Search results for: real volume
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7730

Search results for: real volume

1580 Computational Team Dynamics and Interaction Patterns in New Product Development Teams

Authors: Shankaran Sitarama

Abstract:

New Product Development (NPD) is invariably a team effort and involves effective teamwork. NPD team has members from different disciplines coming together and working through the different phases all the way from conceptual design phase till the production and product roll out. Creativity and Innovation are some of the key factors of successful NPD. Team members going through the different phases of NPD interact and work closely yet challenge each other during the design phases to brainstorm on ideas and later converge to work together. These two traits require the teams to have a divergent and a convergent thinking simultaneously. There needs to be a good balance. The team dynamics invariably result in conflicts among team members. While some amount of conflict (ideational conflict) is desirable in NPD teams to be creative as a group, relational conflicts (or discords among members) could be detrimental to teamwork. Team communication truly reflect these tensions and team dynamics. In this research, team communication (emails) between the members of the NPD teams is considered for analysis. The email communication is processed through a semantic analysis algorithm (LSA) to analyze the content of communication and a semantic similarity analysis to arrive at a social network graph that depicts the communication amongst team members based on the content of communication. The amount of communication (content and not frequency of communication) defines the interaction strength between the members. Social network adjacency matrix is thus obtained for the team. Standard social network analysis techniques based on the Adjacency Matrix (AM) and Dichotomized Adjacency Matrix (DAM) based on network density yield network graphs and network metrics like centrality. The social network graphs are then rendered for visual representation using a Metric Multi-Dimensional Scaling (MMDS) algorithm for node placements and arcs connecting the nodes (representing team members) are drawn. The distance of the nodes in the placement represents the tie-strength between the members. Stronger tie-strengths render nodes closer. Overall visual representation of the social network graph provides a clear picture of the team’s interactions. This research reveals four distinct patterns of team interaction that are clearly identifiable in the visual representation of the social network graph and have a clearly defined computational scheme. The four computational patterns of team interaction defined are Central Member Pattern (CMP), Subgroup and Aloof member Pattern (SAP), Isolate Member Pattern (IMP), and Pendant Member Pattern (PMP). Each of these patterns has a team dynamics implication in terms of the conflict level in the team. For instance, Isolate member pattern, clearly points to a near break-down in communication with the member and hence a possible high conflict level, whereas the subgroup or aloof member pattern points to a non-uniform information flow in the team and some moderate level of conflict. These pattern classifications of teams are then compared and correlated to the real level of conflict in the teams as indicated by the team members through an elaborate self-evaluation, team reflection, feedback form and results show a good correlation.

Keywords: team dynamics, team communication, team interactions, social network analysis, sna, new product development, latent semantic analysis, LSA, NPD teams

Procedia PDF Downloads 70
1579 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non Uniform Heat Source/Sink

Authors: Bandari Shankar, Yohannes Yirga

Abstract:

In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement

Keywords: unsteady, heat and mass transfer, manetohydrodynamics, nanofluid, non-uniform heat source/sink, stretching sheet

Procedia PDF Downloads 275
1578 A Machine Learning Approach for Intelligent Transportation System Management on Urban Roads

Authors: Ashish Dhamaniya, Vineet Jain, Rajesh Chouhan

Abstract:

Traffic management is one of the gigantic issue in most of the urban roads in al-most all metropolitan cities in India. Speed is one of the critical traffic parameters for effective Intelligent Transportation System (ITS) implementation as it decides the arrival rate of vehicles on an intersection which are majorly the point of con-gestions. The study aimed to leverage Machine Learning (ML) models to produce precise predictions of speed on urban roadway links. The research objective was to assess how categorized traffic volume and road width, serving as variables, in-fluence speed prediction. Four tree-based regression models namely: Decision Tree (DT), Random Forest (RF), Extra Tree (ET), and Extreme Gradient Boost (XGB)are employed for this purpose. The models' performances were validated using test data, and the results demonstrate that Random Forest surpasses other machine learning techniques and a conventional utility theory-based model in speed prediction. The study is useful for managing the urban roadway network performance under mixed traffic conditions and effective implementation of ITS.

Keywords: stream speed, urban roads, machine learning, traffic flow

Procedia PDF Downloads 70
1577 Accounting and Prudential Standards of Banks and Insurance Companies in EU: What Stakes for Long Term Investment?

Authors: Sandra Rigot, Samira Demaria, Frederic Lemaire

Abstract:

The starting point of this research is the contemporary capitalist paradox: there is a real scarcity of long term investment despite the boom of potential long term investors. This gap represents a major challenge: there are important needs for long term financing in developed and emerging countries in strategic sectors such as energy, transport infrastructure, information and communication networks. Moreover, the recent financial and sovereign debt crises, which have respectively reduced the ability of financial banking intermediaries and governments to provide long term financing, questions the identity of the actors able to provide long term financing, their methods of financing and the most appropriate forms of intermediation. The issue of long term financing is deemed to be very important by the EU Commission, as it issued a 2013 Green Paper (GP) on long-term financing of the EU economy. Among other topics, the paper discusses the impact of the recent regulatory reforms on long-term investment, both in terms of accounting (in particular fair value) and prudential standards for banks. For banks, prudential and accounting standards are also crucial. Fair value is indeed well adapted to the trading book in a short term view, but this method hardly suits for a medium and long term portfolio. Banks’ ability to finance the economy and long term projects depends on their ability to distribute credit and the way credit is valued (fair value or amortised cost) leads to different banking strategies. Furthermore, in the banking industry, accounting standards are directly connected to the prudential standards, as the regulatory requirements of Basel III use accounting figures with prudential filter to define the needs for capital and to compute regulatory ratios. The objective of these regulatory requirements is to prevent insolvency and financial instability. In the same time, they can represent regulatory constraints to long term investing. The balance between financial stability and the need to stimulate long term financing is a key question raised by the EU GP. Does fair value accounting contributes to short-termism in the investment behaviour? Should prudential rules be “appropriately calibrated” and “progressively implemented” not to prevent banks from providing long-term financing? These issues raised by the EU GP lead us to question to what extent the main regulatory requirements incite or constrain banks to finance long term projects. To that purpose, we study the 292 responses received by the EU Commission during the public consultation. We analyze these contributions focusing on particular questions related to fair value accounting and prudential norms. We conduct a two stage content analysis of the responses. First, we proceed to a qualitative coding to identify arguments of respondents and subsequently we run a quantitative coding in order to conduct statistical analyses. This paper provides a better understanding of the position that a large panel of European stakeholders have on these issues. Moreover, it adds to the debate on fair value accounting and its effects on prudential requirements for banks. This analysis allows us to identify some short term bias in banking regulation.

Keywords: basel 3, fair value, securitization, long term investment, banks, insurers

Procedia PDF Downloads 291
1576 The Artificial Intelligence Driven Social Work

Authors: Avi Shrivastava

Abstract:

Our world continues to grapple with a lot of social issues. Economic growth and scientific advancements have not completely eradicated poverty, homelessness, discrimination and bias, gender inequality, health issues, mental illness, addiction, and other social issues. So, how do we improve the human condition in a world driven by advanced technology? The answer is simple: we will have to leverage technology to address some of the most important social challenges of the day. AI, or artificial intelligence, has emerged as a critical tool in the battle against issues that deprive marginalized and disadvantaged groups of the right to enjoy benefits that a society offers. Social work professionals can transform their lives by harnessing it. The lack of reliable data is one of the reasons why a lot of social work projects fail. Social work professionals continue to rely on expensive and time-consuming primary data collection methods, such as observation, surveys, questionnaires, and interviews, instead of tapping into AI-based technology to generate useful, real-time data and necessary insights. By leveraging AI’s data-mining ability, we can gain a deeper understanding of how to solve complex social problems and change lives of people. We can do the right work for the right people and at the right time. For example, AI can enable social work professionals to focus their humanitarian efforts on some of the world’s poorest regions, where there is extreme poverty. An interdisciplinary team of Stanford scientists, Marshall Burke, Stefano Ermon, David Lobell, Michael Xie, and Neal Jean, used AI to spot global poverty zones – identifying such zones is a key step in the fight against poverty. The scientists combined daytime and nighttime satellite imagery with machine learning algorithms to predict poverty in Nigeria, Uganda, Tanzania, Rwanda, and Malawi. In an article published by Stanford News, Stanford researchers use dark of night and machine learning, Ermon explained that they provided the machine-learning system, an application of AI, with the high-resolution satellite images and asked it to predict poverty in the African region. “The system essentially learned how to solve the problem by comparing those two sets of images [daytime and nighttime].” This is one example of how AI can be used by social work professionals to reach regions that need their aid the most. It can also help identify sources of inequality and conflict, which could reduce inequalities, according to Nature’s study, titled The role of artificial intelligence in achieving the Sustainable Development Goals, published in 2020. The report also notes that AI can help achieve 79 percent of the United Nation’s (UN) Sustainable Development Goals (SDG). AI is impacting our everyday lives in multiple amazing ways, yet some people do not know much about it. If someone is not familiar with this technology, they may be reluctant to use it to solve social issues. So, before we talk more about the use of AI to accomplish social work objectives, let’s put the spotlight on how AI and social work can complement each other.

Keywords: social work, artificial intelligence, AI based social work, machine learning, technology

Procedia PDF Downloads 102
1575 The Potential of Children's Stories to Promote Equitable Classroom Integration: A Case Study of Diverse Refugee Students in an Algerian Secondary School

Authors: Sarra Boukhari

Abstract:

Refugee studies have lately emerged as a focused area of research, yet there is a vast knowledge gap vis-à-vis the integration experiences and socialization processes of diversified refugees in different educational settings. This research intends to study the diverse experiences of African refugee children in an Algerian mainstream secondary school. The study seeks to explore the nature and complexity of refugees’ experiences and their relevance to the integration processes. Highlighting these diverse perspectives will be for the sake of understanding ways by which integration could be facilitated amongst refugees within mainstream school classrooms. Subsequently, this study shall investigate the possibility of story-telling activities in exploring and dealing with different issues of integration met by refugees in the predefined context. Accordingly, stories and narratives will be used to discuss values designed by the Living Values Educational Programme (LVEP) that could change the negative effect of war and conflict. These stories can potentially develop young refugees’ understanding of the key social concepts that can facilitate acceptance and integration inside refugee communities and the host society. This study invokes the theoretical framework provided by Jerome Bruner’s works on constructing the narrative through real-life experiences. In practice, the idea is to voice children’ sense-making of their own world and integrate it with good values to help them construct a positive narrative. Qualitative methods will be integrated to investigate the readiness and acceptance of African refugee children to each other in an Algerian classroom. Two phases of data collection will be conducted. The first phase will attempt to answer the first research question about the challenges that refugee children encounter in their education in a host society. In this phase, classroom observation and semi-structured interviews will be held to explore the context regarding the research question. After issues and challenges have been identified in this phase, topics of discussion (values) that reflect these issues will be designed for the second phase. The use of participatory methods with children in the second stage of the data collection will help in discussing the core values by giving them the optionality of the arts-based tools through which they can express themselves. Story-telling was the idea behind the activities. It could help children express their thoughts and feelings about the discussed values freely. The methods used promoted a very integrating atmosphere in the classroom where both refugee and non-refugee students showed cohesion and integration. Children identified many issues in their integration processes that exceeded the classroom or the education setting. Political and economic opinions were openly shared in the class. Overall, the study is an attempt to reveal how refugee children in Algeria are experiencing integration in their education. The study will be unveiling the impact of the context on the integration of refugee children. The process of integration involved in this context helped to shape refugee experiences in a very unique way.

Keywords: children’s agency, narrative construction, refugee children, refugee experiences, story-telling

Procedia PDF Downloads 138
1574 Expressing Locality in Learning English: A Study of English Textbooks for Junior High School Year VII-IX in Indonesia Context

Authors: Agnes Siwi Purwaning Tyas, Dewi Cahya Ambarwati

Abstract:

This paper concerns the language learning that develops as a habit formation and a constructive process while exercising an oppressive power to construct the learners. As a locus of discussion, the investigation problematizes the transfer of English language to Indonesian students of junior high school through the use of English textbooks ‘Real Time: An Interactive English Course for Junior High School Students Year VII-IX’. English language has long performed as a global language and it is a demand upon the non-English native speakers to master the language if they desire to become internationally recognized individuals. Generally, English teachers teach the language in accordance with the nature of language learning in which they are trained and expected to teach the language within the culture of the target language. This provides a potential soft cultural penetration of a foreign ideology through language transmission. In the context of Indonesia, learning English as international language is considered dilemmatic. Most English textbooks in Indonesia incorporate cultural elements of the target language which in some extent may challenge the sensitivity towards local cultural values. On the other hand, local teachers demand more English textbooks for junior high school students which can facilitate cultural dissemination of both local and global values and promote learners’ cultural traits of both cultures to avoid misunderstanding and confusion. It also aims to support language learning as bidirectional process instead of instrument of oppression. However, sensitizing and localizing this foreign language is not sufficient to restrain its soft infiltration. In due course, domination persists making the English language as an authoritative language and positioning the locality as ‘the other’. Such critical premise has led to a discursive analysis referring to how the cultural elements of the target language are presented in the textbooks and whether the local characteristics of Indonesia are able to gradually reduce the degree of the foreign oppressive ideology. The three textbooks researched were written by non-Indonesian author edited by two Indonesia editors published by a local commercial publishing company, PT Erlangga. The analytical elaboration examines the cultural characteristics in the forms of names, terminologies, places, objects and imageries –not the linguistic aspect– of both cultural domains; English and Indonesia. Comparisons as well as categorizations were made to identify the cultural traits of each language and scrutinize the contextual analysis. In the analysis, 128 foreign elements and 27 local elements were found in textbook for grade VII, 132 foreign elements and 23 local elements were found in textbook for grade VIII, while 144 foreign elements and 35 local elements were found in grade IX textbook, demonstrating the unequal distribution of both cultures. Even though the ideal pedagogical approach of English learning moves to a different direction by the means of inserting local elements, the learners are continuously imposed to the culture of the target language and forced to internalize the concept of values under the influence of the target language which tend to marginalize their native culture.

Keywords: bidirectional process, English, local culture, oppression

Procedia PDF Downloads 267
1573 The Role of Poling Protocol on Augmentation of Magnetoelectricity in BCZT/NZFO Layered Composites

Authors: Pankhuri Bansal, Sanjeev Kumar

Abstract:

We examined the exotic role of electrical poling of layered BCZT-NZFO bulk composite for sustainable advancement of magnetoelectric (ME) technology. Practically, it seems quite difficult to access the full potential of ME composites due to their weak ME coupling performances. Using a standard poling protocol, we successfully deployed the coupling performance of laminated ME composite, comprised of a ferroelectric (FE) layer of BCZT and a ferrite layer of NZFO. However, the ME coupling constant of laminated composite is optimized by lowering the volume fraction of the FE component to strengthen the mechanical strain in the piezoelectric layer while fixing the thickness of the magnetostrictive ferrite layer. Here, we employed systematic zero field cooled (ZFC) and field cooled (FC) electrical poling protocol on morphotropic phase boundary (MPB) based BCZT composition, well-appreciated for it’s remarkable electromechanical activity. We report a record augmentation in magnetoelectric coupling as a consequence of a prudent field-cooled poling mechanism. On the basis of our findings, we emphasize that the degree of magnetoelectricity may be significantly improved for the miniaturization of efficient devices via proper execution of the poling technique.

Keywords: magnetoelectric, lead-free, ferroelctric, ferromagnetic, energy harvesting

Procedia PDF Downloads 43
1572 Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method

Authors: M. N. Nwodo, Y. P. Cheng, N. H. Minh

Abstract:

In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones.

Keywords: discrete element method, fluid flow, parametric study, sand production/bonds failure

Procedia PDF Downloads 323
1571 Fish Oil and Its Methyl Ester as an Alternate Fuel in the Direct Injection Diesel Engine

Authors: Pavan Pujar

Abstract:

Mackerel Fish oil was used as the raw material to produce the biodiesel in this study. The raw oil (RO) was collected from discarded fish products. This oil was filtered and heated to 110oC and made it moisture free. The filtered and moisture free RO was transesterified to produce biodiesel. The experimental results showed that oleic acid and lauric acid were the two major components of the fish oil biodiesel (FOB). Palmitic acid and linoleic acid were found approximately same in the quantity. The fuel properties kinematic viscosity, flash point, fire point, specific gravity, calorific value, cetane number, density, acid value, saponification value, iodine value, cloud point, pour point, ash content, Cu strip corrosion, carbon residue, API gravity were determined for FOB. A comparative study of the properties was carried out with RO and Neat diesel (ND). It was found that Cetane number was 59 for FOB which was more than RO, which showed 57. Blends (B20, B40, B60, B80: example: B20: 20% FOB + 80% ND) of FOB and ND were prepared on volume basis and comparative study was carried out with ND and FOB. Performance parameters BSFE, BSEC, A:F Ratio, Break thermal efficiency were analyzed and it was found that complete replacement of neat diesel (ND) is possible without any engine modifications.

Keywords: fish oil biodiesel, raw oil, blends, performance parameters

Procedia PDF Downloads 413
1570 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall

Authors: Sanjib Kr Pal, S. Bhattacharyya

Abstract:

Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.

Keywords: conjugate heat transfer, mixed convection, nano fluid, wall waviness

Procedia PDF Downloads 254
1569 Set-point Performance Evaluation of Robust ‎Back-Stepping Control Design for a Nonlinear ‎Electro-‎Hydraulic Servo System

Authors: Maria Ahmadnezhad, Seyedgharani Ghoreishi ‎

Abstract:

Electrohydraulic servo system have been used in industry in a wide ‎number of applications. Its ‎dynamics are highly nonlinear and also ‎have large extent of model uncertainties and external ‎disturbances. ‎In this thesis, a robust back-stepping control (RBSC) scheme is ‎proposed to overcome ‎the problem of disturbances and system ‎uncertainties effectively and to improve the set-point ‎performance ‎of EHS systems. In order to implement the proposed control ‎scheme, the system ‎uncertainties in EHS systems are considered as ‎total leakage coefficient and effective oil volume. In ‎addition, in ‎order to obtain the virtual controls for stabilizing system, the ‎update rule for the ‎system uncertainty term is induced by the ‎Lyapunov control function (LCF). To verify the ‎performance and ‎robustness of the proposed control system, computer simulation of ‎the ‎proposed control system using Matlab/Simulink Software is ‎executed. From the computer ‎simulation, it was found that the ‎RBSC system produces the desired set-point performance and ‎has ‎robustness to the disturbances and system uncertainties of ‎EHS systems.‎

Keywords: electro hydraulic servo system, back-stepping control, robust back-‎stepping control, Lyapunov redesign‎

Procedia PDF Downloads 1004
1568 Role of Vitamin-D in Reducing Need for Supplemental Oxygen Among COVID-19 Patients

Authors: Anita Bajpai, Sarah Duan, Ashlee Erskine, Shehzein Khan, Raymond Kramer

Abstract:

Introduction: This research focuses on exploring the beneficial effects if any, of Vitamin-D in reducing the need for supplemental oxygen among hospitalized COVID-19 patients. Two questions are investigated – Q1)Doeshaving a healthy level of baselineVitamin-D 25-OH (≥ 30ng/ml) help,andQ2) does administering Vitamin-D therapy after-the-factduring inpatient hospitalization help? Methods/Study Design: This is a comprehensive, retrospective, observational study of all inpatients at RUHS from March through December 2020 who tested positive for COVID-19 based on real-time reverse transcriptase–polymerase chain reaction assay of nasal and pharyngeal swabs and rapid assay antigen test. To address Q1, we looked atall N1=182 patients whose baseline plasma Vitamin-D 25-OH was known and who needed supplemental oxygen. Of this, a total of 121 patients had a healthy Vitamin-D level of ≥30 ng/mlwhile the remaining 61 patients had low or borderline (≤ 29.9ng/ml)level. Similarly, for Q2, we looked at a total of N2=893 patients who were given supplemental oxygen, of which713 were not given Vitamin-D and 180 were given Vitamin-D therapy. The numerical value of the maximum amount of oxygen flow rate(dependent variable) administered was recorded for each patient. The mean values and associated standard deviations for each group were calculated. Thesetwo sets of independent data served as the basis for independent, two-sample t-Test statistical analysis. To be accommodative of any reasonable benefitof Vitamin-D, ap-value of 0.10(α< 10%) was set as the cutoff point for statistical significance. Results: Given the large sample sizes, the calculated statistical power for both our studies exceeded the customary norm of 80% or better (β< 0.2). For Q1, the mean value for maximumoxygen flow rate for the group with healthybaseline level of Vitamin-D was 8.6 L/min vs.12.6L/min for those with low or borderline levels, yielding a p-value of 0.07 (p < 0.10) with the conclusion that those with a healthy level of baseline Vitamin-D needed statistically significant lower levels of supplemental oxygen. ForQ2, the mean value for a maximum oxygen flow rate for those not administered Vitamin-Dwas 12.5 L/min vs.12.8L/min for those given Vitamin-D, yielding a p-valueof 0.87 (p > 0.10). We thereforeconcludedthat there was no statistically significant difference in the use of oxygen therapy between those who were or were not administered Vitamin-D after-the-fact in the hospital. Discussion/Conclusion: We found that patients who had healthy levels of Vitamin-D at baseline needed statistically significant lower levels of supplemental oxygen. Vitamin-D is well documented, including in a recent article in the Lancet, for its anti-inflammatory role as an adjuvant in the regulation of cytokines and immune cells. Interestingly, we found no statistically significant advantage for giving Vitamin-D to hospitalized patients. It may be a case of “too little too late”. A randomized clinical trial reported in JAMA also did not find any reduction in hospital stay of patients given Vitamin-D. Such conclusions come with a caveat that any delayed marginal benefits may not have materialized promptly in the presence of a significant inflammatory condition. Since Vitamin-D is a low-cost, low-risk option, it may still be useful on an inpatient basis until more definitive findings are established.

Keywords: COVID-19, vitamin-D, supplemental oxygen, vitamin-D in primary care

Procedia PDF Downloads 153
1567 Foslip Loaded and CEA-Affimer Functionalised Silica Nanoparticles for Fluorescent Imaging of Colorectal Cancer Cells

Authors: Yazan S. Khaled, Shazana Shamsuddin, Jim Tiernan, Mike McPherson, Thomas Hughes, Paul Millner, David G. Jayne

Abstract:

Introduction: There is a need for real-time imaging of colorectal cancer (CRC) to allow tailored surgery to the disease stage. Fluorescence guided laparoscopic imaging of primary colorectal cancer and the draining lymphatics would potentially bring stratified surgery into clinical practice and realign future CRC management to the needs of patients. Fluorescent nanoparticles can offer many advantages in terms of intra-operative imaging and therapy (theranostic) in comparison with traditional soluble reagents. Nanoparticles can be functionalised with diverse reagents and then targeted to the correct tissue using an antibody or Affimer (artificial binding protein). We aimed to develop and test fluorescent silica nanoparticles and targeted against CRC using an anti-carcinoembryonic antigen (CEA) Affimer (Aff). Methods: Anti-CEA and control Myoglobin Affimer binders were subcloned into the expressing vector pET11 followed by transformation into BL21 Star™ (DE3) E.coli. The expression of Affimer binders was induced using 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). Cells were harvested, lysed and purified using nickle chelating affinity chromatography. The photosensitiser Foslip (soluble analogue of 5,10,15,20-Tetra(m-hydroxyphenyl) chlorin) was incorporated into the core of silica nanoparticles using water-in-oil microemulsion technique. Anti-CEA or control Affs were conjugated to silica nanoparticles surface using sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo SMCC) chemical linker. Binding of CEA-Aff or control nanoparticles to colorectal cancer cells (LoVo, LS174T and HC116) was quantified in vitro using confocal microscopy. Results: The molecular weights of the obtained band of Affimers were ~12.5KDa while the diameter of functionalised silica nanoparticles was ~80nm. CEA-Affimer targeted nanoparticles demonstrated 9.4, 5.8 and 2.5 fold greater fluorescence than control in, LoVo, LS174T and HCT116 cells respectively (p < 0.002) for the single slice analysis. A similar pattern of successful CEA-targeted fluorescence was observed in the maximum image projection analysis, with CEA-targeted nanoparticles demonstrating 4.1, 2.9 and 2.4 fold greater fluorescence than control particles in LoVo, LS174T, and HCT116 cells respectively (p < 0.0002). There was no significant difference in fluorescence for CEA-Affimer vs. CEA-Antibody targeted nanoparticles. Conclusion: We are the first to demonstrate that Foslip-doped silica nanoparticles conjugated to anti-CEA Affimers via SMCC allowed tumour cell-specific fluorescent targeting in vitro, and had shown sufficient promise to justify testing in an animal model of colorectal cancer. CEA-Affimer appears to be a suitable targeting molecule to replace CEA-Antibody. Targeted silica nanoparticles loaded with Foslip photosensitiser is now being optimised to drive photodynamic killing, via reactive oxygen generation.

Keywords: colorectal cancer, silica nanoparticles, Affimers, antibodies, imaging

Procedia PDF Downloads 240
1566 Artificial Neural Network and Statistical Method

Authors: Tomas Berhanu Bekele

Abstract:

Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.

Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression

Procedia PDF Downloads 67
1565 Platform Development for Vero Cell Culture on Microcarriers Using Dissociation-Reassociation Method

Authors: Thanunthon Bowornsakulwong, Charukorn Charukarn, Franck Courtes, Panit Kitsubun, Lalintip Horcharoen

Abstract:

Vero cell is a continuous cell line that is widely used for the production of viral vaccines. However, due to its adherent characteristic, scaling up strategy in large-scale production remains complicated and thus limited. Consequently, suspension-like Vero cell culture processes based on microcarriers have been introduced and employed while also providing increased surface area per volume unit. However, harvesting Vero cells from microcarriers is a huge challenge due to difficulties in cells detaching, lower recovery yield, time-consuming and dissociation agent carry-over. To overcome these problems, we developed a dissociation-association platform technology for detaching and re-attaching cells during subculturing from microcarriers to microcarriers, which will be conveniently applied to seed trains strategies in large scale bioreactors. Herein, Hillex-2 was used to culture Vero cells in serum-containing media using spinner flasks as a scale-down model. The overall confluency of cells on microcarriers was observed using inverted microscope, and the sample cells were daily detached in order to obtain the kinetics data. The metabolites consumption and by-products formation were determined by Nova Biomedical BioprofileFlex.

Keywords: dissociation-reassociation, microcarrier, scale up, Vero cell

Procedia PDF Downloads 133
1564 Accelerating Personalization Using Digital Tools to Drive Circular Fashion

Authors: Shamini Dhana, G. Subrahmanya VRK Rao

Abstract:

The fashion industry is advancing towards a mindset of zero waste, personalization, creativity, and circularity. The trend of upcycling clothing and materials into personalized fashion is being demanded by the next generation. There is a need for a digital tool to accelerate the process towards mass customization. Dhana’s D/Sphere fashion technology platform uses digital tools to accelerate upcycling. In essence, advanced fashion garments can be designed and developed via reuse, repurposing, recreating activities, and using existing fabric and circulating materials. The D/Sphere platform has the following objectives: to provide (1) An opportunity to develop modern fashion using existing, finished materials and clothing without chemicals or water consumption; (2) The potential for an everyday customer and designer to use the medium of fashion for creative expression; (3) A solution to address the global textile waste generated by pre- and post-consumer fashion; (4) A solution to reduce carbon emissions, water, and energy consumption with the participation of all stakeholders; (5) An opportunity for brands, manufacturers, retailers to work towards zero-waste designs and as an alternative revenue stream. Other benefits of this alternative approach include sustainability metrics, trend prediction, facilitation of disassembly and remanufacture deep learning, and hyperheuristics for high accuracy. A design tool for mass personalization and customization utilizing existing circulating materials and deadstock, targeted to fashion stakeholders will lower environmental costs, increase revenues through up to date upcycled apparel, produce less textile waste during the cut-sew-stitch process, and provide a real design solution for the end customer to be part of circular fashion. The broader impact of this technology will result in a different mindset to circular fashion, increase the value of the product through multiple life cycles, find alternatives towards zero waste, and reduce the textile waste that ends up in landfills. This technology platform will be of interest to brands and companies that have the responsibility to reduce their environmental impact and contribution to climate change as it pertains to the fashion and apparel industry. Today, over 70% of the $3 trillion fashion and apparel industry ends up in landfills. To this extent, the industry needs such alternative techniques to both address global textile waste as well as provide an opportunity to include all stakeholders and drive circular fashion with new personalized products. This type of modern systems thinking is currently being explored around the world by the private sector, organizations, research institutions, and governments. This technological innovation using digital tools has the potential to revolutionize the way we look at communication, capabilities, and collaborative opportunities amongst stakeholders in the development of new personalized and customized products, as well as its positive impacts on society, our environment, and global climate change.

Keywords: circular fashion, deep learning, digital technology platform, personalization

Procedia PDF Downloads 65
1563 Learning the Most Common Causes of Major Industrial Accidents and Apply Best Practices to Prevent Such Accidents

Authors: Rajender Dahiya

Abstract:

Investigation outcomes of major process incidents have been consistent for decades and validate that the causes and consequences are often identical. The debate remains as we continue to experience similar process incidents even with enormous development of new tools, technologies, industry standards, codes, regulations, and learning processes? The objective of this paper is to investigate the most common causes of major industrial incidents and reveal industry challenges and best practices to prevent such incidents. The author, in his current role, performs audits and inspections of a variety of high-hazard industries in North America, including petroleum refineries, chemicals, petrochemicals, manufacturing, etc. In this paper, he shares real life scenarios, examples, and case studies from high hazards operating facilities including key challenges and best practices. This case study will provide a clear understanding of the importance of near miss incident investigation. The incident was a Safe operating limit excursion. The case describes the deficiencies in management programs, the competency of employees, and the culture of the corporation that includes hazard identification and risk assessment, maintaining the integrity of safety-critical equipment, operating discipline, learning from process safety near misses, process safety competency, process safety culture, audits, and performance measurement. Failure to identify the hazards and manage the risks of highly hazardous materials and processes is one of the primary root-causes of an incident, and failure to learn from past incidents is the leading cause of the recurrence of incidents. Several investigations of major incidents discovered that each showed several warning signs before occurring, and most importantly, all were preventable. The author will discuss why preventable incidents were not prevented and review the mutual causes of learning failures from past major incidents. The leading causes of past incidents are summarized below. Management failure to identify the hazard and/or mitigate the risk of hazardous processes or materials. This process starts early in the project stage and continues throughout the life cycle of the facility. For example, a poorly done hazard study such as HAZID, PHA, or LOPA is one of the leading causes of the failure. If this step is performed correctly, then the next potential cause is. Management failure to maintain the integrity of safety critical systems and equipment. In most of the incidents, mechanical integrity of the critical equipment was not maintained, safety barriers were either bypassed, disabled, or not maintained. The third major cause is Management failure to learn and/or apply learning from the past incidents. There were several precursors before those incidents. These precursors were either ignored altogether or not taken seriously. This paper will conclude by sharing how a well-implemented operating management system, good process safety culture, and competent leaders and staff contributed to managing the risks to prevent major incidents.

Keywords: incident investigation, risk management, loss prevention, process safety, accident prevention

Procedia PDF Downloads 57
1562 Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models

Authors: A. Shebani, C. Pislaru

Abstract:

Wear of materials is an everyday experience and has been observed and studied for long time. The prediction of wear is a fundamental problem in the industrial field, mainly correlated to the planning of maintenance interventions and economy. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin which is made of steel with a tip, is positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument; where the Talysurf profilometer was used to measure the pin/disc wear scar depth, and the alicona was used to measure the volume loss for pin and disc. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling and the simulation results are implemented by using the Matlab program. This paper focuses on how the alicona can be considered as a powerful tool for wear measurements and how the neural network is an effective algorithm for wear estimation.

Keywords: wear modelling, Archard Model, ASTM Model, Neural Networks Model, Pin-on-disc Test, Talysurf, digital microscope, Alicona

Procedia PDF Downloads 456
1561 The Practical Application of Sensory Awareness in Developing Healthy Communication, Emotional Regulation, and Emotional Introspection

Authors: Node Smith

Abstract:

Developmental psychology has long focused on modeling consciousness, often neglecting practical application and clinical utility. This paper aims to bridge this gap by exploring the practical application of physical and sensory tracking and awareness in fostering essential skills for conscious development. Higher conscious development requires practical skills such as self-agency, the ability to hold multiple perspectives, and genuine altruism. These are not personality characteristics but areas of skillfulness that address many cultural deficiencies impacting our world. They are intertwined with individual as well as collective conscious development. Physical, sensory tracking and awareness are crucial for developing these skills and offer the added benefit of cultivating healthy communication, emotional regulation, and introspection. Unlike skills such as throwing a baseball, which can be developed through practice or innate ability, the ability to introspect, track physical sensations, and observe oneself objectively is essential for advancing consciousness. Lacking these skills leads to cultural and individual anxiety, helplessness, and a lack of agency, manifesting as blame-shifting and irresponsibility. The inability to hold multiple perspectives stifles altruism, as genuine consideration for a global community requires accepting other perspectives without conditions. Physical and sensory tracking enhances self-awareness by grounding individuals in their bodily experiences. This grounding is critical for emotional regulation, allowing individuals to identify and process emotions in real-time, preventing overwhelm and fostering balance. Techniques like mindfulness meditation and body scan exercises attune individuals to their physical sensations, providing insights into their emotional states. Sensory awareness also facilitates healthy communication by fostering empathy and active listening. When individuals are in tune with their physical sensations, they become more present in interactions, picking up on subtle cues and responding thoughtfully. This presence reduces misunderstandings and conflicts, promoting more effective communication. The ability to introspect and observe oneself objectively is key to emotional introspection. This skill allows individuals to reflect on their thoughts, feelings, and behaviors, identify patterns, recognize areas for growth, and make conscious choices aligned with their values and goals. In conclusion, physical and sensory tracking and awareness are vital for developing the skills necessary for higher consciousness development. By fostering self-agency, emotional regulation, and the ability to hold multiple perspectives, these practices contribute to healthier communication, deeper emotional introspection, and a more altruistic and connected global community. Integrating these practices into developmental psychology and therapeutic interventions holds significant promise for both individual and societal transformation.

Keywords: conscious development, emotional introspection, emotional regulation, self-agency, stages of development

Procedia PDF Downloads 44
1560 Global Service-Learning: Lessons Learned from Teacher Candidates

Authors: Miranda Lin

Abstract:

This project examined the impact of a globally focused service-learning project implemented in a multicultural education course in a Midwestern university. This project facilitated critical self-reflection and build cross-cultural competence while nurturing a partnership with two schools that serve students with disabilities in Vietnam. Through a service-learning project, pre-service teachers connected via Skype with the principals/teachers at schools in Vietnam to identify and subsequently develop needed instructional materials for students with mild, moderate, and severe disabilities. Qualitative data sources include students’ intercultural competence self-reflection survey (pre-test and post-test), reflections, discussions, service project, and lesson plans. Literature Review- Global service-learning is a teaching strategy that encompasses service experiences both in the local community and abroad. Drawing on elements of global learning and international service-learning, global service-learning experiences are guided by a framework that is designed to support global learning outcomes and involve direct engagement with difference. By engaging in real-world challenges, global service-learning experiences can support the achievement of learning outcomes such as civic. Knowledge and intercultural knowledge and competence. Intercultural competence development is considered essential for cooperative and reciprocal engagement with community partners.Method- Participants (n=27*) were mostly elementary and early childhood pre-service teachers who were enrolled in a multicultural education course. All but one was female. Among the pre-service teachers, one Asian American, two Latinas, and the rest were White. Two pre-service teachers identified themselves as from the low socioeconomic families and the rest were from the middle to upper middle class.The global service-learning project was implemented in the spring of 2018. Two Vietnamese schools that served students with disabilities agreed to be the global service-learning sites. Both schools were located in an urban city.Systematic collection of data coincided with the course schedule as follows: an initial intercultural competence self-reflection survey completed in week one, guided reflections submitted in week 1, 9, and 16, written lesson plans and supporting materials for the service project submitted in week 16, and a final intercultural competence self-reflection survey completed in week 16. Significance-This global service-learning project has helped participants meet Merryfield’s goals in various degrees. They 1) learned knowledge and skills in the basics of instructional planning, 2) used a variety of instructional methods that encourage active learning, meet the different learning styles of students, and are congruent with content and educational goals, 3) gained the awareness and support of their students as individuals and as learners, 4) developed questioning techniques that build higher-level thinking skills, and 5) made progress in critically reflecting on and improving their own teaching and learning as a professional educator as a result of this project.

Keywords: global service-learning, teacher education, intercultural competence, diversity

Procedia PDF Downloads 117
1559 Diet-Induced Epigenetic Transgenerational Inheritance

Authors: Gaby Fahmy

Abstract:

The last decades have seen a rise in metabolic disorders like diabetes, obesity, and fatty liver disease around the world. Environmental factors, especially nutrition, have contributed to this increase. Additionally, pre-conceptional parental nutritional choices have been shown to result in epigenetic modifications affecting gene expression during the developmental process in-utero. These epigenetic modifications have also been seen to extend to the following offspring in a trans-generational effect. This further highlights the significance and relevance of epigenetics and epigenetic tags, which were previously thought to be stripped in newly formed embryos. Suitable prenatal nutrition may partially counteract adverse outcomes caused by exposures to environmental contaminants, ultimately resulting in improved metabolic profiles like body weight and glucose homeostasis. This was seen in patients who were given dietary interventions like restrictive caloric intake, intermittent fasting, and time-restricted feeding. Changes in nutrition are pivotal in the regulation of epigenetic modifications that are transgenerational. For example, dietary choices such as fatty foods vs. vegetables and nuts in fathers were shown to significantly affect sperm motility and volume. This was pivotal in understanding the importance of paternal inheritance. Further research in the field is needed as it remains unclear how many generations are affected by these changes.

Keywords: epigenetics, transgenerational, diet, fasting

Procedia PDF Downloads 96
1558 Trade Outcomes of Agri-Environmental Regulations’ Heterogeneity: New Evidence from a Gravity Model

Authors: Najla Kamergi

Abstract:

In a world context of increasing interest in environmental issues, this paper investigates the effect of agri-environmental regulations heterogeneity on the volume of crop commodities’ exports using a theoretically justified gravity model of Anderson and van Wincoop (2003) for the 2003–2013 period. Our findings show that the difference in exporter and importer environmental regulations is more relevant to agricultural trade than trade agreements. In fact, the environmental gap between the two partners is decreasing slightly but significantly crop commodities’ exports according to our results. We also note that the sector of fruit and vegetables is more sensitive to this determinant, unlike cereals that remain relatively less affected. Furthermore, high-income countries have more tendency to trade with countries characterized by similar environmental stringency. Further results show that the BRICS are clearly importing from developed countries where the environmental difference is relatively important. It is likely that emerging countries are witnessing a growing demand for high-quality and “green” crop commodities captured by high-income exporters. Surprisingly, our results suggest that low and middle-income countries with the same level of environmental stringency are more likely to trade crop commodities.

Keywords: agricultural trade, environment, gravity model, food crops, agri-environmental efficiency, DEA

Procedia PDF Downloads 136
1557 A Research Using Remote Monitoring Technology for Pump Output Monitoring in Distributed Fuel Stations in Nigeria

Authors: Ofoegbu Ositadinma Edward

Abstract:

This research paper discusses a web based monitoring system that enables effective monitoring of fuel pump output and sales volume from distributed fuel stations under the domain of a single company/organization. The traditional method of operation by these organizations in Nigeria is non-automated and accounting for dispensed product is usually approximated and manual as there is little or no technology implemented to presently provide information relating to the state of affairs in the station both to on-ground staff and to supervisory staff that are not physically present in the station. This results in unaccountable losses in product and revenue as well as slow decision making. Remote monitoring technology as a vast research field with numerous application areas incorporating various data collation techniques and sensor networks can be applied to provide information relating to fuel pump status in distributed fuel stations reliably. Thus, the proposed system relies upon a microcontroller, keypad and pump to demonstrate the traditional fuel dispenser. A web-enabled PC with an accompanying graphic user interface (GUI) was designed using virtual basic which is connected to the microcontroller via the serial port which is to provide the web implementation.

Keywords: fuel pump, microcontroller, GUI, web

Procedia PDF Downloads 434
1556 Psychophysiological Synchronization between the Manager and the Subordinate during a Performance Review Discussion

Authors: Mikko Salminen, Niklas Ravaja

Abstract:

Previous studies have shown that emotional intelligence (EI) has an important role in leadership and social interaction. On the other hand, physiological synchronization between two interacting participants has been related to, for example, intensity of the interaction, and interestingly also to empathy. It is suggested that the amount of covariation in physiological signals between the two interacting persons would also be related to how the discussion is perceived subjectively. To study the interrelations between physiological synchronization, emotional intelligence, and subjective perception of the interaction, performance review discussions between real manager – subordinate dyads were studied using psychophysiological measurements and self-reports. The participants consisted of 40 managers, of which 24 were female, and 78 of their subordinates, of which 45 were female. The participants worked in various fields, for example banking, education, and engineering. The managers had a normal performance review discussion with two subordinates, except two managers who, due to scheduling issues, had discussion with only one subordinate. The managers were on average 44.5 years old, and the subordinates on average 45.5 years old. Written consent, in accordance with the Declaration of Helsinki, was obtained from all the participants. After the discussion, the participants filled a questionnaire assessing their emotions during the discussion. This included a self-assessment manikin (SAM) scale for the emotional valence during the discussion, with a 9-point graphical scale representing a manikin whose facial expressions ranged from smiling and happy to frowning and unhappy. In addition, the managers filled EI360, a 37-item self-report trait emotional intelligence questionnaire. The psychophysiological activity of the participants was recorded using two Varioport-B portable recording devices. Cardiac activity (ECG, electrocardiogram) was measured with two electrodes placed on the torso. Inter-beat interval (IBI, time between two successive heart beats) was calculated from the ECG signals. The facial muscle activation (EMG, electromyography) was recorded on three sites of the left side of the face: zygomaticus major (cheek muscle), orbicularis oculi (periocular muscle), and corrugator supercilii (frowning muscle). The facial-EMG signals were rectified and smoothed, and cross-coherences were calculated between members of each dyad, for all the three EMG signals, for the baseline and discussion periods. The values were natural-log transformed to normalize the distributions. Higher cross-coherence during the discussion between the manager’s and the subordinate’s zygomatic muscles was related to more positive valence self-reported emotions, F(1; 66,137) = 7,051; p=0,01. Thus, synchronized cheek muscle activation, either due to synchronous smiling or talking, was related to more positive perception of the discussion. In addition, higher IBI synchronization between the manager and the subordinate during the discussion was related to the manager’s higher self-reported emotional intelligence, F(1; 27,981)=4,58; p=0,041. That is, the EI was related to synchronous cardiac activity and possibly to similar physiological arousal levels. The results imply that the psychophysiological synchronization could be a potentially useful index in the study of social interaction and a valuable tool in the coaching of leadership skills in organizational contexts.

Keywords: emotional intelligence, leadership, psychophysiology, social interaction, synchronization

Procedia PDF Downloads 319
1555 Effect of Rubber Treatment on Compressive Strength and Modulus of Elasticity of Self-Compacting Rubberized Concrete

Authors: I. Miličević, M. Hadzima Nyarko, R. Bušić, J. Simonović Radosavljević, M. Prokopijević, K. Vojisavljević

Abstract:

This paper investigates the effects of different treatment methods of rubber aggregates for self-compacting concrete (SCC) on compressive strength and modulus of elasticity. SCC mixtures with 10% replacement of fine aggregate with crumb rubber by total aggregate volume and with different aggregate treatment methods were investigated. The rubber aggregate was treated in three different methods: dry process, water-soaking, and NaOH treatment plus water soaking. Properties of SCC in a fresh and hardened state were tested and evaluated. Scanning electron microscope (SEM) analysis of three different SCC patches were made and discussed. It was observed that applying the proposed NaOH plus water soaking method resulted in the improvement of fresh and hardened concrete properties. It resulted in a more uniform distribution of rubber particles in the cement matrix, a better bond between rubber particles and the cement matrix, and higher compressive strength of SCC rubberized concrete.

Keywords: compressive strength, modulus of elasticity, NaOH treatment, rubber aggregate, self-compacting rubberized concrete, scanning electron microscope analysis

Procedia PDF Downloads 108
1554 Effects of Long Term Whole Body Vibration Training on Lipid Profile of Young Men

Authors: Farshad Ghazalian, Laleh Hakemi, Lotfali Pourkazemi, Maryam Ameri, Seyed Hossein Alavi

Abstract:

Background: The use of whole body vibration (WBV) as an exercise method has rapidly increased over the last decade. The aim of this study was to evaluate long term effects of different amplitudes of whole body vibration training with progressive frequencies on lipid profile of young healthy men. Materials and methods: Thirty three healthy male students were divided randomly in three groups: high amplitude vibration group (n=11), low amplitude vibration group (n=11), and control group (n=11). The vibration training consisted of 5 week whole-body vibration 3 times a week with amplitudes 4 and 2 mm and progressive frequencies from 25 Hz with increments of 5 Hz weekly. Concentrations TG, HDL, LDL, cholesterol, and VLDL before and after 5 weeks of training were measured in plasma samples. Statistical analysis was done using one way analysis of variance. P<0.05 was considered statistically significant. Results: The most important result of the present study is finding no favorable changes of 5-week vibration training with different amplitudes on blood lipid profiles. Discussion and conclusions: It was emphasized that in vibration training there should be a relationship between intensity and volume of exercise and lipid responses in order to improve blood lipoprotein profiles.

Keywords: long term, body, vibration training, lipid

Procedia PDF Downloads 419
1553 Row Detection and Graph-Based Localization in Tree Nurseries Using a 3D LiDAR

Authors: Ionut Vintu, Stefan Laible, Ruth Schulz

Abstract:

Agricultural robotics has been developing steadily over recent years, with the goal of reducing and even eliminating pesticides used in crops and to increase productivity by taking over human labor. The majority of crops are arranged in rows. The first step towards autonomous robots, capable of driving in fields and performing crop-handling tasks, is for robots to robustly detect the rows of plants. Recent work done towards autonomous driving between plant rows offers big robotic platforms equipped with various expensive sensors as a solution to this problem. These platforms need to be driven over the rows of plants. This approach lacks flexibility and scalability when it comes to the height of plants or distance between rows. This paper proposes instead an algorithm that makes use of cheaper sensors and has a higher variability. The main application is in tree nurseries. Here, plant height can range from a few centimeters to a few meters. Moreover, trees are often removed, leading to gaps within the plant rows. The core idea is to combine row detection algorithms with graph-based localization methods as they are used in SLAM. Nodes in the graph represent the estimated pose of the robot, and the edges embed constraints between these poses or between the robot and certain landmarks. This setup aims to improve individual plant detection and deal with exception handling, like row gaps, which are falsely detected as an end of rows. Four methods were developed for detecting row structures in the fields, all using a point cloud acquired with a 3D LiDAR as an input. Comparing the field coverage and number of damaged plants, the method that uses a local map around the robot proved to perform the best, with 68% covered rows and 25% damaged plants. This method is further used and combined with a graph-based localization algorithm, which uses the local map features to estimate the robot’s position inside the greater field. Testing the upgraded algorithm in a variety of simulated fields shows that the additional information obtained from localization provides a boost in performance over methods that rely purely on perception to navigate. The final algorithm achieved a row coverage of 80% and an accuracy of 27% damaged plants. Future work would focus on achieving a perfect score of 100% covered rows and 0% damaged plants. The main challenges that the algorithm needs to overcome are fields where the height of the plants is too small for the plants to be detected and fields where it is hard to distinguish between individual plants when they are overlapping. The method was also tested on a real robot in a small field with artificial plants. The tests were performed using a small robot platform equipped with wheel encoders, an IMU and an FX10 3D LiDAR. Over ten runs, the system achieved 100% coverage and 0% damaged plants. The framework built within the scope of this work can be further used to integrate data from additional sensors, with the goal of achieving even better results.

Keywords: 3D LiDAR, agricultural robots, graph-based localization, row detection

Procedia PDF Downloads 139
1552 Development and Adaptation of a LGBM Machine Learning Model, with a Suitable Concept Drift Detection and Adaptation Technique, for Barcelona Household Electric Load Forecasting During Covid-19 Pandemic Periods (Pre-Pandemic and Strict Lockdown)

Authors: Eric Pla Erra, Mariana Jimenez Martinez

Abstract:

While aggregated loads at a community level tend to be easier to predict, individual household load forecasting present more challenges with higher volatility and uncertainty. Furthermore, the drastic changes that our behavior patterns have suffered due to the COVID-19 pandemic have modified our daily electrical consumption curves and, therefore, further complicated the forecasting methods used to predict short-term electric load. Load forecasting is vital for the smooth and optimized planning and operation of our electric grids, but it also plays a crucial role for individual domestic consumers that rely on a HEMS (Home Energy Management Systems) to optimize their energy usage through self-generation, storage, or smart appliances management. An accurate forecasting leads to higher energy savings and overall energy efficiency of the household when paired with a proper HEMS. In order to study how COVID-19 has affected the accuracy of forecasting methods, an evaluation of the performance of a state-of-the-art LGBM (Light Gradient Boosting Model) will be conducted during the transition between pre-pandemic and lockdowns periods, considering day-ahead electric load forecasting. LGBM improves the capabilities of standard Decision Tree models in both speed and reduction of memory consumption, but it still offers a high accuracy. Even though LGBM has complex non-linear modelling capabilities, it has proven to be a competitive method under challenging forecasting scenarios such as short series, heterogeneous series, or data patterns with minimal prior knowledge. An adaptation of the LGBM model – called “resilient LGBM” – will be also tested, incorporating a concept drift detection technique for time series analysis, with the purpose to evaluate its capabilities to improve the model’s accuracy during extreme events such as COVID-19 lockdowns. The results for the LGBM and resilient LGBM will be compared using standard RMSE (Root Mean Squared Error) as the main performance metric. The models’ performance will be evaluated over a set of real households’ hourly electricity consumption data measured before and during the COVID-19 pandemic. All households are located in the city of Barcelona, Spain, and present different consumption profiles. This study is carried out under the ComMit-20 project, financed by AGAUR (Agència de Gestiód’AjutsUniversitaris), which aims to determine the short and long-term impacts of the COVID-19 pandemic on building energy consumption, incrementing the resilience of electrical systems through the use of tools such as HEMS and artificial intelligence.

Keywords: concept drift, forecasting, home energy management system (HEMS), light gradient boosting model (LGBM)

Procedia PDF Downloads 105
1551 Sustainable Transition of Universal Design for Learning-Based Teachers’ Latent Profiles from Contact to Distance Education

Authors: Alvyra Galkienė, Ona Monkevičienė

Abstract:

The full participation of all pupils in the overall educational process is defined by the concept of inclusive education, which is gradually evolving in education policy and practice. It includes the full participation of all pupils in a shared learning experience and educational practices that address barriers to learning. Inclusive education applying the principles of Universal Design for Learning (UDL), which includes promoting students' involvement in learning processes, guaranteeing a deep understanding of the analysed phenomena, initiating self-directed learning, and using e-tools to create a barrier-free environment, is a prerequisite for the personal success of each pupil. However, the sustainability of quality education is affected by the transformation of education systems. This was particularly evident during the period of the forced transition from contact to distance education in the COVID-19 pandemic. Research Problem: The transformation of the educational environment from real to virtual one and the loss of traditional forms of educational support highlighted the need for new research, revealing the individual profiles of teachers using UDL-based learning and the pathways of sustainable transfer of successful practices to non-conventional learning environments. Research Methods: In order to identify individual latent teacher profiles that encompass the essential components of UDL-based inclusive teaching and direct leadership of students' learning, the quantitative analysis software Mplius was used for latent profile analysis (LPA). In order to reveal proven, i.e., sustainable, pathways for the transit of the components of UDL-based inclusive learning to distance learning, latent profile transit analysis (LPTA) via Mplius was used. An online self-reported questionnaire was used for data collection. It consisted of blocks of questions designed to reveal the experiences of subject teachers in contact and distance learning settings. 1432 Lithuanian, Latvian, and Estonian subject teachers took part in the survey. Research Results: The LPA analysis revealed eight latent teacher profiles with different characteristics of UDL-based inclusive education or traditional teaching in contact teaching conditions. Only 4.1% of the subject teachers had a profile characterised by a sustained UDL approach to teaching: promoting pupils' self-directed learning; empowering pupils' engagement, understanding, independent action, and expression; promoting pupils' e-inclusion; and reducing the teacher's direct supervision of the students. Other teacher profiles were characterised by limited UDL-based inclusive education either due to the lack of one or more of its components or to the predominance of direct teacher guidance. The LPTA analysis allowed us to highlight the following transit paths of teacher profiles in the extreme conditions of the transition from contact to distance education: teachers staying in the same profile of UDL-based inclusive education (sustainable transit) or jumping to other profiles (unsustainable transit in case of barriers), and teachers from other profiles moving to this profile (ongoing transit taking advantage of the changed new possibilities in the teaching process).

Keywords: distance education, latent teacher profiles, sustainable transit, UDL

Procedia PDF Downloads 101