finally, the whole structure is bent. It is found that the antenna can achieve a simulated peak realized gain in dB of 5.68, 7.28, 6.15, 3.03, and 4.37 for antenna without ground, antenna with the ground, antenna with larger substrate dimensions, antenna with skin and fat, and bent structure, respectively. The antenna with ground exhibits high gain; while adding the human organisms absorption, the gain is degraded because of human absorption. The bent structure contributes to higher gain.Keywords: bio medical engineering, millimetric wave, smart watch, textile antennas, Wi-Fi
Procedia PDF Downloads 1215782 The Use of Artificial Intelligence in the Prevention of Micro and Macrovascular Complications in Type Diabetic Patients in Low and Middle-Income Countries
Authors: Ebere Ellison Obisike, Justina N. Adalikwu-Obisike
Abstract:
Artificial intelligence (AI) is progressively transforming health and social care. With the rapid invention of various electronic devices, machine learning, and computing systems, the use of AI istraversing many health and social care practices. In this systematic review of journal and grey literature, this study explores how the applications of AI might promote the prevention of micro and macrovascular complications in type 1 diabetic patients. This review focuses on the use of a digitized blood glucose meter and the application of insulin pumps for the effective management of type 1 diabetes in low and middle-income countries. It is projected that the applications of AI may assist individuals with type 1 diabetes to monitor and control their blood glucose level and prevent the early onset of micro and macrovascular complications.Keywords: artificial intelligence, blood glucose meter, insulin pump, low and middle-income countries, micro and macrovascular complications, type 1 diabetes
Procedia PDF Downloads 1965781 A Generative Adversarial Framework for Bounding Confounded Causal Effects
Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu
Abstract:
Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning
Procedia PDF Downloads 1915780 Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators
Authors: Fethi Soltani, Adel Almarashi, Idir Mechai
Abstract:
Tikhonov regularization and reproducing kernels are the most popular approaches to solve ill-posed problems in computational mathematics and applications. And the Fourier multiplier operators are an essential tool to extend some known linear transforms in Euclidean Fourier analysis, as: Weierstrass transform, Poisson integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean operators, partial Fourier integral, Riesz potential, Bessel potential, etc. Using the theory of reproducing kernels, we construct a simple and efficient representations for some class of Fourier multiplier operators Tm on the Paley-Wiener space Hh. In addition, we give an error estimate formula for the approximation and obtain some convergence results as the parameters and the independent variables approaches zero. Furthermore, using numerical quadrature integration rules to compute single and multiple integrals, we give numerical examples and we write explicitly the extremal function and the corresponding Fourier multiplier operators.Keywords: fourier multiplier operators, Gauss-Kronrod method of integration, Paley-Wiener space, Tikhonov regularization
Procedia PDF Downloads 3185779 Assessing the Bioactivity and Cell Viability of Apatite-Wollastonite Glass Ceramics Prepared via Spray Pyrolysis
Authors: Andualem Workie
Abstract:
In this study, we examined the sinterability and bioactivity of MgO-SiO₂-P₂O₅-CaO-CaF₂ glass compositions created through spray pyrolysis. We evaluated the bioactivity of the materials by immersing them for varying periods of time in simulated bodily fluid (SBF) and found that bioactivity was related to the sintering temperature and soaking time. The material's pH value during immersion in SBF was within the range of 7.4-8.2, which is below 8.5 and improves compatibility and reduces toxicity in biological applications. We used X-ray diffraction and scanning electron microscopy to determine the phase compositions and morphologies of the samples and found that the 1100°C sintered A-W GC sample exhibited the highest bioactivity after soaking in SBF. This sample was dominated by fluorapatite, wollastonite, and whitlockite crystals scattered throughout the glass matrix. The crystallinity (%) of the A-W GC increased as its bioactivity improved, making it more suitable for use in pharmaceutical applications. We also conducted a cytotoxicity test on A-W GC samples sintered at different temperatures and found that the glass-ceramics were non-toxic to MC3T3-E1 cells at all extraction concentrations, except for those sintered at 700°C at concentrations of 250, 200, and 150 mg/ml where cell viability (%) was below the threshold of 70%.Keywords: apatite wollastonite glass ceramics, bioactivity, calcination, cell viability
Procedia PDF Downloads 1035778 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data
Authors: Adarsh Shroff
Abstract:
Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.Keywords: big data, map reduce, incremental processing, iterative computation
Procedia PDF Downloads 3505777 Optimization of Beneficiation Process for Upgrading Low Grade Egyptian Kaolin
Authors: Nagui A. Abdel-Khalek, Khaled A. Selim, Ahmed Hamdy
Abstract:
Kaolin is naturally occurring ore predominantly containing kaolinite mineral in addition to some gangue minerals. Typical impurities present in kaolin ore are quartz, iron oxides, titanoferrous minerals, mica, feldspar, organic matter, etc. The main coloring impurity, particularly in the ultrafine size range, is titanoferrous minerals. Kaolin is used in many industrial applications such as sanitary ware, table ware, ceramic, paint, and paper industries, each of which should be of certain specifications. For most industrial applications, kaolin should be processed to obtain refined clay so as to match with standard specifications. For example, kaolin used in paper and paint industries need to be of high brightness and low yellowness. Egyptian kaolin is not subjected to any beneficiation process and the Egyptian companies apply selective mining followed by, in some localities, crushing and size reduction only. Such low quality kaolin can be used in refractory and pottery production but not in white ware and paper industries. This paper aims to study the amenability of beneficiation of an Egyptian kaolin ore of El-Teih locality, Sinai, to be suitable for different industrial applications. Attrition scrubbing and classification followed by magnetic separation are applied to remove the associated impurities. Attrition scrubbing and classification are used to separate the coarse silica and feldspars. Wet high intensity magnetic separation was applied to remove colored contaminants such as iron oxide and titanium oxide. Different variables affecting of magnetic separation process such as solid percent, magnetic field, matrix loading capacity, and retention time are studied. The results indicated that substantial decrease in iron oxide (from 1.69% to 0.61% ) and TiO2 (from 3.1% to 0.83%) contents as well as improving iso-brightness (from 63.76% to 75.21% and whiteness (from 79.85% to 86.72%) of the product can be achieved.Keywords: Kaolin, titanoferrous minerals, beneficiation, magnetic separation, attrition scrubbing, classification
Procedia PDF Downloads 3605776 Collision Detection Algorithm Based on Data Parallelism
Authors: Zhen Peng, Baifeng Wu
Abstract:
Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability
Procedia PDF Downloads 2895775 Evaluating the Performance of Existing Full-Reference Quality Metrics on High Dynamic Range (HDR) Video Content
Authors: Maryam Azimi, Amin Banitalebi-Dehkordi, Yuanyuan Dong, Mahsa T. Pourazad, Panos Nasiopoulos
Abstract:
While there exists a wide variety of Low Dynamic Range (LDR) quality metrics, only a limited number of metrics are designed specifically for the High Dynamic Range (HDR) content. With the introduction of HDR video compression standardization effort by international standardization bodies, the need for an efficient video quality metric for HDR applications has become more pronounced. The objective of this study is to compare the performance of the existing full-reference LDR and HDR video quality metrics on HDR content and identify the most effective one for HDR applications. To this end, a new HDR video data set is created, which consists of representative indoor and outdoor video sequences with different brightness, motion levels and different representing types of distortions. The quality of each distorted video in this data set is evaluated both subjectively and objectively. The correlation between the subjective and objective results confirm that VIF quality metric outperforms all to their tested metrics in the presence of the tested types of distortions.Keywords: HDR, dynamic range, LDR, subjective evaluation, video compression, HEVC, video quality metrics
Procedia PDF Downloads 5255774 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 145773 Operational Challenges of Marine Fiber Reinforced Polymer Composite Structures Coupled with Piezoelectric Transducers
Authors: H. Ucar, U. Aridogan
Abstract:
Composite structures become intriguing for the design of aerospace, automotive and marine applications due to weight reduction, corrosion resistance and radar signature reduction demands and requirements. Studies on piezoelectric ceramic transducers (PZT) for diagnostics and health monitoring have gained attention for their sensing capabilities, however PZT structures are prone to fail in case of heavy operational loads. In this paper, we develop a piezo-based Glass Fiber Reinforced Polymer (GFRP) composite finite element (FE) model, validate with experimental setup, and identify the applicability and limitations of PZTs for a marine application. A case study is conducted to assess the piezo-based sensing capabilities in a representative marine composite structure. A FE model of the composite structure combined with PZT patches is developed, afterwards the response and functionality are investigated according to the sea conditions. Results of this study clearly indicate the blockers and critical aspects towards industrialization and wide-range use of PZTs for marine composite applications.Keywords: FRP composite, operational challenges, piezoelectric transducers, FE modeling
Procedia PDF Downloads 1745772 Optimization of Surface Coating on Magnetic Nanoparticles for Biomedical Applications
Authors: Xiao-Li Liu, Ling-Yun Zhao, Xing-Jie Liang, Hai-Ming Fan
Abstract:
Owing to their unique properties, magnetic nanoparticles have been used as diagnostic and therapeutic agents for biomedical applications. Highly monodispersed magnetic nanoparticles with controlled particle size and surface coating have been successfully synthesized as a model system to investigate the effect of surface coating on the T2 relaxivity and specific absorption rate (SAR) under an alternating magnetic field, respectively. Amongst, by using mPEG-g-PEI to solubilize oleic-acid capped 6 nm magnetic nanoparticles, the T2 relaxivity could be significantly increased by up to 4-fold as compared to PEG coated nanoparticles. Moreover, it largely enhances the cell uptake with a T2 relaxivity of 92.6 mM-1s-1 for in vitro cell MRI. As for hyperthermia agent, SAR value increase with the decreased thickness of PEG surface coating. By elaborate optimization of surface coating and particle size, a significant increase of SAR (up to 74%) could be achieved with a minimal variation on the saturation magnetization (<5%). The 19 nm magnetic nanoparticles with 2000 Da PEG exhibited the highest SAR of 930 W•g-1 among the samples, which can be maintained in various simulated physiological conditions. This systematic work provides a general strategy for the optimization of surface coating of magnetic core for high performance MRI contrast agent and hyperthermia agent.Keywords: magnetic nanoparticles, magnetic hyperthermia, magnetic resonance imaging, surface modification
Procedia PDF Downloads 510