Search results for: recruitment technology
1851 Nighttime Power Generation Using Thermoelectric Devices
Authors: Abdulrahman Alajlan
Abstract:
While the sun serves as a robust energy source, the frigid conditions of outer space present promising prospects for nocturnal power generation due to its continuous accessibility during nighttime hours. This investigation illustrates a proficient methodology facilitating uninterrupted energy capture throughout the day. This method involves the utilization of water-based heat storage systems and radiative thermal emitters implemented across thermometric devices. Remarkably, this approach permits an enhancement of nighttime power generation that exceeds the level of 1 Wm-2, which is unattainable by alternative methodologies. Outdoor experiments conducted at the King Abdulaziz City for Science and Technology (KACST) have demonstrated unparalleled performance, surpassing prior experimental benchmarks by nearly an order of magnitude. Furthermore, the developed device exhibits the capacity to concurrently supply power to multiple light-emitting diodes, thereby showcasing practical applications for nighttime power generation. This research unveils opportunities for the creation of scalable and efficient 24-hour power generation systems based on thermoelectric devices. Central findings from this study encompass the realization of continuous 24-hour power generation from clean and sustainable energy sources. Theoretical analyses indicate the potential for nighttime power generation reaching up to 1 Wm-2, while experimental results have reached nighttime power generation at a density of 0.5 Wm-2. Additionally, the efficiency of multiple light-emitting diodes (LEDs) has been evaluated when powered by the nighttime output of the integrated thermoelectric generator (TEG). Therefore, this methodology exhibits promise for practical applications, particularly in lighting, marking a pivotal advancement in the utilization of renewable energy for both on-grid and off-grid scenarios.Keywords: nighttime power generation, thermoelectric devices, radiative cooling, thermal management
Procedia PDF Downloads 601850 A Study on the Different Components of a Typical Back-Scattered Chipless RFID Tag Reflection
Authors: Fatemeh Babaeian, Nemai Chandra Karmakar
Abstract:
Chipless RFID system is a wireless system for tracking and identification which use passive tags for encoding data. The advantage of using chipless RFID tag is having a planar tag which is printable on different low-cost materials like paper and plastic. The printed tag can be attached to different items in the labelling level. Since the price of chipless RFID tag can be as low as a fraction of a cent, this technology has the potential to compete with the conventional optical barcode labels. However, due to the passive structure of the tag, data processing of the reflection signal is a crucial challenge. The captured reflected signal from a tag attached to an item consists of different components which are the reflection from the reader antenna, the reflection from the item, the tag structural mode RCS component and the antenna mode RCS of the tag. All these components are summed up in both time and frequency domains. The effect of reflection from the item and the structural mode RCS component can distort/saturate the frequency domain signal and cause difficulties in extracting the desired component which is the antenna mode RCS. Therefore, it is required to study the reflection of the tag in both time and frequency domains to have a better understanding of the nature of the captured chipless RFID signal. The other benefits of this study can be to find an optimised encoding technique in tag design level and to find the best processing algorithm the chipless RFID signal in decoding level. In this paper, the reflection from a typical backscattered chipless RFID tag with six resonances is analysed, and different components of the signal are separated in both time and frequency domains. Moreover, the time domain signal corresponding to each resonator of the tag is studied. The data for this processing was captured from simulation in CST Microwave Studio 2017. The outcome of this study is understanding different components of a measured signal in a chipless RFID system and a discovering a research gap which is a need to find an optimum detection algorithm for tag ID extraction.Keywords: antenna mode RCS, chipless RFID tag, resonance, structural mode RCS
Procedia PDF Downloads 1971849 Catalytic Wet Air Oxidation as a Pretreatment Option for Biodegradability Enhancement of Industrial Effluent
Authors: Sushma Yadav, Anil K. Saroha
Abstract:
Complex industrial effluent generated from chemical industry is contaminated with toxic and hazardous organic compounds and not amenable to direct biological treatment. To effectively remove many toxic organic pollutants has made it evident that new, compact and more efficient systems are needed. Catalytic Wet Air Oxidation (CWAO) is a promising treatment technology for the abatement of organic pollutants in wastewater. A lot of information is available on using CWAO for the treatment of synthetic solution containing single organic pollutant. But the real industrial effluents containing multi-component mixture of organic compounds were less studied. The main objective of this study is to use the CWAO process for converting the organics into compounds more amenable to biological treatment; complete oxidation may be too expensive. Therefore efforts were made in the present study to explore the potential of alumina based Platinum (Pt) catalyst for the treatment of industrial organic raffinate containing toxic constituents like ammoniacal nitrogen, pyridine etc. The catalysts were prepared by incipient wetness impregnation method and characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and BET (Brunauer, Emmett, and Teller) surface area. CWAO experiments were performed at atmospheric pressure and (30 °C - 70 °C) temperature conditions and the results were evaluated in terms of COD removal efficiency. The biodegradability test was performed by BOD/COD ratio for checking the toxicity of the industrial wastewater as well as for the treated water. The BOD/COD ratio of treated water was significantly increased and signified that the toxicity of the organics was decreased while the biodegradability was increased, indicating the more amenability towards biological treatment.Keywords: alumina based pt catalyst, BOD/COD ratio, catalytic wet air oxidation, COD removal efficiency, industrial organic raffinate
Procedia PDF Downloads 3001848 The Psychology of Cross-Cultural Communication: A Socio-Linguistics Perspective
Authors: Tangyie Evani, Edmond Biloa, Emmanuel Nforbi, Lem Lilian Atanga, Kom Beatrice
Abstract:
The dynamics of languages in contact necessitates a close study of how its users negotiate meanings from shared values in the process of cross-cultural communication. A transverse analysis of the situation demonstrates the existence of complex efforts on connecting cultural knowledge to cross-linguistic competencies within a widening range of communicative exchanges. This paper sets to examine the psychology of cross-cultural communication in a multi-linguistic setting like Cameroon where many local and international languages are in close contact. The paper equally analyses the pertinence of existing macro sociological concepts as fundamental knowledge traits in literal and idiomatic cross semantic mapping. From this point, the article presents a path model of connecting sociolinguistics to the increasing adoption of a widening range of communicative genre piloted by the on-going globalisation trends with its high-speed information technology machinery. By applying a cross cultural analysis frame, the paper will be contributing to a better understanding of the fundamental changes in the nature and goals of cross-cultural knowledge in pragmatics of communication and cultural acceptability’s. It emphasises on the point that, in an era of increasing global interchange, a comprehensive inclusive global culture through bridging gaps in cross-cultural communication would have significant potentials to contribute to achieving global social development goals, if inadequacies in language constructs are adjusted to create avenues that intertwine with sociocultural beliefs, ensuring that meaningful and context bound sociolinguistic values are observed within the global arena of communication.Keywords: cross-cultural communication, customary language, literalisms, primary meaning, subclasses, transubstantiation
Procedia PDF Downloads 2831847 Filled Polymer Composite
Authors: Adishirin Mammadov
Abstract:
Polymers and polymer composites play vital roles in diverse industries, including food and beverage packaging, transportation innovations, and medical advancements. However, the advancements in polymer technology bring certain risks, particularly concerning water and soil pollution due to the presence of polymers. The creation of new polymers is a critical aspect of this field. While the primary focus is on improving their physical and chemical properties, ensuring their ecological compatibility is equally important. An advanced method for developing innovative polymer types involves integrating fillers with diverse characteristics, offering advantages such as cost reduction and improved quality indicators. In the conducted research, efforts were made to enhance environmental aspects by employing waste fillers. Specifically, low-density polyethylene (LDPE) was used as the polymer, and waste from cocoon factories was chosen as the filler. Following a process of cleaning, drying, and crushing the filler to specific dimensions, it was incorporated into polyethylene through a mechanical-chemical method under laboratory conditions. The varied rheological properties of the resulting polyethylene compositions examined at temperatures ranging from 145 to 165 degrees Celsius. These compositions demonstrated different rheological properties at various temperature intervals. Achieving homogeneity in the obtained compositions is crucial in the polymers mechanochemical process. Beyond rheological properties, swelling rates in different environments and percentages of mass loss at different temperatures learned using the differential thermal analysis method. The research revealed that, to a certain extent, the physico-chemical properties of polyethylene were not significantly affected by the polymer compositions. This suggests that incorporating cocoon waste enables cost reduction in composite production while positively impacting the environment.Keywords: polyethylene, polymer, composites, filler, reology
Procedia PDF Downloads 541846 Solar-Assisted City Bus Electrical Installation: Opportunities and Impact on the Environment in Sydney
Authors: M. J. Geca, T. Tulwin, A. Majczak
Abstract:
On-board electricity consumption in the diesel city bus during operation is an important energy source. Electricity is generated by a combustion engine-driven alternator. Increased fuel consumption to generate on-board electricity in the bus has a negative impact on the emission of toxic components and carbon dioxide. At the same time, the bus roof surface allows placing a set of lightweight photovoltaic panels with power from 1 to 1.5 kW. The article presents an experimental study of electricity consumption of a city bus with diesel engine equipped with photovoltaic installation. The stream of electricity consumed by the bus and generated by a standard alternator and PV system was recorded. Base on the experimental research carried out in central Europe; the article analyses the impact of an additional source of electricity in the form of a photovoltaic installation on fuel consumption and emissions of toxic components of vehicles located in the latitude of Sydney. In Poland, the maximum global value of horizontal irradiation GHI is 1150 kWh/m², while for Sydney 1652 kWh/m². In addition, the profile of temperature and sunshine per year is different for these two different latitudes as presented in the article. Electricity generated directly from the sun powers the bus's electrical receivers. The photovoltaic system is able to replace 23% of annual electricity consumption, which at the same time will reduce 4% of fuel consumption and CO₂ reduction. Approximately 25% of the light is lost during vehicle traffic in Sydney latitude. The temperature losses of photovoltaic panels are comparable due to the cooling during vehicle motion. Acknowledgement: The project/research was financed in the framework of the project Lublin University of Technology - Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).Keywords: electric energy, photovoltaic system, fuel consumption, CO₂
Procedia PDF Downloads 1091845 Microbial Electrochemical Remediation System: Integrating Wastewater Treatment with Simultaneous Power Generation
Authors: Monika Sogani, Zainab Syed, Adrian C. Fisher
Abstract:
Pollution of estrogenic compounds has caught the attention of researchers as the slight increase of estrogens in the water bodies has a significant impact on the aquatic system. They belong to a class of endocrine disrupting compounds (EDCs) and are able to mimic hormones or interfere with the action of endogenous hormones. The microbial electrochemical remediation system (MERS) is employed here for exploiting an electrophototrophic bacterium for evaluating the capacity of biodegradation of ethinylestradiol hormone (EE2) under anaerobic conditions with power generation. MERS using electro-phototrophic bacterium offers a tailored solution of wastewater treatment in a developing country like India which has a huge solar potential. It is a clean energy generating technology as they require only sunlight, water, nutrients, and carbon dioxide to operate. Its main feature that makes it superior over other technologies is that the main fuel for this MERS is sunlight which is indefinitely present. When grown in light with organic compounds, these photosynthetic bacteria generate ATP by cyclic photophosphorylation and use carbon compounds to make cell biomass (photoheterotrophic growth). These cells showed EE2 degradation and were able to generate hydrogen as part of the process of nitrogen fixation. The two designs of MERS were studied, and a maximum of 88.45% decrease in EE2 was seen in a total period of 14 days in the better design. This research provides a better insight into microbial electricity generation and self-sustaining wastewater treatment facilities. Such new models of waste treatment aiming waste to energy generation needs to be followed and implemented for building a resource efficient and sustainable economy.Keywords: endocrine disrupting compounds, ethinylestradiol, microbial electrochemical remediation systems, wastewater treatment
Procedia PDF Downloads 1171844 Navigating the Ripple Effect: Deconstructing the Multilayered Impact of Fuel Subsidy Removal on Nigeria’s Educational Landscape
Authors: Abimbola Mobolanle Adu, Marcus Tayo Akinlade
Abstract:
This comprehensive study systematically dissects the intricate interplay between the removal of fuel subsidy and its multifaceted repercussions on Nigeria's educational system. Originating in the 1970s, the fuel subsidy policy initially conceived to curtail fuel costs and faced financial unsustainability. In 2023, President Bola Tinubu's administration announced its cessation. The resultant escalation in petroleum product prices precipitated challenges within the education sector, manifesting as heightened administrative costs, increased student fees, amplified dropout rates, and others. Employing a qualitative research methodology, grounded in Critical Theory, the study draws from diverse secondary sources and employs content analysis to unravel the intricate layers of this issue. Critical Theory provides a lens through which the power dynamics, socio-economic structures, and ideological influences shaping policy decisions can be critically examined, offering a deeper understanding of the multifaceted impact. Findings underscore the imperative for strategic interventions, advocating for investments in technology and the exploration of alternative energy sources. The paper concludes by emphasizing the pivotal role of education, advocating for nuanced policies to alleviate the impact on both private and public educational institutions. In essence, this research contributes nuanced insights into the labyrinthine dynamics between fuel subsidy policies and the educational sector, underscoring the exigency for meticulous interventions to fortify the nation's educational foundation.Keywords: administration, education, fuel subsidy, policy, multilayered impact
Procedia PDF Downloads 571843 Next Generation of Tunnel Field Effect Transistor: NCTFET
Authors: Naima Guenifi, Shiromani Balmukund Rahi, Amina Bechka
Abstract:
Tunnel FET is one of the most suitable alternatives FET devices for conventional CMOS technology for low-power electronics and applications. Due to its lower subthreshold swing (SS) value, it is a strong follower of low power applications. It is a quantum FET device that follows the band to band (B2B) tunneling transport phenomena of charge carriers. Due to band to band tunneling, tunnel FET is suffering from a lower switching current than conventional metal-oxide-semiconductor field-effect transistor (MOSFET). For improvement of device features and limitations, the newly invented negative capacitance concept of ferroelectric material is implemented in conventional Tunnel FET structure popularly known as NC TFET. The present research work has implemented the idea of high-k gate dielectric added with ferroelectric material on double gate Tunnel FET for implementation of negative capacitance. It has been observed that the idea of negative capacitance further improves device features like SS value. It helps to reduce power dissipation and switching energy. An extensive investigation for circularity uses for digital, analog/RF and linearity features of double gate NCTFET have been adopted here for research work. Several essential designs paraments for analog/RF and linearity parameters like transconductance(gm), transconductance generation factor (gm/IDS), its high-order derivatives (gm2, gm3), cut-off frequency (fT), gain-bandwidth product (GBW), transconductance generation factor (gm/IDS) has been investigated for low power RF applications. The VIP₂, VIP₃, IMD₃, IIP₃, distortion characteristics (HD2, HD3), 1-dB, the compression point, delay and power delay product performance have also been thoroughly studied.Keywords: analog/digital, ferroelectric, linearity, negative capacitance, Tunnel FET, transconductance
Procedia PDF Downloads 1931842 Modification of Working Conditions Based on Participatory Ergonomics to Improve Occupational Health and Safety (K3) and Welding Worker Productivity
Authors: Tri Wisudawati, Radita Dwi Putera
Abstract:
The role of human resources is the basic capital in determining the purpose of a business place. Without the role of human resources, activities in the company will not run smoothly. Every business place always has a risk of accidents. The magnitude of the risk that occurs depends on the type of industry, technology, and risk control efforts made. Work-related accidents are accidents that occur due to work or while carrying out work. Welding MSMEs have a fairly high risk to health, safety and the environment both from the side of workers who can cause accidents and from the side of the work environment, which has the potential to become a hazard and risk. Participatory ergonomic intervention can be a feasible and effective approach to reducing exposure to work-related risk factors in developing country industries. Complaints about occupational health and safety experienced by workers in the welding workshop industry should be able to be overcome by implementing an ergonomic intervention approach. The analysis process includes HIRARC analysis, participatory ergonomics analysis, and SEM-PLS analysis. Hierarch analysis is carried out by assessing the level of severity and likelihood, as well as risk control. At the participatory ergonomics analysis stage, it is obtained from the organizational culture and organizational stakeholders. At the SEM-PLS stage, an analysis is carried out to see whether there is a strong relationship between the research variables in order to produce occupational health and safety (K3) and worker productivity in the welding shop better and in accordance with welding safety standards. So that the output of this study is how participatory ergonomics interventions affect working conditions to improve occupational health and safety and the productivity of welding workers.Keywords: ergonomic partisipatory, health and safety, welding workers, welding safety
Procedia PDF Downloads 211841 Comprehensive Risk Analysis of Decommissioning Activities with Multifaceted Hazard Factors
Authors: Hyeon-Kyo Lim, Hyunjung Kim, Kune-Woo Lee
Abstract:
Decommissioning process of nuclear facilities can be said to consist of a sequence of problem solving activities, partly because there may exist working environments contaminated by radiological exposure, and partly because there may also exist industrial hazards such as fire, explosions, toxic materials, and electrical and physical hazards. As for an individual hazard factor, risk assessment techniques are getting known to industrial workers with advance of safety technology, but the way how to integrate those results is not. Furthermore, there are few workers who experienced decommissioning operations a lot in the past. Therefore, not a few countries in the world have been trying to develop appropriate counter techniques in order to guarantee safety and efficiency of the process. In spite of that, there still exists neither domestic nor international standard since nuclear facilities are too diverse and unique. In the consequence, it is quite inevitable to imagine and assess the whole risk in the situation anticipated one by one. This paper aimed to find out an appropriate technique to integrate individual risk assessment results from the viewpoint of experts. Thus, on one hand the whole risk assessment activity for decommissioning operations was modeled as a sequence of individual risk assessment steps, and on the other, a hierarchical risk structure was developed. Then, risk assessment procedure that can elicit individual hazard factors one by one were introduced with reference to the standard operation procedure (SOP) and hierarchical task analysis (HTA). With an assumption of quantification and normalization of individual risks, a technique to estimate relative weight factors was tried by using the conventional Analytic Hierarchical Process (AHP) and its result was reviewed with reference to judgment of experts. Besides, taking the ambiguity of human judgment into consideration, debates based upon fuzzy inference was added with a mathematical case study.Keywords: decommissioning, risk assessment, analytic hierarchical process (AHP), fuzzy inference
Procedia PDF Downloads 4231840 Knowledge and Use of Computer Application Packages by Office Managers/Secretaries in Higher Institutions in Ogun State Nigeria: Implication on Performance Enhancement
Authors: Charlotte Bose Iro-Idoro, Adebisi Folake Osore, Tajudeen Adisa Jimoh
Abstract:
All changes in the office environment were and are still driven by advances in technology. The impact of computers on office work has resulted in numerous changes in office activities, procedures and the expectations from office managers and secretaries. This study investigated the level of knowledge and use of computer office application packages by secretaries and office managers in higher educational institutions in Ogun State and the implications of these on their performance enhancement. The study is an ex post facto research and adopted the survey design for the collection of data. Two hypotheses were formulated, and a questionnaire was developed and tested at 0.05 level of significance. All office managers and secretaries in the service of higher educational institutions in Ogun State, Nigeria formed the population of the study. The study was limited to federal institutions and a total of 120 office managers/secretaries were selected to form the sample such that 40 office managers/secretaries were randomly selected from each of the three Federal higher institutions in the State, that is Federal University of Agriculture, Abeokuta, Federal Polytechnic, Ilaro and Federal College of Education, Osiele, Abeokuta, Ogun State. Analysis of data and hypotheses tests were carried out with frequency counts, percentage and T-Test. The result indicated varying levels of awareness on office application tools with limited knowledge and use of computer application packages by office managers/secretaries. The results also showed that good knowledge and high use of office application tools enhance performance of office managers/secretaries. The study recommended that there should be maximum institutional resources and support and personal development on the part of the office managers to ensure update knowledge and maximal use of office application tools by office managers/secretaries.Keywords: application packages, computer, office managers, performance enhancement
Procedia PDF Downloads 1781839 Uniqueness of Fingerprint Biometrics to Human Dynasty: A Review
Authors: Siddharatha Sharma
Abstract:
With the advent of technology and machines, the role of biometrics in society is taking an important place for secured living. Security issues are the major concern in today’s world and continue to grow in intensity and complexity. Biometrics based recognition, which involves precise measurement of the characteristics of living beings, is not a new method. Fingerprints are being used for several years by law enforcement and forensic agencies to identify the culprits and apprehend them. Biometrics is based on four basic principles i.e. (i) uniqueness, (ii) accuracy, (iii) permanency and (iv) peculiarity. In today’s world fingerprints are the most popular and unique biometrics method claiming a social benefit in the government sponsored programs. A remarkable example of the same is UIDAI (Unique Identification Authority of India) in India. In case of fingerprint biometrics the matching accuracy is very high. It has been observed empirically that even the identical twins also do not have similar prints. With the passage of time there has been an immense progress in the techniques of sensing computational speed, operating environment and the storage capabilities and it has become more user convenient. Only a small fraction of the population may be unsuitable for automatic identification because of genetic factors, aging, environmental or occupational reasons for example workers who have cuts and bruises on their hands which keep fingerprints changing. Fingerprints are limited to human beings only because of the presence of volar skin with corrugated ridges which are unique to this species. Fingerprint biometrics has proved to be a high level authentication system for identification of the human beings. Though it has limitations, for example it may be inefficient and ineffective if ridges of finger(s) or palm are moist authentication becomes difficult. This paper would focus on uniqueness of fingerprints to the human beings in comparison to other living beings and review the advancement in emerging technologies and their limitations.Keywords: fingerprinting, biometrics, human beings, authentication
Procedia PDF Downloads 3241838 Design and Development of Fleet Management System for Multi-Agent Autonomous Surface Vessel
Authors: Zulkifli Zainal Abidin, Ahmad Shahril Mohd Ghani
Abstract:
Agent-based systems technology has been addressed as a new paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated systems that act autonomously across open and distributed environments in solving problems. Nevertheless, it is impractical to rely on a single agent to do all computing processes in solving complex problems. An increasing number of applications lately require multiple agents to work together. A multi-agent system (MAS) is a loosely coupled network of agents that interact to solve problems that are beyond the individual capacities or knowledge of each problem solver. However, the network of MAS still requires a main system to govern or oversees the operation of the agents in order to achieve a unified goal. We had developed a fleet management system (FMS) in order to manage the fleet of agents, plan route for the agents, perform real-time data processing and analysis, and issue sets of general and specific instructions to the agents. This FMS should be able to perform real-time data processing, communicate with the autonomous surface vehicle (ASV) agents and generate bathymetric map according to the data received from each ASV unit. The first algorithm is developed to communicate with the ASV via radio communication using standard National Marine Electronics Association (NMEA) protocol sentences. Next, the second algorithm will take care of the path planning, formation and pattern generation is tested using various sample data. Lastly, the bathymetry map generation algorithm will make use of data collected by the agents to create bathymetry map in real-time. The outcome of this research is expected can be applied on various other multi-agent systems.Keywords: autonomous surface vehicle, fleet management system, multi agent system, bathymetry
Procedia PDF Downloads 2691837 The Impact of Dispatching with Rolling Horizon Control in Sizing Thermal Storage for Solar Tower Plant Participating in Wholesale Spot Electricity Market
Authors: Navid Mohammadzadeh, Huy Truong-Ba, Michael Cholette
Abstract:
The solar tower (ST) plant is a promising technology to exploit large-scale solar irradiation. With thermal energy storage, ST plant has the potential to shift generation to high electricity price periods. However, the size of storage limits the dispatchability of the plant, particularly when it should compete with uncertainty in forecasts of solar irradiation and electricity prices. The purpose of this study is to explore the size of storage when Rolling Horizon Control (RHC) is employed for dispatch scheduling. To this end, RHC is benchmarked against perfect knowledge (PK) forecast and two day-ahead dispatching policies. With optimisation of dispatch planning using PK policy, the optimal achievable profit for a specific size of the storage is determined. A sensitivity analysis using Monte-Carlo simulation is conducted, and the size of storage for RHC and day-ahead policies is determined with the objective of reaching the profit obtained from the PK policy. A case study is conducted for a hypothetical ST plant with thermal storage located in South Australia and intends to dispatch under two market scenarios: 1) fixed price and 2) wholesale spot price. The impact of each individual source of uncertainty on storage size is examined for January and August. The exploration of results shows that dispatching with RH controller reaches optimal achievable profit with ~15% smaller storage compared to that in day-ahead policies. The results of this study may be applied to the CSP plant design procedure.Keywords: solar tower plant, spot market, thermal storage system, optimized dispatch planning, sensitivity analysis, Monte Carlo simulation
Procedia PDF Downloads 1221836 The Potential Role of Industrialized Building Systems in Malaysian Sustainable Construction: Awareness and Barriers
Authors: Aawag Mohsen Al-Awag, Wesam Salah Alaloul, M. S. Liew
Abstract:
Industrialized building system (IBS) is a method of construction with concentrated practices consisting of techniques, products, and a set of linked elements which operate collectively to accomplish objectives. The Industrialised Building System (IBS) has been recognised as a viable method for improving overall construction performance in terms of quality, cost, safety and health, waste reduction, and productivity. The Malaysian construction industry is considered one of the contributors to the development of the country. The acceptance level of IBS is still below government expectations. Thus, the Malaysian government has been continuously encouraging the industry to use and implement IBS. Conventional systems have several drawbacks, including project delays, low economic efficiency, excess inventory, and poor product quality. When it comes to implementing IBS, construction companies still face several obstacles and problems, notably in terms of contractual and procurement concerns, which leads to the low adoption of IBS in Malaysia. There are barriers to the acceptance of IBS technology, focused on awareness of historical failure and risks connected to IBS practices to provide enhanced performance. Therefore, the transformation from the existing conventional building systems to the industrialized building systems (IBS) is needed more than ever. The flexibility of IBS in Malaysia’s construction industry is very low due to numerous shortcomings and obstacles. Due to its environmental, economic, and social benefits, IBS could play a significant role in the Malaysian construction industry in the future. This paper concentrates on the potential role of IBS in sustainable construction practices in Malaysia. It also highlights the awareness, barriers, advantages, and disadvantages of IBS in the construction sector. The study concludes with recommendations for Malaysian construction stakeholders to encourage and increase the utilization of industrialised building systems.Keywords: construction industry, industrialized building system, barriers, advantages and disadvantages, construction, sustainability, Malaysia
Procedia PDF Downloads 1031835 A Study of Inter-Media Discourse Construction on Sino-US Trade Friction Based on Network Agenda Setting Theory
Authors: Wanying Xie
Abstract:
Under the background of the increasing Sino-US trade friction, the two nations pay more attention to the medias’ words. This paper mainly studies the causality, effectiveness, and influence of discourse construction between traditional media and social media. Based on the Network Agenda Setting theory, a kind of associative memory pattern in Psychology, who focuses on how media affect audiences’ cognition of issues and attributes, as well as the significance of the relation between people and matters. The date of the sample chosen in this paper ranges from March 23, 2018, to April 30, 2019. A total of 395 Tweets of Donald Trump are obtained, and 731 related reports are collected from the mainstream American newspapers including New York Times, the Washington Post and the Washington Street, by using Factiva and other databases. The sample data are processed by MAXQDA while the media discourses are analyzed by SPSS and Cite Space, with an aim to study: 1) whether the inter-media discourse construction exists; 2) which media (traditional media V.S. social media) is dominant; 3) the causality between two media. The results show: 1) the discourse construction between three American mainstream newspapers and Donald Trump's Twitter is proved in some periods; 2) the dominant position is extremely depended on the events; 3) the causality between two media is decided by many reasons. New media technology shortens the time of agenda-setting effect to one day or less. By comparing the specific relation between the three major American newspapers and Donald Trump’s Twitter, whose popularity and influence could be reflected. Hopefully, this paper could enable readers to have a more comprehensive understanding of the international media language and political environment.Keywords: discourse construction, media language, network agenda-setting theory, sino-us trade friction
Procedia PDF Downloads 2561834 Characterization, Antibacterial and Cytotoxicity Evaluation of Silver Nanoparticles Synthesised Using Grewia lasiocarpa E. Mey. Ex Harv. Plant Extracts
Authors: Nneka Augustina Akwu, Yougasphree Naidoo
Abstract:
Molecular advancement in technology has created a means whereby the atoms and molecules (solid forms) of certain materials such as plants, can now be reduced to a range of 1-100 nanometres. Green synthesis of silver nanoparticles (AgNPs) was carried out at room temperature (RT) 25 ± 2°C and 80°C, using the metabolites in the aqueous extracts of the leaves and stem bark of Grewia lasiocarpa as reductants and stabilizing agents. The biosynthesized AgNPs were characterized by UV-Vis spectrophotometry, attenuated total reflectance - Fourier transforms infrared (ATR-FTIR) spectroscopy, nanoparticle tracking analysis (NTA), Energy Dispersive X-ray fluorescence scanning electron microscope (SEM-EDXRF) and high-resolution transmission electron microscopy (HRTEM). The AgNPs were biologically evaluated for antioxidant, antibacterial and cytotoxicity activities. The phytochemical and FTIR analyses revealed the presence of metabolites that act as reducing and capping agents, while the UV-Vis spectroscopy of the biosynthesized NPs showed absorption between 380-460 nm, confirming AgNP synthesis. The Zeta potential values were between -9.1 and -20.6 mV with a hydrodynamics diameter ranging from 38.3 to 46.7 nm. SEM and HRTEM analyses revealed that AgNPs were predominately spherical with an average particle size of 2- 31 nm for the leaves and 5-27 nm for the stem bark. The cytotoxicity IC50 values of the AgNPs against HeLa, Caco-2 and MCF-7 were >1 mg/mL. The AgNPs were sensitive to all strains of bacteria used, with methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922) being more sensitive to the AgNPs. Our findings propose that antibacterial and anticancer agents could be derived from these AgNPs of G. lasiocarpa, and warrant their further investigation.Keywords: antioxidant, cytotoxicity, Grewia lasiocarpa, silver nanoparticles, Zeta potentials
Procedia PDF Downloads 1401833 Understanding and Explaining Urban Resilience and Vulnerability: A Framework for Analyzing the Complex Adaptive Nature of Cities
Authors: Richard Wolfel, Amy Richmond
Abstract:
Urban resilience and vulnerability are critical concepts in the modern city due to the increased sociocultural, political, economic, demographic, and environmental stressors that influence current urban dynamics. Urban scholars need help explaining urban resilience and vulnerability. First, cities are dominated by people, which is challenging to model, both from an explanatory and a predictive perspective. Second, urban regions are highly recursive in nature, meaning they not only influence human action, but the structures of cities are constantly changing due to human actions. As a result, explanatory frameworks must continuously evolve as humans influence and are influenced by the urban environment in which they operate. Finally, modern cities have populations, sociocultural characteristics, economic flows, and environmental impacts on order of magnitude well beyond the cities of the past. As a result, the frameworks that seek to explain the various functions of a city that influence urban resilience and vulnerability must address the complex adaptive nature of cities and the interaction of many distinct factors that influence resilience and vulnerability in the city. This project develops a taxonomy and framework for organizing and explaining urban vulnerability. The framework is built on a well-established political development model that includes six critical classes of urban dynamics: political presence, political legitimacy, political participation, identity, production, and allocation. In addition, the framework explores how environmental security and technology influence and are influenced by the six elements of political development. The framework aims to identify key tipping points in society that act as influential agents of urban vulnerability in a region. This will help analysts and scholars predict and explain the influence of both physical and human geographical stressors in a dense urban area.Keywords: urban resilience, vulnerability, sociocultural stressors, political stressors
Procedia PDF Downloads 1151832 Rapid Assessment the Ability of Forest Vegetation in Kulonprogo to Store Carbon Using Multispectral Satellite Imagery and Vegetation Index
Authors: Ima Rahmawati, Nur Hafizul Kalam
Abstract:
Development of industrial and economic sectors in various countries very rapidly caused raising the greenhouse gas (GHG) emissions. Greenhouse gases are dominated by carbon dioxide (CO2) and methane (CH4) in the atmosphere that make the surface temperature of the earth always increase. The increasing gases caused by incomplete combustion of fossil fuels such as petroleum and coals and also high rate of deforestation. Yogyakarta Special Province which every year always become tourist destination, has a great potency in increasing of greenhouse gas emissions mainly from the incomplete combustion. One of effort to reduce the concentration of gases in the atmosphere is keeping and empowering the existing forests in the Province of Yogyakarta, especially forest in Kulonprogro is to be maintained the greenness so that it can absorb and store carbon maximally. Remote sensing technology can be used to determine the ability of forests to absorb carbon and it is connected to the density of vegetation. The purpose of this study is to determine the density of the biomass of forest vegetation and determine the ability of forests to store carbon through Photo-interpretation and Geographic Information System approach. Remote sensing imagery that used in this study is LANDSAT 8 OLI year 2015 recording. LANDSAT 8 OLI imagery has 30 meters spatial resolution for multispectral bands and it can give general overview the condition of the carbon stored from every density of existing vegetation. The method is the transformation of vegetation index combined with allometric calculation of field data then doing regression analysis. The results are model maps of density and capability level of forest vegetation in Kulonprogro, Yogyakarta in storing carbon.Keywords: remote sensing, carbon, kulonprogo, forest vegetation, vegetation index
Procedia PDF Downloads 3951831 Unlocking the Future of Grocery Shopping: Graph Neural Network-Based Cold Start Item Recommendations with Reverse Next Item Period Recommendation (RNPR)
Authors: Tesfaye Fenta Boka, Niu Zhendong
Abstract:
Recommender systems play a crucial role in connecting individuals with the items they require, as is particularly evident in the rapid growth of online grocery shopping platforms. These systems predominantly rely on user-centered recommendations, where items are suggested based on individual preferences, garnering considerable attention and adoption. However, our focus lies on the item-centered recommendation task within the grocery shopping context. In the reverse next item period recommendation (RNPR) task, we are presented with a specific item and challenged to identify potential users who are likely to consume it in the upcoming period. Despite the ever-expanding inventory of products on online grocery platforms, the cold start item problem persists, posing a substantial hurdle in delivering personalized and accurate recommendations for new or niche grocery items. To address this challenge, we propose a Graph Neural Network (GNN)-based approach. By capitalizing on the inherent relationships among grocery items and leveraging users' historical interactions, our model aims to provide reliable and context-aware recommendations for cold-start items. This integration of GNN technology holds the promise of enhancing recommendation accuracy and catering to users' individual preferences. This research contributes to the advancement of personalized recommendations in the online grocery shopping domain. By harnessing the potential of GNNs and exploring item-centered recommendation strategies, we aim to improve the overall shopping experience and satisfaction of users on these platforms.Keywords: recommender systems, cold start item recommendations, online grocery shopping platforms, graph neural networks
Procedia PDF Downloads 881830 Resolution of Artificial Intelligence Language Translation Technique Alongside Microsoft Office Presentation during Classroom Teaching: A Case of Kampala International University in Tanzania
Authors: Abigaba Sophia
Abstract:
Artificial intelligence (AI) has transformed the education sector by revolutionizing educational frameworks by providing new opportunities and innovative advanced platforms for language translation during the teaching and learning process. In today's education sector, the primary key to scholarly communication is language; therefore, translation between different languages becomes vital in the process of communication. KIU-T being an International University, admits students from different nations speaking different languages, and English is the official language; some students find it hard to grasp a word during teaching and learning. This paper explores the practical aspect of using artificial intelligence technologies in an advanced language translation manner during teaching and learning. The impact of this technology is reflected in the education strategies to equip students with the necessary knowledge and skills for professional activity in the best way they understand. The researcher evaluated the demand for this practice since students have to apply the knowledge they acquire in their native language to their countries in the best way they understand. The main objective is to improve student's language competence and lay a solid foundation for their future professional development. A descriptive-analytic approach was deemed best for the study to investigate the phenomena of language translation intelligence alongside Microsoft Office during the teaching and learning process. The study analysed the responses of 345 students from different academic programs. Based on the findings, the researcher recommends using the artificial intelligence language translation technique during teaching, and this requires the wisdom of human content designers and educational experts. Lecturers and students will be trained in the basic knowledge of this technique to improve the effectiveness of teaching and learning to meet the student’s needs.Keywords: artificial intelligence, language translation technique, teaching and learning process, Microsoft Office
Procedia PDF Downloads 781829 Assessment of Dimensions and Gully Recovery With GPS Receiver and RPA (Drone)
Authors: Mariana Roberta Ribeiro, Isabela de Cássia Caramello, Roberto Saverio Souza Costa
Abstract:
Currently, one of the most important environmental problems is soil degradation. This wear is the result of inadequate agricultural practices, with water erosion as the main agent. As the runoff water is concentrated in certain points, it can reach a more advanced stage, which are the gullies. In view of this, the objective of this work was to evaluate which methodology is most suitable for the purpose of elaborating a project for the recovery of a gully, relating work time, data reliability, and the final cost. The work was carried out on a rural road in Monte Alto - SP, where there is 0.30 hectares of area under the influence of a gully. For the evaluation, an aerophotogrammetric survey was used with RPA, with georeferenced points, and with a GNSS L1/L2 receiver. To assess the importance of georeferenced points, there was a comparison of altimetric data using the support points with altimetric data using only the aircraft's internal GPS. Another method used was the survey by conventional topography, where coordinates were collected by total station and L1/L2 Geodetic GPS receiver. Statistical analysis was performed using analysis of variance (ANOVA) using the F test (p<0.05), and the means between treatments were compared using the Tukey test (p<0.05). The results showed that the surveys carried out by aerial photogrammetry and by conventional topography showed no significant difference for the analyzed parameters. Considering the data presented, it is possible to conclude that, when comparing the parameters of accuracy, the final volume of the gully, and cost, for the purpose of elaborating a project for the recovery of a gully, the methodologies of aerial photogrammetric survey and conventional topography do not differ significantly. However, when working time, use of labor, and project detail are compared, the aerial photogrammetric survey proves to be more viable.Keywords: drones, erosion, soil conservation, technology in agriculture
Procedia PDF Downloads 1131828 DFT Insights into CO₂ Capture Mechanisms and Kinetics in Diamine-Appended Grafted Mg₂ (dobpdc) Metal- Organic Frameworks
Authors: Mao-Sheng Su, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Climate change is widely recognized as a global crisis, with anthropogenic CO₂ emissions from fossil fuel combustion and industrial processes being major contributors. To address this challenge, carbon capture and sequestration (CCS) technology has emerged as a key strategy for selectively capturing CO₂ from flue gas streams. Among the various solid adsorbents, metal–organic frameworks (MOFs) are notable for their extensive surface area and controllable pore chemistry. The porous MOF structure is comprised of metal ions or clusters coordinated to organic linker compounds. In particular, the pore parameters of MOFs are readily tunable, making them promising materials for CO₂ capture applications. Among these, amine-functionalized MOFs have demonstrated exceptional CO₂ capture abilities because their high uptake capacity and selectivity. In this study, we have investigated the CO₂ capture abilities and adsorption mechanisms of the diamine-appended framework N-Ethylethylenediamine-Mg₂(4,4’-dioxidobiphenyl-3,3’-dicarboxylate) (e-2-Mg₂(dobpdc)) using density functional theory (DFT) calculations. Previous studies have suggested that CO₂ can be captured via both outer- and inner-amine binding sites. Our findings reveal that CO₂ adsorption at the outer amine site is kinetically more favorable compared to the inner amine site, with a lower energy barrier of 1.34 eV for CO₂ physisorption to chemisorption compared to the inner amine, which has an activation barrier of 1.60 eV. Furthermore, we find that CO₂ adsorption is significantly enhanced in an alkaline environment, as deprotonation of the diamine molecule reduces the energy barrier to 0.24 eV. This theoretical study provides detailed insights into CO₂ adsorption in diamine-appended e-2-Mg₂(dobpdc) MOF, offering a deeper understanding of CO₂ capture mechanisms and valuable information for the advancement of effective CO₂ sequestration technologies.Keywords: DFT, MOFs, CO₂ capture, catalyst
Procedia PDF Downloads 251827 Establishment of a Test Bed for Integrated Map of Underground Space and Verification of GPR Exploration Equipment
Authors: Jisong Ryu, Woosik Lee, Yonggu Jang
Abstract:
The paper discusses the process of establishing a reliable test bed for verifying the usability of Ground Penetrating Radar (GPR) exploration equipment based on an integrated underground spatial map in Korea. The aim of this study is to construct a test bed consisting of metal and non-metal pipelines to verify the performance of GPR equipment and improve the accuracy of the underground spatial integrated map. The study involved the design and construction of a test bed for metal and non-metal pipe detecting tests. The test bed was built in the SOC Demonstration Research Center (Yeoncheon) of the Korea Institute of Civil Engineering and Building Technology, burying metal and non-metal pipelines up to a depth of 5m. The test bed was designed in both vehicle-type and cart-type GPR-mounted equipment. The study collected data through the construction of the test bed and conducting metal and non-metal pipe detecting tests. The study analyzed the reliability of GPR detecting results by comparing them with the basic drawings, such as the underground space integrated map. The study contributes to the improvement of GPR equipment performance evaluation and the accuracy of the underground spatial integrated map, which is essential for urban planning and construction. The study addressed the question of how to verify the usability of GPR exploration equipment based on an integrated underground spatial map and improve its performance. The study found that the test bed is reliable for verifying the performance of GPR exploration equipment and accurately detecting metal and non-metal pipelines using an integrated underground spatial map. The study concludes that the establishment of a test bed for verifying the usability of GPR exploration equipment based on an integrated underground spatial map is essential. The proposed Korean-style test bed can be used for the evaluation of GPR equipment performance and support the construction of a national non-metal pipeline exploration equipment performance evaluation center in Korea.Keywords: Korea-style GPR testbed, GPR, metal pipe detecting, non-metal pipe detecting
Procedia PDF Downloads 991826 LaMn₁₋ₓNiₓO₃ Perovskites as Oxygen Carriers for Chemical Looping Partial Oxidation of Methane
Authors: Xianglei Yin, Shen Wang, Baoyi Wang, Laihong Shen
Abstract:
Chemical looping partial oxidation of methane (CLPOM) is a novel technology to produce high-quality syngas with an auto-thermic process and low equipment investment. The development of oxygen carriers is important for the improvement of the CLPOM performance. In this work, the effect of the nickel-substitution proportion on the performance of LaMn₁₋ᵧNiᵧO₃₊δ perovskites for CLPOM was studied in the aspect of reactivity, syngas selectivity, resistance towards carbon deposition and thermal stability in cyclic redox process. The LaMn₁₋ₓNiₓO₃ perovskite oxides with x = 0, 0.1, 0.2 were prepared by the sol-gel method. The performance of LaMn₁₋ᵧNiᵧO₃₊δ perovskites for CLPOM was investigated through the characterization of XRD, H₂-TPR, XPS, and fixed-bed experiments. The characterization and test results suggest that the doping of nickel enhances the generation rate of syngas, leading to high syngas yield, methane conversion, and syngas selectivity. This is attributed to the that the introduction of nickel provides active sites to promote the methane activation on the surface and causes the addition of oxygen vacancies to accelerate the migration of oxygen anion in the bulk of oxygen carrier particles. On the other hand, the introduction of nickel causes carbon deposition to occur earlier. The best substitution proportion of nickel is y=0.1 and LaMn₀.₉Ni₀.₁O₃₊δ could produce high-quality syngas with a yield of 3.54 mmol·g⁻¹, methane conversion of 80.7%, and CO selectivity of 84.8% at 850℃. In addition, the LaMn₀.₉Ni₀.₁O₃₊δ oxygen carrier exhibits superior and stable performance in the cyclic redox process.Keywords: chemical looping partial oxidation of methane, LaMnO₃₊δ, Ni doping, syngas, carbon deposition
Procedia PDF Downloads 951825 Development and Characterisation of Nonwoven Fabrics for Apparel Applications
Authors: Muhammad Cheema, Tahir Shah, Subhash Anand
Abstract:
The cost of making apparel fabrics for garment manufacturing is very high because of their conventional manufacturing processes and new methods/processes are being constantly developed for making fabrics by unconventional methods. With the advancements in technology and the availability of the innovative fibres, durable nonwoven fabrics by using the hydroentanglement process that can compete with the woven fabrics in terms of their aesthetic and tensile properties are being developed. In the work reported here, the hydroentangled nonwoven fabrics were developed through a hybrid nonwoven manufacturing processes by using fibrillated Tencel® and bi-component (sheath/core) polyethylene/polyester (PE/PET) fibres, in which the initial nonwoven fabrics were prepared by the needle-punching method followed by hydroentanglement process carried out at optimal pressures of 50 to 250bars. The prepared fabrics were characterized according to the British Standards (BS 3356:1990, BS 9237:1995, BS 13934-1:1999) and the attained results were compared with those for a standard plain-weave cotton, polyester woven fabric and commercially available nonwoven fabric (Evolon®). The developed hydroentangled fabrics showed better drape properties owing to their flexural rigidity of 252 mg.cm in the machine direction, while the corresponding commercial hydroentangled fabric displayed a value of 1340 mg.cm in the machine direction. The tensile strength of the developed hydroentangled fabrics showed an approximately 200% increase than the commercial hydroentangled fabrics. Similarly, the developed hydroentangled fabrics showed higher properties in term of air permeability, such as the developed hydroentangled fabric exhibited 448 mm/sec and Evolon fabric exhibited 69 mm/sec at 100 Pa pressure. Thus for apparel fabrics, the work combining the existing methods of nonwoven production, provides additional benefits in terms of cost, time and also helps in reducing the carbon footprint for the apparel fabric manufacture.Keywords: hydroentanglement, nonwoven apparel, durable nonwoven, wearable nonwoven
Procedia PDF Downloads 2671824 Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images
Authors: Swathi Gopakumar, Sruthi Krishna, Shivasubramani Krishnamoorthy
Abstract:
Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer.Keywords: anisotropic diffusion, breast, Gaussian, level-set, thermograms
Procedia PDF Downloads 3781823 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium
Procedia PDF Downloads 4231822 The Proton Flow Battery for Storing Renewable Energy: Hydrogen Storage Capacity of Selected Activated Carbon Electrodes Made from Brown Coal
Authors: Amandeep Singh Oberoi, John Andrews, Alan L. Chaffee, Lachlan Ciddor
Abstract:
Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. Activated carbons with high internal surface area, high pore volume, light weight and easy availability have attracted considerable research interest as a solid-state hydrogen storage medium. This paper compares the physical characteristics and hydrogen storage capacities of four activated carbon electrodes made by different methods from brown coal. The fabrication methods for these samples are explained. Their proton conductivity was measured using electrochemical impedance spectroscopy, and their hydrogen storage capacity by galvanostatic charging and discharging in a three-electrode electrolytic cell with 1 mol sulphuric acid as electrolyte. The highest hydrogen storage capacity obtained was 1.29 wt%, which compares favourably with metal hydrides used in commercially available solid-state hydrogen storages. The hydrogen storage capacity of the samples increased monotonically with increasing BET surface area (calculated from CO2 adsorption method). The results point the way towards selecting high-performing electrodes for proton flow batteries that the competitiveness of this energy storage technology.Keywords: activated carbon, electrochemical hydrogen storage, proton flow battery, proton conductivity
Procedia PDF Downloads 574