Search results for: traffic density measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6916

Search results for: traffic density measurement

796 Study on the Voltage Induced Wrinkling of Elastomer with Different Electrode Areas

Authors: Zhende Hou, Fan Yang, Guoli Zhang

Abstract:

Dielectric elastomer is a promising class of Electroactive polymers which can deform in response to an applied electric field. Comparing general smart material, the Dielectric elastomer is more compliance and can achieve higher energy density, which can be for diverse applications such as actuators, artificial muscles, soft robotics, and energy harvesters. The coupling of the Electroactive polymers and the electric field is that the elastomer is sandwiched between two compliant electrodes and when the electrodes are subjected to a voltage, the positive and negative charges on the two electrodes compress the polymer, so that the polymer reduces in thickness and expands in area. However, the pre-stretched dielectric elastomer film not only can achieve large electric-field induced deformation but also is prone to wrinkling, under the interaction of its own strain energy and the applied electric field energy. For a uniaxially pre-stretched dielectric elastomer film, the electrode area is an important parameter to the electric-field induced deformation and may also be a key factor affecting the film wrinkling. To determine and quantify the effect experimentally, VHB 9473 tapes were employed and compliant electrodes with different areas were pant on each of them. The tape was first tensed to a uniaxial stretch of 8. Then a DC voltage was applied to the electrodes and increased gradually until wrinkling occurred in the film. Then, the critical wrinkling voltages of the film with different electrode areas were obtained, and the wrinkle wavelengths were obtained simultaneously for analyzing the wrinkling characteristics. Experimental results indicate when the electrode area is smaller the wrinkling voltage is higher, and with the increases of electrode area, the wrinkling voltage decreases rapidly until a specific area. Beyond that, the wrinkling voltage becomes larger gradually with the increases of the area. While the wrinkle wavelength decreases gradually with the increase of voltage monotonically. That is, the relation between the critical wrinkling voltage and the electrode areas is U-shaped. Analysis believes that the film wrinkling is a kind of local effect, the interaction and the energy transfer between electrode region and non-electrode region have great influence on wrinkling. In the experiment, very thin copper wires are used as the electrode leads that just contact with the electrodes, which can avoid the stiffness of the leads affecting the wrinkling.

Keywords: elastomers, uniaxial stretch, electrode area, wrinkling

Procedia PDF Downloads 240
795 A Case Report on Cognitive-Communication Intervention in Traumatic Brain Injury

Authors: Nikitha Francis, Anjana Hoode, Vinitha George, Jayashree S. Bhat

Abstract:

The interaction between cognition and language, referred as cognitive-communication, is very intricate, involving several mental processes such as perception, memory, attention, lexical retrieval, decision making, motor planning, self-monitoring and knowledge. Cognitive-communication disorders are difficulties in communicative competencies that result from underlying cognitive impairments of attention, memory, organization, information processing, problem solving, and executive functions. Traumatic brain injury (TBI) is an acquired, non - progressive condition, resulting in distinct deficits of cognitive communication abilities such as naming, word-finding, self-monitoring, auditory recognition, attention, perception and memory. Cognitive-communication intervention in TBI is individualized, in order to enhance the person’s ability to process and interpret information for better functioning in their family and community life. The present case report illustrates the cognitive-communicative behaviors and the intervention outcomes of an adult with TBI, who was brought to the Department of Audiology and Speech Language Pathology, with cognitive and communicative disturbances, consequent to road traffic accident. On a detailed assessment, she showed naming deficits along with perseverations and had severe difficulty in recalling the details of the accident, her house address, places she had visited earlier, names of people known to her, as well as the activities she did each day, leading to severe breakdowns in her communicative abilities. She had difficulty in initiating, maintaining and following a conversation. She also lacked orientation to time and place. On administration of the Manipal Manual of Cognitive Linguistic Abilities (MMCLA), she exhibited poor performance on tasks related to visual and auditory perception, short term memory, working memory and executive functions. She attended 20 sessions of cognitive-communication intervention which followed a domain-general, adaptive training paradigm, with tasks relevant to everyday cognitive-communication skills. Compensatory strategies such as maintaining a dairy with reminders of her daily routine, names of people, date, time and place was also recommended. MMCLA was re-administered and her performance in the tasks showed significant improvements. Occurrence of perseverations and word retrieval difficulties reduced. She developed interests to initiate her day-to-day activities at home independently, as well as involve herself in conversations with her family members. Though she lacked awareness about her deficits, she actively involved herself in all the therapy activities. Rehabilitation of moderate to severe head injury patients can be done effectively through a holistic cognitive retraining with a focus on different cognitive-linguistic domains. Selection of goals and activities should have relevance to the functional needs of each individual with TBI, as highlighted in the present case report.

Keywords: cognitive-communication, executive functions, memory, traumatic brain injury

Procedia PDF Downloads 343
794 TiO₂ Nanotube Array Based Selective Vapor Sensors for Breath Analysis

Authors: Arnab Hazra

Abstract:

Breath analysis is a quick, noninvasive and inexpensive technique for disease diagnosis can be used on people of all ages without any risk. Only a limited number of volatile organic compounds (VOCs) can be associated with the occurrence of specific diseases. These VOCs can be considered as disease markers or breath markers. Selective detection with specific concentration of breath marker in exhaled human breath is required to detect a particular disease. For example, acetone (C₃H₆O), ethanol (C₂H₅OH), ethane (C₂H₆) etc. are the breath markers and abnormal concentrations of these VOCs in exhaled human breath indicates the diseases like diabetes mellitus, renal failure, breast cancer respectively. Nanomaterial-based vapor sensors are inexpensive, small and potential candidate for the detection of breath markers. In practical measurement, selectivity is the most crucial issue where trace detection of breath marker is needed to identify accurately in the presence of several interfering vapors and gases. Current article concerns a novel technique for selective and lower ppb level detection of breath markers at very low temperature based on TiO₂ nanotube array based vapor sensor devices. Highly ordered and oriented TiO₂ nanotube array was synthesized by electrochemical anodization of high purity tatinium (Ti) foil. 0.5 wt% NH₄F, ethylene glycol and 10 vol% H₂O was used as the electrolyte and anodization was carried out for 90 min with 40 V DC potential. Au/TiO₂ Nanotube/Ti, sandwich type sensor device was fabricated for the selective detection of VOCs in low concentration range. Initially, sensor was characterized where resistive and capacitive change of the sensor was recorded within the valid concentration range for individual breath markers (or organic vapors). Sensor resistance was decreased and sensor capacitance was increased with the increase of vapor concentration. Now, the ratio of resistive slope (mR) and capacitive slope (mC) provided a concentration independent constant term (M) for a particular vapor. For the detection of unknown vapor, ratio of resistive change and capacitive change at any concentration was same to the previously calculated constant term (M). After successful identification of the target vapor, concentration was calculated from the straight line behavior of resistance as a function of concentration. Current technique is suitable for the detection of particular vapor from a mixture of other interfering vapors.

Keywords: breath marker, vapor sensors, selective detection, TiO₂ nanotube array

Procedia PDF Downloads 152
793 The Development of Home-Based Long Term Care Model among Thai Elderly Dependent

Authors: N. Uaphongsathorn, C. Worawong, S. Thaewpia

Abstract:

Background and significance: The population is aging in Thai society, the elderly dependent is at great risk of various functional, psychological, and socio-economic problems as well as less access to health care. They may require long term care at home to maximize their functional abilities and activities of daily living and to improve their quality of life during their own age. Therefore, there is a need to develop a home-based long term care to meet the long term care needs of elders dependent. Methods: The research purpose was to develop long term care model among the elderly dependent in Chaiyaphum province in Northeast region of Thailand. Action Research which is composing of planning, action, observation, and reflection phases was used. Research was carried out for 12 months in all sub-districts of 6 districts in Chaiyaphum province. Participants (N = 1,010) participating in the processes of model development were comprised of 3 groups: a) a total of 110 health care professionals, b) a total of 600 health volunteers and family caregivers and c) a total of 300 the elderly dependent with chronically medical illnesses or disabilities. Descriptive statistics and content analysis were used to analyze data. Findings: Results have shown that the most common health problems among elders dependent with physical disabilities to function independently were cardiovascular disease, dementia, and traffic injuries. The development of home-based long term care model among elders dependent in Chaiyaphum province was composed of six key steps. They are: a) initiating policies supporting formal and informal caregivers for the elder dependent in all sub-districts, b) building network and multidisciplinary team, c) developing 3-day care manager training program and 3-day care provider training program d) training case managers and care providers for the elderly dependent through team and action learning, e) assessing, planning and providing care based on care individual’s needs of the elderly dependent, and f) sharing experiences for good practice and innovation for long term care at homes in district urban and rural areas. Among all care managers and care providers, the satisfaction level for training programs was high with a mean score of 3.98 out of 5. The elders dependent and family caregivers addressed that long term care at home could contribute to improving life’s daily activities, family relationship, health status, and quality of life. Family caregivers and volunteers have feeling a sense of personal satisfaction and experiencing providing meaningful care and support for elders dependent. Conclusion: In conclusion, a home-based long term care is important to Thai elders dependent. Care managers and care providers play a large role and responsibility to provide appropriate care to meet the elders’ needs in both urban and rural areas in Thai society. Further research could be rigorously studied with a larger group of populations in similar socio-economic and cultural contexts.

Keywords: elderly people, care manager, care provider, long term care

Procedia PDF Downloads 298
792 Effect of Heavy Metals on the Life History Trait of Heterocephalobellus sp. and Cephalobus sp. (Nematode: Cephalobidae) Collected from a Small-Scale Mining Site, Davao de Oro, Philippines

Authors: Alissa Jane S. Mondejar, Florifern C. Paglinawan, Nanette Hope N. Sumaya, Joey Genevieve T. Martinez, Mylah Villacorte-Tabelin

Abstract:

Mining is associated with increased heavy metals in the environment, and heavy metal contamination disrupts the activities of soil fauna, such as nematodes, causing changes in the function of the soil ecosystem. Previous studies found that nematode community composition and diversity indices were strongly affected by heavy metals (e.g., Pb, Cu, and Zn). In this study, the influence of heavy metals on nematode survivability and reproduction were investigated. Life history analysis of the free-living nematodes, Heterocephalobellus sp. and Cephalobus sp. (Rhabditida: Cephalobidae) were assessed using the hanging drop technique, a technique often used in life history trait experiments. The nematodes were exposed to different temperatures, i.e.,20°C, 25°C, and 30°C, in different groups (control and heavy metal exposed) and fed with the same bacterial density of 1×109 Escherichia coli cells ml-1 for 30 days. Results showed that increasing temperature and exposure to heavy metals had a significant influence on the survivability and egg production of both species. Heterocephalobellus sp. and Cephalobus sp., when exposed to 20°C survived longer and produced few numbers of eggs but without subsequent hatching. Life history parameters of Heterocephalobellus sp. showed that the value of parameters was higher in the control group under net production rate (R0), fecundity (mx) which is also the same value for the total fertility rate (TFR), generation times (G0, G₁, and Gh) and Population doubling time (PDT). However, a lower rate of natural increase (rm) was observed since generation times were higher. Meanwhile, the life history parameters of Cephalobus sp. showed that the value of net production rate (R0) was higher in the exposed group. Fecundity (mx) which is also the same value for the TFR, G0, G1, Gh, and PDT, were higher in the control group. However, a lower rate of natural increase (rm) was observed since generation times were higher. In conclusion, temperature and exposure to heavy metals had a negative influence on the life history of the nematodes, however, further experiments should be considered.

Keywords: artisanal and small-scale gold mining (ASGM), hanging drop method, heavy metals, life history trait.

Procedia PDF Downloads 86
791 Analysis of Urban Flooding in Wazirabad Catchment of Kabul City with Help of Geo-SWMM

Authors: Fazli Rahim Shinwari, Ulrich Dittmer

Abstract:

Like many megacities around the world, Kabul is facing severe problems due to the rising frequency of urban flooding. Since 2001, Kabul is experiencing rapid population growth because of the repatriation of refugees and internal migration. Due to unplanned development, green areas inside city and hilly areas within and around the city are converted into new housing towns that had increased runoff. Trenches along the roadside comprise the unplanned drainage network of the city that drains the combined sewer flow. In rainy season overflow occurs, and after streets become dry, the dust particles contaminate the air which is a major cause of air pollution in Kabul city. In this study, a stormwater management model is introduced as a basis for a systematic approach to urban drainage planning in Kabul. For this purpose, Kabul city is delineated into 8 watersheds with the help of one-meter resolution LIDAR DEM. Storm, water management model, is developed for Wazirabad catchment by using available data and literature values. Due to lack of long term metrological data, the model is only run for hourly rainfall data of a rain event that occurred in April 2016. The rain event from 1st to 3rd April with maximum intensity of 3mm/hr caused huge flooding in Wazirabad Catchment of Kabul City. Model-estimated flooding at some points of the catchment as an actual measurement of flooding was not possible; results were compared with information obtained from local people, Kabul Municipality and Capital Region Independent Development Authority. The model helped to identify areas where flooding occurred because of less capacity of drainage system and areas where the main reason for flooding is due to blockage in the drainage canals. The model was used for further analysis to find a sustainable solution to the problem. The option to construct new canals was analyzed, and two new canals were proposed that will reduce the flooding frequency in Wazirabad catchment of Kabul city. By developing the methodology to develop a stormwater management model from digital data and information, the study had fulfilled the primary objective, and similar methodology can be used for other catchments of Kabul city to prepare an emergency and long-term plan for drainage system of Kabul city.

Keywords: urban hydrology, storm water management, modeling, SWMM, GEO-SWMM, GIS, identification of flood vulnerable areas, urban flooding analysis, sustainable urban drainage

Procedia PDF Downloads 146
790 Structure-Reactivity Relationship of Some Rhᴵᴵᴵ and Osᴵᴵᴵ Complexes with N-Inert Ligands in Ionic Liquids

Authors: Jovana Bogojeski, Dusan Cocic, Nenad Jankovic, Angelina Petrovic

Abstract:

Kinetically-inert transition metal complexes, such as Rh(III) and Os(III) complexes, attract increasing attention as leading scaffolds for the development of potential pharmacological agents due to their inertness and stability. Therefore, we have designed and fully characterized a few novel rhodium(III) and osmium(III) complexes with a tridentate nitrogen−donor chelate system. For some complexes, the crystal X-ray structure analysis was performed. Reactivity of the newly synthesized complexes towards small biomolecules, such as L-methionine (L-Met), guanosine-5’-monophosphate (5’-GMP), and glutathione (GSH) has been examined. Also, the reactivity of these complexes towards the DNA/RNA (Ribonucleic acid) duplexes was investigated. Obtained results show that the newly synthesized complexes exhibit good affinity towards the studied ligands. Results also show that the complexes react faster with the RNA duplex than with the DNA and that in the DNA duplex reaction is faster with 15mer GG than with the 22mer GG. The UV-Vis (Ultraviolet-visible spectroscopy) is absorption spectroscopy, and the EB (Ethidium bromide) displacement studies were used to examine the interaction of these complexes with CT-DNA and BSA (Bovine serum albumin). All studied complex showed good interaction ability with both the DNA and BSA. Furthermore, the DFT (Density-functional theory) calculation and docking studies were performed. The impact of the metal complex on the cytotoxicity was tested by MTT assay (a colorimetric assay for assessing cell metabolic activity) on HCT-116 lines (human colon cancer cell line). In addition, all these tests were repeated in the presence of several water-soluble biologically active ionic liquids. Attained results indicate that the ionic liquids increase the activity of the investigated complexes. All obtained results in this study imply that the introduction of different spectator ligand can be used to improve the reactivity of rhodium(III) and osmium(III) complexes. Finally, these results indicate that the examined complexes show reactivity characteristics needed for potential anti-tumor agents, with possible targets being both the DNA and proteins. Every new contribution in this field is highly warranted due to the current lack of clinically used Metallo-based alternatives to cisplatin.

Keywords: biomolecules, ionic liquids, osmium(III), rhodium(III)

Procedia PDF Downloads 144
789 Researching Servant Leadership Behaviors of Sport Managers

Authors: Betul Altinok

Abstract:

The aim of this study is researching servant leadership behaviors of sports managers. For this purpose, Servant Leadership behaviors of Sport Managers (N=69) working as Dean, School Principal and Head of Department in Sport Sciences Faculties, Physical Education and Sport Schools and Departments educating Physical Education and Sport investigated via questionnaires applied to academicians (N=1185) working in these institutions. Servant Leadership Questionnaire sent via e-mail to all Academicians working in Physical Education and Sport educating Faculties, Schools of Universities and Departments in Turkey. 406 survey which is responded and accurately completed by Academicians were evaluated. In this study, Servant Leadership Questionnaire developed and conducted validity and reliability analysis by Barbuto and Wheeler (2006) used to investigate sports managers servant leadership behaviors. Scale translated into Turkish then validity and reliability analysis were conducted. After measurement model of servant leadership questionnaire verified, Shapiro Wilk normality test was applied to obtained data to determine whether has got a normal distribution or not, depending on gender, job title, profession time, department and evaluated manager. Results of practiced normality test showed that data has not got a normal distribution (nonparametric). After normality test, Mann Whitney-U test applied at 0.05 value for determining whether there is a difference between servant leadership scores according to gender and Kruskal Wallis Test applied at 0.05 value for determining whether there is a difference between servant leadership scores according to job title, profession time, department and evaluated manager. Test results showed that there were not differences between Altruistic Calling (p>0.05), Emotional Healing (p>0.05), Wisdom (p>0.05), Persuasive Mapping (p>0.05) and (p>0.05), Organizational Stewardship sub-dimensions according to gender. Test results showed that there were not differences between Altruistic Calling (p>0.05), Emotional Healing (p>0.05), Wisdom (p>0.05), Persuasive Mapping (p>0.05) and (p>0.05), Organizational Stewardship sub-dimensions according to job title, profession time, department and evaluated manager. In the light of study results, it can be said that applied survey is objective and unfurls evaluated managers servant leadership behaviors. Empirical and practical contribution of this study is to test sports managers servant leadership behaviors in Turkey for the very first time.

Keywords: academicians, management, servant leadership, sport

Procedia PDF Downloads 301
788 Investigate the Competencies Required for Sustainable Entrepreneurship Development in Agricultural Higher Education

Authors: Ehsan Moradi, Parisa Paikhaste, Amir Alam Beigi, Seyedeh Somayeh Bathaei

Abstract:

The need for entrepreneurial sustainability is as important as the entrepreneurship category itself. By transferring competencies in a sustainable entrepreneurship framework, entrepreneurship education can make a significant contribution to the effectiveness of businesses, especially for start-up entrepreneurs. This study analyzes the essential competencies of students in the development of sustainable entrepreneurship. It is an applied causal study in terms of nature and field in terms of data collection. The main purpose of this research project is to study and explain the dimensions of sustainability entrepreneurship competencies among agricultural students. The statistical population consists of 730 junior and senior undergraduate students of the Campus of Agriculture and Natural Resources, University of Tehran. The sample size was determined to be 120 using the Cochran's formula, and the convenience sampling method was used. Face validity, structure validity, and diagnostic methods were used to evaluate the validity of the research tool and Cronbach's alpha and composite reliability to evaluate its reliability. Structural equation modeling (SEM) was used by the confirmatory factor analysis (CFA) method to prepare a measurement model for data processing. The results showed that seven key dimensions play a role in shaping sustainable entrepreneurial development competencies: systems thinking competence (STC), embracing diversity and interdisciplinary (EDI), foresighted thinking (FTC), normative competence (NC), action competence (AC), interpersonal competence (IC), and strategic management competence (SMC). It was found that acquiring skills in SMC by creating the ability to plan to achieve sustainable entrepreneurship in students through the relevant mechanisms can improve entrepreneurship in students by adopting a sustainability attitude. While increasing students' analytical ability in the field of social and environmental needs and challenges and emphasizing curriculum updates, AC should pay more attention to the relationship between the curriculum and its content in the form of entrepreneurship culture promotion programs. In the field of EDI, it was found that the success of entrepreneurs in terms of sustainability and business sustainability of start-up entrepreneurs depends on their interdisciplinary thinking. It was also found that STC plays an important role in explaining the relationship between sustainability and entrepreneurship. Therefore, focusing on these competencies in agricultural education to train start-up entrepreneurs can lead to sustainable entrepreneurship in the agricultural higher education system.

Keywords: sustainable entrepreneurship, entrepreneurship education, competency, agricultural higher education

Procedia PDF Downloads 139
787 Distinct Patterns of Resilience Identified Using Smartphone Mobile Experience Sampling Method (M-ESM) and a Dual Model of Mental Health

Authors: Hussain-Abdulah Arjmand, Nikki S. Rickard

Abstract:

The response to stress can be highly heterogenous, and may be influenced by methodological factors. The integrity of data will be optimized by measuring both positive and negative affective responses to an event, by measuring responses in real time as close to the stressful event as possible, and by utilizing data collection methods that do not interfere with naturalistic behaviours. The aim of the current study was to explore short term prototypical responses to major stressor events on outcome measures encompassing both positive and negative indicators of psychological functioning. A novel mobile experience sampling methodology (m-ESM) was utilized to monitor both effective responses to stressors in real time. A smartphone mental health app (‘Moodprism’) which prompts users daily to report both their positive and negative mood, as well as whether any significant event had occurred in the past 24 hours, was developed for this purpose. A sample of 142 participants was recruited as part of the promotion of this app. Participants’ daily reported experience of stressor events, levels of depressive symptoms and positive affect were collected across a 30 day period as they used the app. For each participant, major stressor events were identified on the subjective severity of the event rated by the user. Depression and positive affect ratings were extracted for the three days following the event. Responses to the event were scaled relative to their general reactivity across the remainder of the 30 day period. Participants were first clustered into groups based on initial reactivity and subsequent recovery following a stressor event. This revealed distinct patterns of responding along depressive symptomatology and positive affect. Participants were then grouped based on allocations to clusters in each outcome variable. A highly individualised nature in which participants respond to stressor events, in symptoms of depression and levels of positive affect, was observed. A complete description of the novel profiles identified will be presented at the conference. These findings suggest that real-time measurement of both positive and negative functioning to stressors yields a more complex set of responses than previously observed with retrospective reporting. The use of smartphone technology to measure individualized responding also proved to shed significant insight.

Keywords: depression, experience sampling methodology, positive functioning, resilience

Procedia PDF Downloads 235
786 Development of a Coupled Thermal-Mechanical-Biological Model to Simulate Impacts of Temperature on Waste Stabilization at a Landfill in Quebec, Canada

Authors: Simran Kaur, Paul J. Van Geel

Abstract:

A coupled Thermal-Mechanical-Biological (TMB) model was developed for the analysis of impacts of temperatures on waste stabilization at a Municipal Solid Waste (MSW) landfill in Quebec, Canada using COMSOL Multiphysics, a finite element-based software. For waste placed in landfills in Northern climates during winter months, it can take months or even years before the waste approaches ideal temperatures for biodegradation to occur. Therefore, the proposed model links biodegradation induced strain in MSW to waste temperatures and corresponding heat generation rates as a result of anaerobic degradation. This provides a link between the thermal-biological and mechanical behavior of MSW. The thermal properties of MSW are further linked to density which is tracked and updated in the mechanical component of the model, providing a mechanical-thermal link. The settlement of MSW is modelled based on the concept of viscoelasticity. The specific viscoelastic model used is a single Kelvin – Voight viscoelastic body in which the finite element response is controlled by the elastic material parameters – Young’s Modulus and Poisson’s ratio. The numerical model was validated with 10 years of temperature and settlement data collected from a landfill in Ste. Sophie, Quebec. The coupled TMB modelling framework, which simulates placement of waste lifts as they are placed progressively in the landfill, allows for optimization of several thermal and mechanical parameters throughout the depth of the waste profile and helps in better understanding of temperature dependence of MSW stabilization. The model is able to illustrate how waste placed in the winter months can delay biodegradation-induced settlement and generation of landfill gas. A delay in waste stabilization will impact the utilization of the approved airspace prior to the placement of a final cover and impact post-closure maintenance. The model provides a valuable tool to assess different waste placement strategies in order to increase airspace utilization within landfills operating under different climates, in addition to understanding conditions for increased gas generation for recovery as a green and renewable energy source.

Keywords: coupled model, finite element modeling, landfill, municipal solid waste, waste stabilization

Procedia PDF Downloads 127
785 Engine Thrust Estimation by Strain Gauging of Engine Mount Assembly

Authors: Rohit Vashistha, Amit Kumar Gupta, G. P. Ravishankar, Mahesh P. Padwale

Abstract:

Accurate thrust measurement is required for aircraft during takeoff and after ski-jump. In a developmental aircraft, takeoff from ship is extremely critical and thrust produced by the engine should be known to the pilot before takeoff so that if thrust produced is not sufficient then take-off can be aborted and accident can be avoided. After ski-jump, thrust produced by engine is required because the horizontal speed of aircraft is less than the normal takeoff speed. Engine should be able to produce enough thrust to provide nominal horizontal takeoff speed to the airframe within prescribed time limit. The contemporary low bypass gas turbine engines generally have three mounts where the two side mounts transfer the engine thrust to the airframe. The third mount only takes the weight component. It does not take any thrust component. In the present method of thrust estimation, the strain gauging of the two side mounts is carried out. The strain produced at various power settings is used to estimate the thrust produced by the engine. The quarter Wheatstone bridge is used to acquire the strain data. The engine mount assembly is subjected to Universal Test Machine for determination of equivalent elasticity of assembly. This elasticity value is used in the analytical approach for estimation of engine thrust. The estimated thrust is compared with the test bed load cell thrust data. The experimental strain data is also compared with strain data obtained from FEM analysis. Experimental setup: The strain gauge is mounted on the tapered portion of the engine mount sleeve. Two strain gauges are mounted on diametrically opposite locations. Both of the strain gauges on the sleeve were in the horizontal plane. In this way, these strain gauges were not taking any strain due to the weight of the engine (except negligible strain due to material's poison's ratio) or the hoop's stress. Only the third mount strain gauge will show strain when engine is not running i.e. strain due to weight of engine. When engine starts running, all the load will be taken by the side mounts. The strain gauge on the forward side of the sleeve was showing a compressive strain and the strain gauge on the rear side of the sleeve shows a tensile strain. Results and conclusion: the analytical calculation shows that the hoop stresses dominate the bending stress. The estimated thrust by strain gauge shows good accuracy at higher power setting as compared to lower power setting. The accuracy of estimated thrust at max power setting is 99.7% whereas at lower power setting is 78%.

Keywords: engine mounts, finite elements analysis, strain gauge, stress

Procedia PDF Downloads 474
784 Numerical Analysis of CO₂ Storage as Clathrates in Depleted Natural Gas Hydrate Formation

Authors: Sheraz Ahmad, Li Yiming, Li XiangFang, Xia Wei, Zeen Chen

Abstract:

Holding CO₂ at massive scale in the enclathrated solid matter called hydrate can be perceived as one of the most reliable methods for CO₂ sequestration to take greenhouse gases emission control measures and global warming preventive actions. In this study, a dynamically coupled mass and heat transfer mathematical model is developed which elaborates the unsteady behavior of CO₂ flowing into a porous medium and converting itself into hydrates. The combined numerical model solution by implicit finite difference method is explained and through coupling the mass, momentum and heat conservation relations, an integrated model can be established to analyze the CO₂ hydrate growth within P-T equilibrium conditions. CO₂ phase transition, effect of hydrate nucleation by exothermic heat release and variations of thermo-physical properties has been studied during hydrate nucleation. The results illustrate that formation pressure distribution becomes stable at the early stage of hydrate nucleation process and always remains stable afterward, but formation temperature is unable to keep stable and varies during CO₂ injection and hydrate nucleation process. Initially, the temperature drops due to cold high-pressure CO₂ injection since when the massive hydrate growth triggers and temperature increases under the influence of exothermic heat evolution. Intermittently, it surpasses the initial formation temperature before CO₂ injection initiates. The hydrate growth rate increases by increasing injection pressure in the long formation and it also expands overall hydrate covered length in the same induction period. The results also show that the injection pressure conditions and hydrate growth rate affect other parameters like CO₂ velocity, CO₂ permeability, CO₂ density, CO₂ and H₂O saturation inside the porous medium. In order to enhance the hydrate growth rate and expand hydrate covered length, the injection temperature is reduced, but it did not give satisfactory outcomes. Hence, CO₂ injection in vacated natural gas hydrate porous sediment may form hydrate under low temperature and high-pressure conditions, but it seems very challenging on a huge scale in lengthy formations.

Keywords: CO₂ hydrates, CO₂ injection, CO₂ Phase transition, CO₂ sequestration

Procedia PDF Downloads 127
783 Experimental Investigation of Cutting Forces and Temperature in Bone Drilling

Authors: Vishwanath Mali, Hemant Warhatkar, Raju Pawade

Abstract:

Drilling of bone has been always challenging for surgeons due to the adverse effect it may impart to bone tissues. Force has to be applied manually by the surgeon while performing conventional bone drilling which may lead to permanent death of bone tissues and nerves. During bone drilling the temperature of the bone tissues increases to higher values above 47 ⁰C that causes thermal osteonecrosis resulting into screw loosening and subsequent implant failures. An attempt has been made here to study the input drilling parameters and surgical drill bit geometry affecting bone health during bone drilling. A One Factor At a Time (OFAT) method is used to plan the experiments. Input drilling parameters studied include spindle speed and feed rate. The drill bit geometry parameter studied include point angle and helix angle. The output variables are drilling thrust force and bone temperature. The experiments were conducted on goat femur bone at room temperature 30 ⁰C. For measurement of thrust forces KISTLER cutting force dynamometer Type 9257BA was used. For continuous data acquisition of temperature NI LabVIEW software was used. Fixture was made on RPT machine for holding the bone specimen while performing drilling operation. Bone specimen were preserved in deep freezer (LABTOP make) under -40 ⁰C. In case of drilling parameters, it is observed that at constant feed rate when spindle speed increases, thrust force as well as temperature decreases and at constant spindle speed when feed rate increases thrust force as well as temperature increases. The effect of drill bit geometry shows that at constant helix angle when point angle increases thrust force as well as temperature increases and at constant point angle when helix angle increase thrust force as well as temperature decreases. Hence it is concluded that as the thrust force increases temperature increases. In case of drilling parameter, the lowest thrust force and temperature i.e. 35.55 N and 36.04 ⁰C respectively were recorded at spindle speed 2000 rpm and feed rate 0.04 mm/rev. In case of drill bit geometry parameter, the lowest thrust force and temperature i.e. 40.81 N and 34 ⁰C respectively were recorded at point angle 70⁰ and helix angle 25⁰ Hence to avoid thermal necrosis of bone it is recommended to use higher spindle speed, lower feed rate, low point angle and high helix angle. The hard nature of cortical bone contributes to a greater rise in temperature whereas a considerable drop in temperature is observed during cancellous bone drilling.

Keywords: bone drilling, helix angle, point angle, thrust force, temperature, thermal necrosis

Procedia PDF Downloads 306
782 The Impact of the Variation of Sky View Factor on Landscape Degree of Enclosure of Urban Blue and Green Belt

Authors: Yi-Chun Huang, Kuan-Yun Chen, Chuang-Hung Lin

Abstract:

Urban Green Belt and Blue is a part of the city landscape, it is an important constituent element of the urban environment and appearance. The Hsinchu East Gate Moat is situated in the center of the city, which not only has a wealth of historical and cultural resources, but also combines the Green Belt and the Blue Belt qualities at the same time. The Moat runs more than a thousand meters through the vital Green Belt and the Blue Belt in downtown, and each section is presented in different qualities of moat from south to north. The water area and the green belt of surroundings are presented linear and banded spread. The water body and the rich diverse river banks form an urban green belt of rich layers. The watercourse with green belt design lets users have connections with blue belts in different ways; therefore, the integration of Hsinchu East Gate and moat have become one of the unique urban landscapes in Taiwan. The study is based on the fact-finding case of Hsinchu East Gate Moat where situated in northern Taiwan, to research the impact between the SVF variation of the city and spatial sequence of Urban Green Belt and Blue landscape and visual analysis by constituent cross-section, and then comparing the influence of different leaf area index – the variable ecological factors to the degree of enclosure. We proceed to survey the landscape design of open space, to measure existing structural features of the plant canopy which contain the height of plants and branches, the crown diameter, breast-height diameter through access to diagram of Geographic Information Systems (GIS) and on-the-spot actual measurement. The north and south districts of blue green belt areas are divided 20 meters into a unit from East Gate Roundabout as the epicenter, and to set up a survey points to measure the SVF above the survey points; then we proceed to quantitative analysis from the data to calculate open landscape degree of enclosure. The results can be reference for the composition of future river landscape and the practical operation for dynamic space planning of blue and green belt landscape.

Keywords: sky view factor, degree of enclosure, spatial sequence, leaf area indices

Procedia PDF Downloads 553
781 Temperature Dependent Magneto-Transport Properties of MnAl Binary Alloy Thin Films

Authors: Vineet Barwal, Sajid Husain, Nanhe Kumar Gupta, Soumyarup Hait, Sujeet Chaudhary

Abstract:

High perpendicular magnetic anisotropy (PMA) and low damping constant (α) in ferromagnets are one of the few necessary requirements for their potential applications in the field of spintronics. In this regards, ferromagnetic τ-phase of MnAl possesses the highest PMA (Ku > 107 erg/cc) at room temperature, high saturation magnetization (Ms~800 emu/cc) and a Curie temperature of ~395K. In this work, we have investigated the magnetotransport behaviour of this potentially useful binary system MnₓAl₁₋ₓ films were synthesized by co-sputtering (pulsed DC magnetron sputtering) on Si/SiO₂ (where SiO₂ is native oxide layer) substrate using 99.99% pure Mn and Al sputtering targets. Films of constant thickness (~25 nm) were deposited at the different growth temperature (Tₛ) viz. 30, 300, 400, 500, and 600 ºC with a deposition rate of ~5 nm/min. Prior to deposition, the chamber was pumped down to a base pressure of 2×10⁻⁷ Torr. During sputtering, the chamber was maintained at a pressure of 3.5×10⁻³ Torr with the 55 sccm Ar flow rate. Films were not capped for the purpose of electronic transport measurement, which leaves a possibility of metal oxide formation on the surface of MnAl (both Mn and Al have an affinity towards oxide formation). In-plane and out-of-plane transverse magnetoresistance (MR) measurements on films sputtered under optimized growth conditions revealed non-saturating behavior with MR values ~6% and 40% at 9T, respectively at 275 K. Resistivity shows a parabolic dependence on the field H, when the H is weak. At higher H, non-saturating positive MR that increases exponentially with the strength of magnetic field is observed, a typical character of hopping type conduction mechanism. An anomalous decrease in MR is observed on lowering the temperature. From the temperature dependence of reistivity, it is inferred that the two competing states are metallic and semiconducting, respectively and the energy scale of the phenomenon produces the most interesting effects, i.e., the metal-insulator transition and hence the maximum sensitivity to external fields, at room temperature. Theory of disordered 3D systems effectively explains the crossover temperature coefficient of resistivity from positive to negative with lowering of temperature. These preliminary findings on the MR behavior of MnAl thin films will be presented in detail. The anomalous large MR in mixed phase MnAl system is evidently useful for future spintronic applications.

Keywords: magnetoresistance, perpendicular magnetic anisotropy, spintronics, thin films

Procedia PDF Downloads 118
780 Yield and Physiological Evaluation of Coffee (Coffea arabica L.) in Response to Biochar Applications

Authors: Alefsi D. Sanchez-Reinoso, Leonardo Lombardini, Hermann Restrepo

Abstract:

Colombian coffee is recognized worldwide for its mild flavor and aroma. Its cultivation generates a large amount of waste, such as fresh pulp, which leads to environmental, health, and economic problems. Obtaining biochar (BC) by pyrolysis of coffee pulp and its incorporation to the soil can be a complement to the crop mineral nutrition. The objective was to evaluate the effect of the application of BC obtained from coffee pulp on the physiology and agronomic performance of the Castillo variety coffee crop (Coffea arabica L.). The research was developed in field condition experiment, using a three-year-old commercial coffee crop, carried out in Tolima. Four doses of BC (0, 4, 8 and 16 t ha-1) and four levels of chemical fertilization (CF) (0%, 33%, 66% and 100% of the nutritional requirements) were evaluated. Three groups of variables were recorded during the experiment: i) physiological parameters such as Gas exchange, the maximum quantum yield of PSII (Fv/Fm), biomass, and water status were measured; ii) physical and chemical characteristics of the soil in a commercial coffee crop, and iii) physiochemical and sensorial parameters of roasted beans and coffee beverages. The results indicated that a positive effect was found in plants with 8 t ha-1 BC and fertilization levels of 66 and 100%. Also, a positive effect was observed in coffee trees treated with 8 t ha-1 BC and 100%. In addition, the application of 16 t ha-1 BC increased the soil pHand microbial respiration; reduced the apparent density and state of aggregation of the soil compared to 0 t ha-1 BC. Applications of 8 and 16 t ha-1 BC and 66%-100% chemical fertilization registered greater sensitivity to the aromatic compounds of roasted coffee beans in the electronic nose. Amendments of BC between 8 and 16 t ha-1 and CF between 66% and 100% increased the content of total soluble solids (TSS), reduced the pH, and increased the titratable acidity in beverages of roasted coffee beans. In conclusion, 8 t ha-1 BC of the coffee pulp can be an alternative to supplement the nutrition of coffee seedlings and trees. Applications between 8 and 16 t ha-1 BC support coffee soil management strategies and help the use of solid waste. BC as a complement to chemical fertilization showed a positive effect on the aromatic profile obtained for roasted coffee beans and cup quality attributes.

Keywords: crop yield, cup quality, mineral nutrition, pyrolysis, soil amendment

Procedia PDF Downloads 99
779 Rangeland Monitoring by Computerized Technologies

Authors: H. Arzani, Z. Arzani

Abstract:

Every piece of rangeland has a different set of physical and biological characteristics. This requires the manager to synthesis various information for regular monitoring to define changes trend to get wright decision for sustainable management. So range managers need to use computerized technologies to monitor rangeland, and select. The best management practices. There are four examples of computerized technologies that can benefit sustainable management: (1) Photographic method for cover measurement: The method was tested in different vegetation communities in semi humid and arid regions. Interpretation of pictures of quadrats was done using Arc View software. Data analysis was done by SPSS software using paired t test. Based on the results, generally, photographic method can be used to measure ground cover in most vegetation communities. (2) GPS application for corresponding ground samples and satellite pixels: In two provinces of Tehran and Markazi, six reference points were selected and in each point, eight GPS models were tested. Significant relation among GPS model, time and location with accuracy of estimated coordinates was found. After selection of suitable method, in Markazi province coordinates of plots along four transects in each 6 sites of rangelands was recorded. The best time of GPS application was in the morning hours, Etrex Vista had less error than other models, and a significant relation among GPS model, time and location with accuracy of estimated coordinates was found. (3) Application of satellite data for rangeland monitoring: Focusing on the long term variation of vegetation parameters such as vegetation cover and production is essential. Our study in grass and shrub lands showed that there were significant correlations between quantitative vegetation characteristics and satellite data. So it is possible to monitor rangeland vegetation using digital data for sustainable utilization. (4) Rangeland suitability classification with GIS: Range suitability assessment can facilitate sustainable management planning. Three sub-models of sensitivity to erosion, water suitability and forage production out puts were entered to final range suitability classification model. GIS was facilitate classification of range suitability and produced suitability maps for sheep grazing. Generally digital computers assist range managers to interpret, modify, calibrate or integrating information for correct management.

Keywords: computer, GPS, GIS, remote sensing, photographic method, monitoring, rangeland ecosystem, management, suitability, sheep grazing

Procedia PDF Downloads 359
778 Studies on the Effect of Dehydration Techniques, Treatments, Packaging Material and Methods on the Quality of Buffalo Meat during Ambient Temperature Storage

Authors: Tariq Ahmad Safapuri, Saghir Ahmad, Farhana Allai

Abstract:

The present study was conducted to evaluate the effect dehydration techniques (polyhouse and tray drying), different treatment (SHMP, SHMP+ salt, salt + turmeric), different packaging material (HDPE, combination film), and different packaging methods (air, vacuum, CO2 Flush) on quality of dehydrated buffalo meat during ambient temperature storage. The quality measuring parameters included physico-chemical characteristics i.e. pH, rehydration ratio, moisture content and microbiological characteristics viz total plate content. It was found that the treatment of (SHMP, SHMP + salt, salt + turmeric increased the pH. Moisture Content of dehydrated meat samples were found in between 7.20% and 5.54%.the rehydration ratio of salt+ turmeric treated sample was found to be highest and lowest for controlled meat sample. the bacterial count log TPC/g of salt + turmeric and tray dried was lowest i.e. 1.80.During ambient temperature storage ,there was no considerable change in pH of dehydrated sample till 150 days. however the moisture content of samples increased in different packaging system in different manner. The highest moisture rise was found in case of controlled meat sample HDPE/air packed while the lowest increase was reported for SHMP+ Salt treated Packed by vacuum in combination film packed sample. Rehydration ratio was found considerably affected in case of HDPE and air packed sample dehydrated in polyhouse after 150 days of ambient storage. While there was a very little change in the rehydration ratio of meat samples packed in combination film CO2 flush system. The TPC was found under safe limit even after 150 days of storage. The microbial count was found to be lowest for salt+ turmeric treated samples after 150 days of storage.

Keywords: ambient temperature, dehydration technique, rehydration ratio, SHMP (sodium hexa meta phosphate), HDPE (high density polyethelene)

Procedia PDF Downloads 413
777 Kinetic Study of Municipal Plastic Waste

Authors: Laura Salvia Diaz Silvarrey, Anh Phan

Abstract:

Municipal Plastic Waste (MPW) comprises a mixture of thermoplastics such as high and low density polyethylene (HDPE and LDPE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET). Recycling rate of these plastics is low, e.g. only 27% in 2013. The remains were incinerated or disposed in landfills. As MPW generation increases approximately 5% per annum, MPW management technologies have to be developed to comply with legislation . Pyrolysis, thermochemical decomposition, provides an excellent alternative to convert MPW into valuable resources like fuels and chemicals. Most studies on waste plastic kinetics only focused on HDPE and LDPE with a simple assumption of first order decomposition, which is not the real reaction mechanism. The aim of this study was to develop a kinetic study for each of the polymers in the MPW mixture using thermogravimetric analysis (TGA) over a range of heating rates (5, 10, 20 and 40°C/min) in N2 atmosphere and sample size of 1 – 4mm. A model-free kinetic method was applied to quantify the activation energy at each level of conversion. Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) equations jointly with Master Plots confirmed that the activation energy was not constant along all the reaction for all the five plastic studied, showing that MPW decomposed through a complex mechanism and not by first-order kinetics. Master plots confirmed that MPW decomposed following a random scission mechanism at conversions above 40%. According to the random scission mechanism, different radicals are formed along the backbone producing the cleavage of bonds by chain scission into molecules of different lengths. The cleavage of bonds during random scission follows first-order kinetics and it is related with the conversion. When a bond is broken one part of the initial molecule becomes an unsaturated one and the other a terminal free radical. The latter can react with hydrogen from and adjacent carbon releasing another free radical and a saturated molecule or reacting with another free radical and forming an alkane. Not every time a bonds is broken a molecule is evaporated. At early stages of the reaction (conversion and temperature below 40% and 300°C), most products are not short enough to evaporate. Only at higher degrees of conversion most of cleavage of bonds releases molecules small enough to evaporate.

Keywords: kinetic, municipal plastic waste, pyrolysis, random scission

Procedia PDF Downloads 347
776 Direct Oxidation Synthesis for a Dual-Layer Silver/Silver Orthophosphate with Controllable Tetrahedral Structure as an Active Photoanode for Solar-Driven Photoelectrochemical Water Splitting

Authors: Wen Cai Ng, Saman Ilankoon, Meng Nan Chong

Abstract:

The vast increase in global energy demand, coupled with the growing concerns on environmental issues, has triggered the search for cleaner alternative energy sources. In view of this, the photoelectrochemical (PEC) water splitting offers a sustainable hydrogen (H2) production route that only requires solar energy, water, and PEC system operating in an ambient environment. However, the current advancement of PEC water splitting technologies is still far from the commercialization benchmark indicated by the solar-to-H2 (STH) efficiency of at least 10 %. This is largely due to the shortcomings of photoelectrodes used in the PEC system, such as the rapid recombination of photogenerated charge carriers and limited photo-responsiveness in the visible-light spectrum. Silver orthophosphate (Ag3PO4) possesses many desirable intrinsic properties for the fabrication into photoanode used in PEC systems, such as narrow bandgap of 2.4 eV and low valence band (VB) position. Hence, in this study, a highly efficient Ag3PO4-based photoanode was synthesized and characterized. The surface of the Ag foil substrate was directly oxidized to fabricate a top layer composed of {111}-bound Ag3PO4 tetrahedrons layer with a porous structure, forming the dual-layer Ag/Ag3PO4 photoanode. Furthermore, the key synthesis parameters were systematically investigated by varying the concentration ratio of capping agent-to-precursor (R), the volume ratio of hydrogen peroxide (H2O2)-to-water, and reaction period. Results showed that the optimized dual-layer Ag/Ag3PO4 photoanode achieved a photocurrent density as high as 4.19 mA/cm2 at 1 V vs. Ag/AgCl for the R-value of 4, the volume ratio of H2O2-to-water of 3:5 and 20 h reaction period. The current work provides a solid foundation for further nanoarchitecture modification strategies on Ag3PO4-based photoanodes for more efficient PEC water splitting applications. This piece of information needs to be backed up by evidence; therefore, you need to provide a reference. As the abstract should be self-contained, all information requiring a reference should be removed. This is a fact known to the area of research, and not necessarily required a reference to support.

Keywords: solar-to-hydrogen fuel, photoelectrochemical water splitting, photoelectrode, silver orthophosphate

Procedia PDF Downloads 116
775 Experimental Study Analyzing the Similarity Theory Formulations for the Effect of Aerodynamic Roughness Length on Turbulence Length Scales in the Atmospheric Surface Layer

Authors: Matthew J. Emes, Azadeh Jafari, Maziar Arjomandi

Abstract:

Velocity fluctuations of shear-generated turbulence are largest in the atmospheric surface layer (ASL) of nominal 100 m depth, which can lead to dynamic effects such as galloping and flutter on small physical structures on the ground when the turbulence length scales and characteristic length of the physical structure are the same order of magnitude. Turbulence length scales are a measure of the average sizes of the energy-containing eddies that are widely estimated using two-point cross-correlation analysis to convert the temporal lag to a separation distance using Taylor’s hypothesis that the convection velocity is equal to the mean velocity at the corresponding height. Profiles of turbulence length scales in the neutrally-stratified ASL, as predicted by Monin-Obukhov similarity theory in Engineering Sciences Data Unit (ESDU) 85020 for single-point data and ESDU 86010 for two-point correlations, are largely dependent on the aerodynamic roughness length. Field measurements have shown that longitudinal turbulence length scales show significant regional variation, whereas length scales of the vertical component show consistent Obukhov scaling from site to site because of the absence of low-frequency components. Hence, the objective of this experimental study is to compare the similarity theory relationships between the turbulence length scales and aerodynamic roughness length with those calculated using the autocorrelations and cross-correlations of field measurement velocity data at two sites: the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in a desert ASL in Dugway, Utah, USA and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) wind tower in a rural ASL in Jemalong, NSW, Australia. The results indicate that the longitudinal turbulence length scales increase with increasing aerodynamic roughness length, as opposed to the relationships derived by similarity theory correlations in ESDU models. However, the ratio of the turbulence length scales in the lateral and vertical directions to the longitudinal length scales is relatively independent of surface roughness, showing consistent inner-scaling between the two sites and the ESDU correlations. Further, the diurnal variation of wind velocity due to changes in atmospheric stability conditions has a significant effect on the turbulence structure of the energy-containing eddies in the lower ASL.

Keywords: aerodynamic roughness length, atmospheric surface layer, similarity theory, turbulence length scales

Procedia PDF Downloads 121
774 The Effect of Annual Weather and Sowing Date on Different Genotype of Maize (Zea mays L.) in Germination and Yield

Authors: Ákos Tótin

Abstract:

In crop production the most modern hybrids are available for us, therefore the yield and yield stability is determined by the agro-technology. The purpose of the experiment is to adapt the modern agrotechnology to the new type of hybrids. The long-term experiment was set up in 2015-2016 on chernozem soil in the Hajdúság (eastern Hungary). The plots were set up in 75 thousand ha-1 plant density. We examined some mainly use hybrids of Hungary. The conducted studies are: germination dynamic, growing dynamic and the effect of annual weather for the yield. We use three different sowing date as early, average and late, and measure how many plant germinated during the germination process. In the experiment, we observed the germination dynamics in 6 hybrid in 4 replication. In each replication, we counted the germinated plants in 2m long 2 row wide area. Data will be shown in the average of the 6 hybrid and 4 replication. Growing dynamics were measured from the 10cm (4-6 leaf) plant highness. We measured 10 plants’ height in two weeks replication. The yield was measured buy a special plot harvester - the Sampo Rosenlew 2010 – what measured the weight of the harvested plot and also took a sample from it. We determined the water content of the samples for the water release dynamics. After it, we calculated the yield (t/ha) of each plot at 14% of moisture content to compare them. We evaluated the data using Microsoft Excel 2015. The annual weather in each crop year define the maize germination dynamics because the amount of heat is determinative for the plants. In cooler crop year the weather is prolonged the germination. At the 2015 crop year the weather was cold in the beginning what prolonged the first sowing germination. But the second and third sowing germinated faster. In the 2016 crop year the weather was much favorable for plants so the first sowing germinated faster than in the previous year. After it the weather cooled down, therefore the second and third sowing germinated slower than the last year. The statistical data analysis program determined that there is a significant difference between the early and late sowing date growing dynamics. In 2015 the first sowing date had the highest amount of yield. The second biggest yield was in the average sowing time. The late sowing date has lowest amount of yield.

Keywords: germination, maize, sowing date, yield

Procedia PDF Downloads 225
773 Improving the Technology of Assembly by Use of Computer Calculations

Authors: Mariya V. Yanyukina, Michael A. Bolotov

Abstract:

Assembling accuracy is the degree of accordance between the actual values of the parameters obtained during assembly, and the values specified in the assembly drawings and technical specifications. However, the assembling accuracy depends not only on the quality of the production process but also on the correctness of the assembly process. Therefore, preliminary calculations of assembly stages are carried out to verify the correspondence of real geometric parameters to their acceptable values. In the aviation industry, most calculations involve interacting dimensional chains. This greatly complicates the task. Solving such problems requires a special approach. The purpose of this article is to carry out the problem of improving the technology of assembly of aviation units by use of computer calculations. One of the actual examples of the assembly unit, in which there is an interacting dimensional chain, is the turbine wheel of gas turbine engine. Dimensional chain of turbine wheel is formed by geometric parameters of disk and set of blades. The interaction of the dimensional chain consists in the formation of two chains. The first chain is formed by the dimensions that determine the location of the grooves for the installation of the blades, and the dimensions of the blade roots. The second dimensional chain is formed by the dimensions of the airfoil shroud platform. The interaction of the dimensional chain of the turbine wheel is the interdependence of the first and second chains by means of power circuits formed by a plurality of middle parts of the turbine blades. The timeliness of the calculation of the dimensional chain of the turbine wheel is the need to improve the technology of assembly of this unit. The task at hand contains geometric and mathematical components; therefore, its solution can be implemented following the algorithm: 1) research and analysis of production errors by geometric parameters; 2) development of a parametric model in the CAD system; 3) creation of set of CAD-models of details taking into account actual or generalized distributions of errors of geometrical parameters; 4) calculation model in the CAE-system, loading of various combinations of models of parts; 5) the accumulation of statistics and analysis. The main task is to pre-simulate the assembly process by calculating the interacting dimensional chains. The article describes the approach to the solution from the point of view of mathematical statistics, implemented in the software package Matlab. Within the framework of the study, there are data on the measurement of the components of the turbine wheel-blades and disks, as a result of which it is expected that the assembly process of the unit will be optimized by solving dimensional chains.

Keywords: accuracy, assembly, interacting dimension chains, turbine

Procedia PDF Downloads 370
772 Features of Urban Planning Design of the Largest Cities Located in Areas with High Seismic (on the example of Almaty city, Republic of Kazakhstan)

Authors: Arkinzhan Mametov, Alexey Abilov

Abstract:

Strong earthquakes are dangerous natural phenomena that lead to the destruction of entire cities and the death of a large number of people. The recent strong earthquakes in Turkey and in a number of other states have shown that as a result of them, there are significant human casualties and huge destruction. The city of Almaty is located in the foothill basin of the Trans-Ili Alatau of the Tien Shan Mountain system, in a zone with 9–10-point seismicity. Almaty (formerly Verniy) was founded in 1856 and, since that period, has experienced two catastrophic earthquakes - in 1887 and 1911, which led almost to the complete destruction of the city. Since that time, according to seismologists, the city has been annually exposed to small seismic impacts of 2-3 points. This forced the subsequent search for ways to protect buildings and the public through the use of earthquake-resistant structures and materials, limiting the number of stores of buildings and increasing gaps between them, which was carried out quite consistently and since 1957. However, at present, it is necessary to state a number of violations, primarily of the urban development plan – the placement of high-density multi-stores commercial housing in the urban environment, bypassing the existing regulations and standards in the city. Their appearance contributes to a greater concentration of residents transport in a limited area, which can lead to harmful consequences during powerful earthquakes. The experience of eliminating the consequences of catastrophic earthquakes shows that an important factor in reducing human losses is timely technical and medical assistance to victims of earthquakes, the elimination of blockages, provision of temporary housing and evacuation of the population, especially in winter. In cities located in areas with high seismicity, it is necessary to ensure strict compliance with the requirements of urban development regulations, taking into account the entire complex of planning and organizational measures to minimize the destruction of buildings and human casualties.

Keywords: high seismic zones, urban planning regulations, special standards for planing, minimizing the human casualties

Procedia PDF Downloads 81
771 Electrospray Plume Characterisation of a Single Source Cone-Jet for Micro-Electronic Cooling

Authors: M. J. Gibbons, A. J. Robinson

Abstract:

Increasing expectations on small form factor electronics to be more compact while increasing performance has driven conventional cooling technologies to a thermal management threshold. An emerging solution to this problem is electrospray (ES) cooling. ES cooling enables two phase cooling by utilising Coulomb forces for energy efficient fluid atomization. Generated charged droplets are accelerated to the grounded target surface by the applied electric field and surrounding gravitational force. While in transit the like charged droplets enable plume dispersion and inhibit droplet coalescence. If the electric field is increased in the cone-jet regime, a subsequent increase in the plume spray angle has been shown. Droplet segregation in the spray plume has been observed, with primary droplets in the plume core and satellite droplets positioned on the periphery of the plume. This segregation is facilitated by inertial and electrostatic effects. This result has been corroborated by numerous authors. These satellite droplets are usually more densely charged and move at a lower relative velocity to that of the spray core due to the radial decay of the electric field. Previous experimental research by Gomez and Tang has shown that the number of droplets deposited on the periphery can be up to twice that of the spray core. This result has been substantiated by a numerical models derived by Wilhelm et al., Oh et al. and Yang et al. Yang et al. showed from their numerical model, that by varying the extractor potential the dispersion radius of the plume also varies proportionally. This research aims to investigate this dispersion density and the role it plays in the local heat transfer coefficient profile (h) of ES cooling. This will be carried out for different extractor – target separation heights (H2), working fluid flow rates (Q), and extractor applied potential (V2). The plume dispersion will be recorded by spraying a 25 µm thick, joule heated steel foil and by recording the thermal footprint of the ES plume using a Flir A-40 thermal imaging camera. The recorded results will then be analysed by in-house developed MATLAB code.

Keywords: electronic cooling, electrospray, electrospray plume dispersion, spray cooling

Procedia PDF Downloads 392
770 Effects of Bone Marrow Derived Mesenchymal Stem Cells (MSC) in Acute Respiratory Distress Syndrome (ARDS) Lung Remodeling

Authors: Diana Islam, Juan Fang, Vito Fanelli, Bing Han, Julie Khang, Jianfeng Wu, Arthur S. Slutsky, Haibo Zhang

Abstract:

Introduction: MSC delivery in preclinical models of ARDS has demonstrated significant improvements in lung function and recovery from acute injury. However, the role of MSC delivery in ARDS associated pulmonary fibrosis is not well understood. Some animal studies using bleomycin, asbestos, and silica-induced pulmonary fibrosis show that MSC delivery can suppress fibrosis. While other animal studies using radiation induced pulmonary fibrosis, liver, and kidney fibrosis models show that MSC delivery can contribute to fibrosis. Hypothesis: The beneficial and deleterious effects of MSC in ARDS are modulated by the lung microenvironment at the time of MSC delivery. Methods: To induce ARDS a two-hit mouse model of Hydrochloric acid (HCl) aspiration (day 0) and mechanical ventilation (MV) (day 2) was used. HCl and injurious MV generated fibrosis within 14-28 days. 0.5x106 mouse MSCs were delivered (via both intratracheal and intravenous routes) either in the active inflammatory phase (day 2) or during the remodeling phase (day 14) of ARDS (mouse fibroblasts or PBS used as a control). Lung injury accessed using inflammation score and elastance measurement. Pulmonary fibrosis was accessed using histological score, tissue collagen level, and collagen expression. In addition alveolar epithelial (E) and mesenchymal (M) marker expression profile was also measured. All measurements were taken at day 2, 14, and 28. Results: MSC delivery 2 days after HCl exacerbated lung injury and fibrosis compared to HCl alone, while the day 14 delivery showed protective effects. However in the absence of HCl, MSC significantly reduced the injurious MV-induced fibrosis. HCl injury suppressed E markers and up-regulated M markers. MSC delivery 2 days after HCl further amplified M marker expression, indicating their role in myofibroblast proliferation/activation. While with 14-day delivery E marker up-regulation was observed indicating their role in epithelial restoration. Conclusions: Early MSC delivery can be protective of injurious MV. Late MSC delivery during repair phase may also aid in recovery. However, early MSC delivery during the exudative inflammatory phase of HCl-induced ARDS can result in pro-fibrotic profiles. It is critical to understand the interaction between MSC and the lung microenvironment before MSC-based therapies are utilized for ARDS.

Keywords: acute respiratory distress syndrome (ARDS), mesenchymal stem cells (MSC), hydrochloric acid (HCl), mechanical ventilation (MV)

Procedia PDF Downloads 664
769 System Devices to Reduce Particulate Matter Concentrations in Railway Metro Systems

Authors: Armando Cartenì

Abstract:

Within the design of sustainable transportation engineering, the problem of reducing particulate matter (PM) concentrations in railways metro system was not much discussed. It is well known that PM levels in railways metro system are mainly produced by mechanical friction at the rail-wheel-brake interactions and by the PM re-suspension caused by the turbulence generated by the train passage, which causes dangerous problems for passenger health. Starting from these considerations, the aim of this research was twofold: i) to investigate the particulate matter concentrations in a ‘traditional’ railways metro system; ii) to investigate the particulate matter concentrations of a ‘high quality’ metro system equipped with design devices useful for reducing PM concentrations: platform screen doors, rubber-tyred and an advanced ventilation system. Two measurement surveys were performed: one in the ‘traditional’ metro system of Naples (Italy) and onother in the ‘high quality’ rubber-tyred metro system of Turin (Italy). Experimental results regarding the ‘traditional’ metro system of Naples, show that the average PM10 concentrations measured in the underground station platforms are very high and range between 172 and 262 µg/m3 whilst the average PM2,5 concentrations range between 45 and 60 µg/m3, with dangerous problems for passenger health. By contrast the measurements results regarding the ‘high quality’ metro system of Turin show that: i) the average PM10 (PM2.5) concentrations measured in the underground station platform is 22.7 µg/m3 (16.0 µg/m3) with a standard deviation of 9.6 µg/m3 (7.6 µg/m3); ii) the indoor concentrations (both for PM10 and for PM2.5) are statistically lower from those measured in outdoors (with a ratio equal to 0.9-0.8), meaning that the indoor air quality is greater than those in urban ambient; iii) that PM concentrations in underground stations are correlated to the trains passage; iv) the inside trains concentrations (both for PM10 and for PM2.5) are statistically lower from those measured at station platform (with a ratio equal to 0.7-0.8), meaning that inside trains the use of air conditioning system could promote a greater circulation that clean the air. The comparison among the two case studies allow to conclude that the metro system designed with PM reduction devices allow to reduce PM concentration up to 11 times against a ‘traditional’ one. From these results, it is possible to conclude that PM concentrations measured in a ‘high quality’ metro system are significantly lower than the ones measured in a ‘traditional’ railway metro systems. This result allows possessing the bases for the design of useful devices for retrofitting metro systems all around the world.

Keywords: air quality, pollutant emission, quality in public transport, underground railway, external cost reduction, transportation planning

Procedia PDF Downloads 205
768 Evaluation of Vitamin D Levels in Obese and Morbid Obese Children

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Obesity may lead to growing serious health problems throughout the world. Vitamin D appears to play a role in cardiovascular and metabolic health. Vitamin D deficiency may add to derangements in human metabolic systems, particularly those of children. Childhood obesity is associated with an increased risk of chronic and sophisticated diseases. The aim of this study is to investigate associations as well as possible differences related to parameters affected by obesity and their relations with vitamin D status in obese (OB) and morbid obese (MO) children. This study included a total of 78 children. Of them, 41 and 37 were OB and MO, respectively. WHO BMI-for age percentiles were used for the classification of obesity. The values above 99 percentile were defined as MO. Those between 95 and 99 percentiles were included into OB group. Anthropometric measurements were recorded. Basal metabolic rates (BMRs) were measured. Vitamin D status is determined by the measurement of 25-hydroxy cholecalciferol [25- hydroxyvitamin D3, 25(OH)D] using high-performance liquid chromatography. Vitamin D status was evaluated as deficient, insufficient and sufficient. Values < 20.0 ng/ml, values between 20-30 ng/ml and values > 30.0 ng/ml were defined as vitamin D deficient, insufficient and sufficient, respectively. Optimal 25(OH)D level was defined as ≥ 30 ng/ml. SPSSx statistical package program was used for the evaluation of the data. The statistical significance degree was accepted as p < 0.05. Mean ages did not differ between the groups. Significantly increased body mass index (BMI), waist circumference (C) and neck C as well as significantly decreased fasting blood glucose (FBG) and vitamin D values were observed in MO group (p < 0.05). In OB group, 37.5% of the children were vitamin D deficient, and in MO group the corresponding value was 53.6%. No difference between the groups in terms of lipid profile, systolic blood pressure (SBP), diastolic blood pressure (DBP) and insulin values was noted. There was a severe statistical significance between FBG values of the groups (p < 0.001). Important correlations between BMI, waist C, hip C, neck C and both SBP as well as DBP were found in OB group. In MO group, correlations only with SBP were obtained. In a similar manner, in OB group, correlations were detected between SBP-BMR and DBP-BMR. However, in MO children, BMR correlated only with SBP. The associations of vitamin D with anthropometric indices as well as some lipid parameters were defined. In OB group BMI, waist C, hip C and triglycerides (TRG) were negatively correlated with vitamin D concentrations whereas none of them were detected in MO group. Vitamin D deficiency may contribute to the complications associated with childhood obesity. Loss of correlations between obesity indices-DBP, vitamin D-TRG, as well as relatively lower FBG values, observed in MO group point out that the emergence of MetS components starts during obesity state just before the transition to morbid obesity. Aside from its deficiency state, associations of vitamin D with anthropometric measurements, blood pressures and TRG should also be evaluated before the development of morbid obesity.

Keywords: children, morbid obesity, obesity, vitamin D

Procedia PDF Downloads 133
767 Solanum Nigrum Show Anti-Obesity Effects on High Fat Diet Fed Sprague Dawley Rats

Authors: Kathryn Nderitu, Atunga Nyachieo, Ezekiel Mecha

Abstract:

Introduction: Solanum nigrum , also known as black nightshade, biosynthesizes various phytochemical compounds with various pharmacological activities, including treating cardiovascular diseases and type 2 diabetes, among others. Materials and Methods: To assess the anti-obesity effects of Solanum nigrum using high-fat-fed diet rats, Sprague Dawley male rats (n = 35) of weights 160–180 g were assigned randomly into seven groups comprising n = 5 rats each. Each group was fed for 11 weeks as follows: normal group (normal chow rat feed); high-fat diet control (HFD); HFD and standard drug (Orlistat 30 mg/kg bw); HFD and methanolic extract 150 mg/kgbw; HFD and methanolic extract 300 mg/kgbw; HFD and dichloromethane extract 150 mg/kgbw; HFD and dichloromethane extract 300 mg/kgbw. Body mass index and food intake were monitored per week, and an oral glucose tolerance test was measured in weeks 5 and 10. Lipid profiles, liver function tests, adipose tissue, liver weights, and phytochemical analysis of Solanum nigrum were later carried out. Results: High-fat diet control group rats exhibited a significant increase in body mass index (BMI), while rats administered with leaf extracts of Solanum nigrum showed a reduction in BMI. Both low doses of dichloromethane (150 mg/kgbw) and high doses of methanol extracts (300 mg/kgbw) showed a better reduction in BMI than the other treatment groups. A significant decrease (p <0.05) in low-density lipoprotein-cholesterol, triglycerides, and cholesterol was observed among the rats administered with Solanum nigrum extracts compared to those of HFD control. Moreover, the HFD control group significantly increased liver and adipose tissue weights compared to other treatment groups (p<0.05). Solanum nigrum also decreased glycemic levels and normalized the hepatic enzymes of HFD control. However, food intake among the groups showed no significant difference (p>0.05). Qualitative analysis of Solanum nigrum leaf extracts indicated the presence of various bioactive compounds associated with anti-obesity. Conclusion: These results validate the use of Solanum nigrum in controlling obesity.

Keywords: solanum nigrum, High fat diet, phytocompounds, obesity

Procedia PDF Downloads 49