Search results for: open source data
24022 Clutter Suppression Based on Singular Value Decomposition and Fast Wavelet Algorithm
Authors: Ruomeng Xiao, Zhulin Zong, Longfa Yang
Abstract:
Aiming at the problem that the target signal is difficult to detect under the strong ground clutter environment, this paper proposes a clutter suppression algorithm based on the combination of singular value decomposition and the Mallat fast wavelet algorithm. The method first carries out singular value decomposition on the radar echo data matrix, realizes the initial separation of target and clutter through the threshold processing of singular value, and then carries out wavelet decomposition on the echo data to find out the target location, and adopts the discard method to select the appropriate decomposition layer to reconstruct the target signal, which ensures the minimum loss of target information while suppressing the clutter. After the verification of the measured data, the method has a significant effect on the target extraction under low SCR, and the target reconstruction can be realized without the prior position information of the target and the method also has a certain enhancement on the output SCR compared with the traditional single wavelet processing method.Keywords: clutter suppression, singular value decomposition, wavelet transform, Mallat algorithm, low SCR
Procedia PDF Downloads 11824021 The Impact of Female Education on Fertility: A Natural Experiment from Egypt
Authors: Fatma Romeh, Shiferaw Gurmu
Abstract:
This paper examines the impact of female education on fertility, using the change in length of primary schooling in Egypt in 1988-89 as the source of exogenous variation in schooling. In particular, beginning in 1988, children had to attend primary school for only five years rather than six years. This change was applicable to all individuals born on or after October 1977. Using a nonparametric regression discontinuity approach, we compare education and fertility of women born just before and after October 1977. The results show that female education significantly reduces the number of children born per woman and delays the time until first birth. Applying a robust regression discontinuity approach, however, the impact of education on the number of children is no longer significant. The impact on the timing of first birth remained significant under the robust approach. Each year of female education postponed childbearing by three months, on average.Keywords: Egypt, female education, fertility, robust regression discontinuity
Procedia PDF Downloads 33824020 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages
Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong
Abstract:
Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale
Procedia PDF Downloads 6424019 A Proposed Framework for Digital Librarianship in Academic Libraries
Authors: Daniel Vaati Nzioka, John Oredo, Dorothy Muthoni Njiraine
Abstract:
The service delivery in academic libraries has been regressing due to the failure of Digital Librarians (DLns) to perform optimally. This study aimed at developing a proposed framework for digital librarianship in academic libraries with special emphasis to three selected public academic institutional libraries. The study’s specific objectives were to determine the roles played by the current DLns’ in academic libraries, establish job description of DLns’ in various academic libraries, ascertain DLns best practices, and to implement a viable digital librarianship conceptual framework. The study used a survey research with open-ended questionnaire designed as per the objectives of the study. A purposively selected sample of 30 Library and Information Science (LIS) professionals from the three selected academic libraries in charge of Digital Information Services (DIS) and managing electronic resources were selected and interviewed. A piloted self-administered questionnaire was used to gather information from these respondents. A total of thirty (30) questionnaires to the LIS professionals-ten from each of the three selected academic libraries were administered. The study developed a proposed conceptual framework for DLns’ that details the pertinent issues currently facing academic libraries when hiring DLns. The study recommended that the provided framework be adopted to guide library managers in identifying the needs of staff training and selecting the most adequate training method as well as settling on the best practices to be sent to staff for training and development.Keywords: digital, academic, libraries, framework
Procedia PDF Downloads 10824018 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube
Authors: Dan Kanmegne
Abstract:
Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification
Procedia PDF Downloads 14524017 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 16924016 A Rapid Reinforcement Technique for Columns by Carbon Fiber/Epoxy Composite Materials
Authors: Faruk Elaldi
Abstract:
There are lots of concrete columns and beams around in our living cities. Those columns are mostly open to aggressive environmental conditions and earthquakes. Mostly, they are deteriorated by sand, wind, humidity and other external applications at times. After a while, these beams and columns need to be repaired. Within the scope of this study, for reinforcement of concrete columns, samples were designed and fabricated to be strengthened with carbon fiber reinforced composite materials and conventional concrete encapsulation and followed by, and they were put into the axial compression test to determine load-carrying performance before column failure. In the first stage of this study, concrete column design and mold designs were completed for a certain load-carrying capacity. Later, the columns were exposed to environmental deterioration in order to reduce load-carrying capacity. To reinforce these damaged columns, two methods were applied, “concrete encapsulation” and the other one “wrapping with carbon fiber /epoxy” material. In the second stage of the study, the reinforced columns were applied to the axial compression test and the results obtained were analyzed. Cost and load-carrying performance comparisons were made and it was found that even though the carbon fiber/epoxy reinforced method is more expensive, this method enhances higher load-carrying capacity and reduces the reinforcement processing period.Keywords: column reinforcement, composite, earth quake, carbon fiber reinforced
Procedia PDF Downloads 18424015 Nonlinear Analysis in Investigating the Complexity of Neurophysiological Data during Reflex Behavior
Authors: Juliana A. Knocikova
Abstract:
Methods of nonlinear signal analysis are based on finding that random behavior can arise in deterministic nonlinear systems with a few degrees of freedom. Considering the dynamical systems, entropy is usually understood as a rate of information production. Changes in temporal dynamics of physiological data are indicating evolving of system in time, thus a level of new signal pattern generation. During last decades, many algorithms were introduced to assess some patterns of physiological responses to external stimulus. However, the reflex responses are usually characterized by short periods of time. This characteristic represents a great limitation for usual methods of nonlinear analysis. To solve the problems of short recordings, parameter of approximate entropy has been introduced as a measure of system complexity. Low value of this parameter is reflecting regularity and predictability in analyzed time series. On the other side, increasing of this parameter means unpredictability and a random behavior, hence a higher system complexity. Reduced neurophysiological data complexity has been observed repeatedly when analyzing electroneurogram and electromyogram activities during defence reflex responses. Quantitative phrenic neurogram changes are also obvious during severe hypoxia, as well as during airway reflex episodes. Concluding, the approximate entropy parameter serves as a convenient tool for analysis of reflex behavior characterized by short lasting time series.Keywords: approximate entropy, neurophysiological data, nonlinear dynamics, reflex
Procedia PDF Downloads 30024014 Damping Function and Dynamic Simulation of GUPFC Using IC-HS Algorithm
Authors: Galu Papy Yuma
Abstract:
This paper presents a new dynamic simulation of a power system consisting of four machines equipped with the Generalized Unified Power Flow Controller (GUPFC) to improve power system stability. The dynamic simulation of the GUPFC consists of one shunt converter and two series converters based on voltage source converter, and DC link capacitor installed in the power system. MATLAB/Simulink is used to arrange the dynamic simulation of the GUPFC, where the power system is simulated in order to investigate the impact of the controller on power system oscillation damping and to show the simulation program reliability. The Improved Chaotic- Harmony Search (IC-HS) Algorithm is used to provide the parameter controller in order to lead-lag compensation design. The results obtained by simulation show that the power system with four machines is suitable for stability analysis. The use of GUPFC and IC-HS Algorithm provides the excellent capability in fast damping of power system oscillations and improve greatly the dynamic stability of the power system.Keywords: GUPFC, IC-HS algorithm, Matlab/Simulink, damping oscillation
Procedia PDF Downloads 44924013 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity
Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle
Abstract:
The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.Keywords: complex-valued signal processing, synthetic aperture radar, 2-D radar imaging, compressive sensing, sparse Bayesian learning
Procedia PDF Downloads 13224012 Application of Building Information Modeling in Energy Management of Individual Departments Occupying University Facilities
Authors: Kung-Jen Tu, Danny Vernatha
Abstract:
To assist individual departments within universities in their energy management tasks, this study explores the application of Building Information Modeling in establishing the ‘BIM based Energy Management Support System’ (BIM-EMSS). The BIM-EMSS consists of six components: (1) sensors installed for each occupant and each equipment, (2) electricity sub-meters (constantly logging lighting, HVAC, and socket electricity consumptions of each room), (3) BIM models of all rooms within individual departments’ facilities, (4) data warehouse (for storing occupancy status and logged electricity consumption data), (5) building energy management system that provides energy managers with various energy management functions, and (6) energy simulation tool (such as eQuest) that generates real time 'standard energy consumptions' data against which 'actual energy consumptions' data are compared and energy efficiency evaluated. Through the building energy management system, the energy manager is able to (a) have 3D visualization (BIM model) of each room, in which the occupancy and equipment status detected by the sensors and the electricity consumptions data logged are displayed constantly; (b) perform real time energy consumption analysis to compare the actual and standard energy consumption profiles of a space; (c) obtain energy consumption anomaly detection warnings on certain rooms so that energy management corrective actions can be further taken (data mining technique is employed to analyze the relation between space occupancy pattern with current space equipment setting to indicate an anomaly, such as when appliances turn on without occupancy); and (d) perform historical energy consumption analysis to review monthly and annually energy consumption profiles and compare them against historical energy profiles. The BIM-EMSS was further implemented in a research lab in the Department of Architecture of NTUST in Taiwan and implementation results presented to illustrate how it can be used to assist individual departments within universities in their energy management tasks.Keywords: database, electricity sub-meters, energy anomaly detection, sensor
Procedia PDF Downloads 30824011 Visualization of Latent Sweat Fingerprints Deposit on Paper by Infrared Radiation and Blue Light
Authors: Xiaochun Huang, Xuejun Zhao, Yun Zou, Feiyu Yang, Wenbin Liu, Nan Deng, Ming Zhang, Nengbin Cai
Abstract:
A simple device termed infrared radiation (IR) was developed for rapid visualization of sweat fingerprints deposit on paper with blue light (450 nm, 11 W). In this approach, IR serves as the pretreatment device before the sweat fingerprints was illuminated by blue light. An annular blue light source was adopted for visualizing latent sweat fingerprints. Sample fingerprints were examined under various conditions after deposition, and experimental results indicate that the recovery rate of the latent sweat fingerprints is in the range of 50%-100% without chemical treatments. A mechanism for the observed visibility is proposed based on transportation and re-impregnation of fluorescer in paper at the region of water. And further exploratory experimental results gave the full support to the visible mechanism. Therefore, such a method as IR-pretreated in detecting latent fingerprints may be better for examination in the case where biological information of samples is needed for consequent testing.Keywords: forensic science, visualization, infrared radiation, blue light, latent sweat fingerprints, detection
Procedia PDF Downloads 49724010 Comparison of Different Machine Learning Models for Time-Series Based Load Forecasting of Electric Vehicle Charging Stations
Authors: H. J. Joshi, Satyajeet Patil, Parth Dandavate, Mihir Kulkarni, Harshita Agrawal
Abstract:
As the world looks towards a sustainable future, electric vehicles have become increasingly popular. Millions worldwide are looking to switch to Electric cars over the previously favored combustion engine-powered cars. This demand has seen an increase in Electric Vehicle Charging Stations. The big challenge is that the randomness of electrical energy makes it tough for these charging stations to provide an adequate amount of energy over a specific amount of time. Thus, it has become increasingly crucial to model these patterns and forecast the energy needs of power stations. This paper aims to analyze how different machine learning models perform on Electric Vehicle charging time-series data. The data set consists of authentic Electric Vehicle Data from the Netherlands. It has an overview of ten thousand transactions from public stations operated by EVnetNL.Keywords: forecasting, smart grid, electric vehicle load forecasting, machine learning, time series forecasting
Procedia PDF Downloads 10624009 Ranking Priorities for Digital Health in Portugal: Aligning Health Managers’ Perceptions with Official Policy Perspectives
Authors: Pedro G. Rodrigues, Maria J. Bárrios, Sara A. Ambrósio
Abstract:
The digitalisation of health is a profoundly transformative economic, political, and social process. As is often the case, such processes need to be carefully managed if misunderstandings, policy misalignments, or outright conflicts between the government and a wide gamut of stakeholders with competing interests are to be avoided. Thus, ensuring open lines of communication where all parties know what each other’s concerns are is key to good governance, as well as efficient and effective policymaking. This project aims to make a small but still significant contribution in this regard in that we seek to determine the extent to which health managers’ perceptions of what is a priority for digital health in Portugal are aligned with official policy perspectives. By applying state-of-the-art artificial intelligence technology first to the indexed literature on digital health and then to a set of official policy documents on the same topic, followed by a survey directed at health managers working in public and private hospitals in Portugal, we obtain two priority rankings that, when compared, will allow us to produce a synthesis and toolkit on digital health policy in Portugal, with a view to identifying areas of policy convergence and divergence. This project is also particularly peculiar in the sense that sophisticated digital methods related to text analytics are employed to study good governance aspects of digitalisation applied to health care.Keywords: digital health, health informatics, text analytics, governance, natural language understanding
Procedia PDF Downloads 6524008 Modeling Continuous Flow in a Curved Channel Using Smoothed Particle Hydrodynamics
Authors: Indri Mahadiraka Rumamby, R. R. Dwinanti Rika Marthanty, Jessica Sjah
Abstract:
Smoothed particle hydrodynamics (SPH) was originally created to simulate nonaxisymmetric phenomena in astrophysics. However, this method still has several shortcomings, namely the high computational cost required to model values with high resolution and problems with boundary conditions. The difficulty of modeling boundary conditions occurs because the SPH method is influenced by particle deficiency due to the integral of the kernel function being truncated by boundary conditions. This research aims to answer if SPH modeling with a focus on boundary layer interactions and continuous flow can produce quantifiably accurate values with low computational cost. This research will combine algorithms and coding in the main program of meandering river, continuous flow algorithm, and solid-fluid algorithm with the aim of obtaining quantitatively accurate results on solid-fluid interactions with the continuous flow on a meandering channel using the SPH method. This study uses the Fortran programming language for modeling the SPH (Smoothed Particle Hydrodynamics) numerical method; the model is conducted in the form of a U-shaped meandering open channel in 3D, where the channel walls are soil particles and uses a continuous flow with a limited number of particles.Keywords: smoothed particle hydrodynamics, computational fluid dynamics, numerical simulation, fluid mechanics
Procedia PDF Downloads 13224007 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning
Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker
Abstract:
Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16
Procedia PDF Downloads 14924006 Formal Implementation of Routing Information Protocol Using Event-B
Authors: Jawid Ahmad Baktash, Tadashi Shiroma, Tomokazu Nagata, Yuji Taniguchi, Morikazu Nakamura
Abstract:
The goal of this paper is to explore the use of formal methods for Dynamic Routing, The purpose of network communication with dynamic routing is sending a massage from one node to others by using pacific protocols. In dynamic routing connections are possible based on protocols of Distance vector (Routing Information Protocol, Border Gateway protocol), Link State (Open Shortest Path First, Intermediate system Intermediate System), Hybrid (Enhanced Interior Gateway Routing Protocol). The responsibility for proper verification becomes crucial with Dynamic Routing. Formal methods can play an essential role in the Routing, development of Networks and testing of distributed systems. Event-B is a formal technique consists of describing rigorously the problem; introduce solutions or details in the refinement steps to obtain more concrete specification, and verifying that proposed solutions are correct. The system is modeled in terms of an abstract state space using variables with set theoretic types and the events that modify state variables. Event-B is a variant of B, was designed for developing distributed systems. In Event-B, the events consist of guarded actions occurring spontaneously rather than being invoked. The invariant state properties must be satisfied by the variables and maintained by the activation of the events.Keywords: dynamic rout RIP, formal method, event-B, pro-B
Procedia PDF Downloads 40124005 Development of a Miniature and Low-Cost IoT-Based Remote Health Monitoring Device
Authors: Sreejith Jayachandran, Mojtaba Ghods, Morteza Mohammadzaheri
Abstract:
The modern busy world is running behind new embedded technologies based on computers and software; meanwhile, some people forget to do their health condition and regular medical check-ups. Some of them postpone medical check-ups due to a lack of time and convenience, while others skip these regular evaluations and medical examinations due to huge medical bills and hospital expenses. Engineers and medical experts have come together to give birth to a new device in the telemonitoring system capable of monitoring, checking, and evaluating the health status of the human body remotely through the internet for the needs of all kinds of people. The remote health monitoring device is a microcontroller-based embedded unit. Various types of sensors in this device are connected to the human body, and with the help of an Arduino UNO board, the required analogue data is collected from the sensors. The microcontroller on the Arduino board processes the analogue data collected in this way into digital data and transfers that information to the cloud, and stores it there, and the processed digital data is instantly displayed through the LCD attached to the machine. By accessing the cloud storage with a username and password, the concerned person’s health care teams/doctors and other health staff can collect this data for the assessment and follow-up of that patient. Besides that, the family members/guardians can use and evaluate this data for awareness of the patient's current health status. Moreover, the system is connected to a Global Positioning System (GPS) module. In emergencies, the concerned team can position the patient or the person with this device. The setup continuously evaluates and transfers the data to the cloud, and also the user can prefix a normal value range for the evaluation. For example, the blood pressure normal value is universally prefixed between 80/120 mmHg. Similarly, the RHMS is also allowed to fix the range of values referred to as normal coefficients. This IoT-based miniature system (11×10×10) cm³ with a low weight of 500 gr only consumes 10 mW. This smart monitoring system is manufactured with 100 GBP, which can be used not only for health systems, it can be used for numerous other uses including aerospace and transportation sections.Keywords: embedded technology, telemonitoring system, microcontroller, Arduino UNO, cloud storage, global positioning system, remote health monitoring system, alert system
Procedia PDF Downloads 9024004 Management Options and Life Cycle Assessment of Municipal Solid Waste in Madinah, KSA
Authors: Abdelkader T. Ahmed, Ayed E. Alluqmani
Abstract:
The population growth in the KSA beside the increase in the urbanization level and standard of living improvement have resulted in the rapid growth of the country’s Municipal Solid Waste (MSW) generation. Municipalities are managing the MSW system in the KSA by collecting and getting rid of it by dumping it in nearest open landfill sites. Solid waste management is one of the main critical issues considered worldwide due to its significant impact on the environment and the public health. In this study, municipal solid waste (MSW) generation, composition and collection of Madinah city, as one of largest cities in KSA, were examined to provide an overview of current state of MSW management, an analysis of existing problem in MSW management, and recommendations for improving the waste treatment and management system in this area. These recommendations would be not specific to Madinah region, but also would be applied to other cities in KSA or any other regions with similar features. The trend of waste generation showed that current waste generation would be increased as much as two to three folds in 2030. Approximately 25% of total generated waste is disposed to a sanitary landfill, while 75% is sent to normal dumpsites. This study also investigated the environmental impacts of MSW through the Life Cycle Assessment (LCA) of waste generations and related processes. LCA results revealed that among the seven scenarios, recycling and composting are the best scenario for the solid waste management in Madinah and similar regions.Keywords: municipal solid waste, waste recycling and land-filling, waste management, life cycle assessment
Procedia PDF Downloads 46424003 A Study of Tourists Satisfaction and Behavior Strategies Case Study: International Tourists in Chatuchak Weekend Market
Authors: Weera Weerasophon
Abstract:
The purpose of this research was to study Tourists’s satisfaction strategies case of Tourists who attended and shopped in Chatuchak weekend market (Bangkok) in order to improve service operation of Chatuchak weekend market to serve tourists’ need to impress them. The researcher used the marketing mix as a main factor that affect to tourist satisfaction. This research was emphasized as quantitative research as 400 of questionnaires were used for collecting the data from international tourists around Chatuchak weekend market that questionnaires divided in to 3 parts as a personal information part, satisfaction of marketing/services and facilities and suggestion part. After collecting all the data that would be processed in statistic program of SPSS to use for analyze the data later on. The result is described that most of international tourists satisfied Chatuchak weekend market in the level of 4 as more satisfaction for example friendly staff, Chatuchak information, price of product, facilities and service by the way, the environment of Chatuchak weekend market is the most satisfaction level.Keywords: Chatuchak, satisfaction, Thailand tourism, marketing mix, tourists
Procedia PDF Downloads 36024002 Vegetables and Fruits Solar Tunnel Dryer for Small-Scale Farmers in Kassala
Authors: Sami Mohamed Sharif
Abstract:
The current study focuses on the design and construction of a solar tunnel dryer intended for small-scale farmers in Kassala, Sudan. To determine the appropriate dimensions of the dryer, the heat and mass balance equations are used, taking into account factors such as the target agricultural product, climate conditions, solar irradiance, and desired drying time. In Kassala, a dryer with a width of 88 cm, length of 600 cm, and height of 25 cm has been built, capable of drying up to 40 kg of vegetables or fruits. The dryer is divided into two chambers of different lengths. The air passing through is heated to the desired drying temperature in a separate heating chamber that is 200 cm long. From there, the heated air enters the drying chamber, which is 400 cm long. In this section, the agricultural product is placed on a slightly elevated net. The tunnel dryer was constructed using materials from the local market. The paper also examines the solar irradiance in Kassala, finding an average of 23.6 MJ/m2/day, with a maximum of 26.6 MJ/m2/day in April and a minimum of 20.2 MJ/m2/day in December. A DC fan powered by a 160Wp solar panel is utilized to circulate air within the tunnel. By connecting the fan and three 12V, 60W bulbs in series, four different speeds can be achieved using a speed controller. Temperature and relative humidity measurements were taken hourly over three days, from 10:00 a.m. to 3:00 p.m. The results demonstrate the promising technology and sizing techniques of solar tunnel dryers, which can significantly increase the temperature within the tunnel by more than 90%.Keywords: tunnel dryer, solar drying, moisture content, fruits drying modeling, open sun drying
Procedia PDF Downloads 5524001 Modelling Dengue Disease With Climate Variables Using Geospatial Data For Mekong River Delta Region of Vietnam
Authors: Thi Thanh Nga Pham, Damien Philippon, Alexis Drogoul, Thi Thu Thuy Nguyen, Tien Cong Nguyen
Abstract:
Mekong River Delta region of Vietnam is recognized as one of the most vulnerable to climate change due to flooding and seawater rise and therefore an increased burden of climate change-related diseases. Changes in temperature and precipitation are likely to alter the incidence and distribution of vector-borne diseases such as dengue fever. In this region, the peak of the dengue epidemic period is around July to September during the rainy season. It is believed that climate is an important factor for dengue transmission. This study aims to enhance the capacity of dengue prediction by the relationship of dengue incidences with climate and environmental variables for Mekong River Delta of Vietnam during 2005-2015. Mathematical models for vector-host infectious disease, including larva, mosquito, and human being were used to calculate the impacts of climate to the dengue transmission with incorporating geospatial data for model input. Monthly dengue incidence data were collected at provincial level. Precipitation data were extracted from satellite observations of GSMaP (Global Satellite Mapping of Precipitation), land surface temperature and land cover data were from MODIS. The value of seasonal reproduction number was estimated to evaluate the potential, severity and persistence of dengue infection, while the final infected number was derived to check the outbreak of dengue. The result shows that the dengue infection depends on the seasonal variation of climate variables with the peak during the rainy season and predicted dengue incidence follows well with this dynamic for the whole studied region. However, the highest outbreak of 2007 dengue was not captured by the model reflecting nonlinear dependences of transmission on climate. Other possible effects will be discussed to address the limitation of the model. This suggested the need of considering of both climate variables and another variability across temporal and spatial scales.Keywords: infectious disease, dengue, geospatial data, climate
Procedia PDF Downloads 38324000 Distances over Incomplete Diabetes and Breast Cancer Data Based on Bhattacharyya Distance
Authors: Loai AbdAllah, Mahmoud Kaiyal
Abstract:
Missing values in real-world datasets are a common problem. Many algorithms were developed to deal with this problem, most of them replace the missing values with a fixed value that was computed based on the observed values. In our work, we used a distance function based on Bhattacharyya distance to measure the distance between objects with missing values. Bhattacharyya distance, which measures the similarity of two probability distributions. The proposed distance distinguishes between known and unknown values. Where the distance between two known values is the Mahalanobis distance. When, on the other hand, one of them is missing the distance is computed based on the distribution of the known values, for the coordinate that contains the missing value. This method was integrated with Wikaya, a digital health company developing a platform that helps to improve prevention of chronic diseases such as diabetes and cancer. In order for Wikaya’s recommendation system to work distance between users need to be measured. Since there are missing values in the collected data, there is a need to develop a distance function distances between incomplete users profiles. To evaluate the accuracy of the proposed distance function in reflecting the actual similarity between different objects, when some of them contain missing values, we integrated it within the framework of k nearest neighbors (kNN) classifier, since its computation is based only on the similarity between objects. To validate this, we ran the algorithm over diabetes and breast cancer datasets, standard benchmark datasets from the UCI repository. Our experiments show that kNN classifier using our proposed distance function outperforms the kNN using other existing methods.Keywords: missing values, incomplete data, distance, incomplete diabetes data
Procedia PDF Downloads 22523999 Controlled Shock Response Spectrum Test on Spacecraft Subsystem Using Electrodynamic Shaker
Authors: M. Madheswaran, A. R. Prashant, S. Ramakrishna, V. Ramesh Naidu, P. Govindan, P. Aravindakshan
Abstract:
Shock Response spectrum (SRS) tests are one of the tests that are conducted on some critical systems of spacecraft as part of environmental testing. The SRS tests are conducted to simulate the pyro shocks that occur during launch phases as well as during deployment of spacecraft appendages. Some of the methods to carryout SRS tests are pyro technique method, impact hammer method, drop shock method and using electro dynamic shakers. The pyro technique, impact hammer and drop shock methods are open loop tests, whereas SRS testing using electrodynamic shaker is a controlled closed loop test. SRS testing using electrodynamic shaker offers various advantages such as simple test set up, better controllability and repeatability. However, it is important to devise a a proper test methodology so that safety of the electro dynamic shaker and that of test specimen are not compromised. This paper discusses the challenges that are involved in conducting SRS tests, shaker validation and the necessary precautions to be considered. Approach involved in choosing various test parameters like synthesis waveform, spectrum convergence level, etc., are discussed. A case study of SRS test conducted on an optical payload of Indian Geo stationary spacecraft is presented.Keywords: maxi-max spectrum, SRS (shock response spectrum), SDOf (single degree of freedom), wavelet synthesis
Procedia PDF Downloads 36023998 Decoding the Natural Hazards: The Data Paradox, Juggling Data Flows, Transparency and Secrets, Analysis of Khuzestan and Lorestan Floods of Iran
Authors: Kiyanoush Ghalavand
Abstract:
We have a complex paradox in the agriculture and environment sectors in the age of technology. In the one side, the achievements of the science and information ages are shaping to come that is very dangerous than ever last decades. The progress of the past decades is historic, connecting people, empowering individuals, groups, and states, and lifting a thousand people out of land and poverty in the process. Floods are the most frequent natural hazards damaging and recurring of all disasters in Iran. Additionally, floods are morphing into new and even more devastating forms in recent years. Khuzestan and Lorestan Provinces experienced heavy rains that began on March 28, 2019, and led to unprecedented widespread flooding and landslides across the provinces. The study was based on both secondary and primary data. For the present study, a questionnaire-based primary survey was conducted. Data were collected by using a specially designed questionnaire and other instruments, such as focus groups, interview schedules, inception workshops, and roundtable discussions with stakeholders at different levels. Farmers in Khuzestan and Lorestan provinces were the statistical population for this study. Data were analyzed with several software such as ATLASti, NVivo SPSS Win, ،E-Views. According to a factorial analysis conducted for the present study, 10 groups of factors were categorized climatic, economic, cultural, supportive, instructive, planning, military, policymaking, geographical, and human factors. They estimated 71.6 percent of explanatory factors of flood management obstacles in the agricultural sector in Lorestan and Khuzestan provinces. Several recommendations were finally made based on the study findings.Keywords: chaos theory, natural hazards, risks, environmental risks, paradox
Procedia PDF Downloads 14623997 Techniques to Characterize Subpopulations among Hearing Impaired Patients and Its Impact for Hearing Aid Fitting
Authors: Vijaya K. Narne, Gerard Loquet, Tobias Piechowiak, Dorte Hammershoi, Jesper H. Schmidt
Abstract:
BEAR, which stands for better hearing rehabilitation is a large-scale project in Denmark designed and executed by three national universities, three hospitals, and the hearing aid industry with the aim to improve hearing aid fitting. A total of 1963 hearing impaired people were included and were segmented into subgroups based on hearing-loss, demographics, audiological and questionnaires data (i.e., the speech, spatial and qualities of hearing scale [SSQ-12] and the International Outcome Inventory for Hearing-Aids [IOI-HA]). With the aim to provide a better hearing-aid fit to individual patients, we applied modern machine learning techniques with traditional audiograms rule-based systems. Results show that age, speech discrimination scores, and audiogram configurations were evolved as important parameters in characterizing sub-population from the data-set. The attempt to characterize sub-population reveal a clearer picture about the individual hearing difficulties encountered and the benefits derived from more individualized hearing aids.Keywords: hearing loss, audiological data, machine learning, hearing aids
Procedia PDF Downloads 15423996 Female Criminality in Lagos State: A Case of Armed Robbery
Authors: Ebobo Urowoli Christiana
Abstract:
The Nigerian Prison Service statistics of 2007; 2009 revealed that though crime in the past was ascribed to men, but today there is a steady increase in the population of women involved in crime. This study focused on the investigation of female criminality in Lagos State: A case of Armed Robbery. Its major objective was to find out if there is an increase or decrease in female involvement in armed robbery and its growth rate. The major research question is 'Is there an increase in the perpetration of armed robbery by females in Lagos State?' the null hypotheses is 'There is no significant increase in the perpetration of armed robbery by females in Lagos State.' As a result, this study adopted the survey design, purposive sampling method and a sample size of 120 respondents. The rational choice theory was used to explain the reason for female involvement in armed robbery. Both primary and secondary data was generated for this study; the primary data was collected from the criminal records in Lagos State Police Command, Panti while the Quantitative data was collected using the questionnaire from 120 female detainees and inmates. The data collected was analyzed using the simple frequency tables and percentages and chi square was used to test for relationships. The study revealed a persistent rise in the prevalence of female armed robbery and recommended that youths should be equipped with educational/vocational skills in order to lead responsible lives.Keywords: criminality, armed robbery, female, police commands, panti, nature
Procedia PDF Downloads 40623995 Reference Intensity Ratio Semi-Quantitative Analysis of Cordierite-Mullite Synthesis by a Solid State Method
Authors: D. Wattanasiriwech, S. Wattanasiriwech
Abstract:
In this paper, attempt to synthesize designed cordierite-mullite system with various ratios was performed using a solid-state method. Alumina, quartz, magnesia, and talc were used as starting materials for the synthesis. Talc was added for two purposes; to assist the reaction progress and to be the Mg source. The raw materials were mixed and fired at 1350°C for 2 h and 1400°C for 2 and 4 h. The resulting phase compositions were analysed using the Reference Intensity Ratio (RIR) semi-quantitative analysis method. The highest amount of cordierite up to Cordierite phase 96% could be obtained at the firing scheme of 1400°C for 4 h in the C100-M0. Mullite could not be formed at the selected scheme if talc did not present so no pure mullite was observed in the selected firing regime. The highest amount of mullite co-existed with cordierite and other phases were 74%.Keywords: RIR semi-quantitative analysis, cordierite-mullite system, solid state synthesis, X-Ray diffraction
Procedia PDF Downloads 16923994 Intrusion Detection System Based on Peer to Peer
Authors: Alireza Pour Ebrahimi, Vahid Abasi
Abstract:
Recently by the extension of internet usage, Research on the intrusion detection system takes a significant importance. Many of improvement systems prevent internal and external network attacks by providing security through firewalls and antivirus. In recently years, intrusion detection systems gradually turn from host-based systems and depend on O.S to the distributed systems which are running on multiple O.S. In this work, by considering the diversity of computer networks whit respect to structure, architecture, resource, services, users and also security goals requirement a fully distributed collaborative intrusion detection system based on peer to peer architecture is suggested. in this platform each partner device (matched device) considered as a peer-to-peer network. All transmitted information to network are visible only for device that use security scanning of a source. Experimental results show that the distributed architecture is significantly upgradeable in respect to centralized approach.Keywords: network, intrusion detection system, peer to peer, internal and external network
Procedia PDF Downloads 54823993 Empirical Roughness Progression Models of Heavy Duty Rural Pavements
Authors: Nahla H. Alaswadko, Rayya A. Hassan, Bayar N. Mohammed
Abstract:
Empirical deterministic models have been developed to predict roughness progression of heavy duty spray sealed pavements for a dataset representing rural arterial roads. The dataset provides a good representation of the relevant network and covers a wide range of operating and environmental conditions. A sample with a large size of historical time series data for many pavement sections has been collected and prepared for use in multilevel regression analysis. The modelling parameters include road roughness as performance parameter and traffic loading, time, initial pavement strength, reactivity level of subgrade soil, climate condition, and condition of drainage system as predictor parameters. The purpose of this paper is to report the approaches adopted for models development and validation. The study presents multilevel models that can account for the correlation among time series data of the same section and to capture the effect of unobserved variables. Study results show that the models fit the data very well. The contribution and significance of relevant influencing factors in predicting roughness progression are presented and explained. The paper concludes that the analysis approach used for developing the models confirmed their accuracy and reliability by well-fitting to the validation data.Keywords: roughness progression, empirical model, pavement performance, heavy duty pavement
Procedia PDF Downloads 168