Search results for: Timoshenko zig-zag model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16928

Search results for: Timoshenko zig-zag model

10868 The Potential Threat of Cyberterrorism to the National Security: Theoretical Framework

Authors: Abdulrahman S. Alqahtani

Abstract:

The revolution of computing and networks could revolutionise terrorism in the same way that it has brought about changes in other aspects of life. The modern technological era has faced countries with a new set of security challenges. There are many states and potential adversaries who have the potential and capacity in cyberspace, which makes them able to carry out cyber-attacks in the future. Some of them are currently conducting surveillance, gathering and analysis of technical information, and mapping of networks and nodes and infrastructure of opponents, which may be exploited in future conflicts. This poster presents the results of the quantitative study (survey) to test the validity of the proposed theoretical framework for the cyber terrorist threats. This theoretical framework will help to in-depth understand these new digital terrorist threats. It may also be a practical guide for managers and technicians in critical infrastructure, to understand and assess the threats they face. It might also be the foundation for building a national strategy to counter cyberterrorism. In the beginning, it provides basic information about the data. To purify the data, reliability and exploratory factor analysis, as well as confirmatory factor analysis (CFA) were performed. Then, Structural Equation Modelling (SEM) was utilised to test the final model of the theory and to assess the overall goodness-of-fit between the proposed model and the collected data set.

Keywords: cyberterrorism, critical infrastructure, , national security, theoretical framework, terrorism

Procedia PDF Downloads 409
10867 Lewis Turning Point in China: Interviewing Perceptions of Fertility Policies by Unmarried Female Millennials

Authors: Yunqi Wang

Abstract:

Benefiting from the demographic dividend, China has enjoyed export-led economic growth since 1978. While Lewis's model marks the structural transformation from the low-wage 'subsistence' sector to the 'modern sector' as the end of labour surplus, the Chinese government seems eager to extend such benefit by promoting a series of fertility encouragement policies, contrasting to its firm and strict birth control since last century. Based on a Attride-Stirling’s thematic analysis of interviews with unmarried female millennials in China, this paper argues that the young female generation responded to current fertility policies negatively, where the policy ineffectiveness and irresponsiveness have further worsened their marriage and childbirth reluctance. Instead of focusing on changes in wage level, this research contributes a qualitative perspective to the existing theoretical debate on the Lewis turning point, implying an inevitable end of demographic dividend in China. Highlighting the greater focus on female consciousness among the younger generation, it also suggests a policy orientation towards resolving outdated social norms to accommodate the rising female consciousness since millennials will become the childbirth mainstay in forthcoming years.

Keywords: lewis model, fertility policy, demographic dividend, one-child policy

Procedia PDF Downloads 126
10866 An Efficient Hardware/Software Workflow for Multi-Cores Simulink Applications

Authors: Asma Rebaya, Kaouther Gasmi, Imen Amari, Salem Hasnaoui

Abstract:

Over these last years, applications such as telecommunications, signal processing, digital communication with advanced features (Multi-antenna, equalization..) witness a rapid evaluation accompanied with an increase of user exigencies in terms of latency, the power of computation… To satisfy these requirements, the use of hardware/software systems is a common solution; where hardware is composed of multi-cores and software is represented by models of computation, synchronous data flow (SDF) graph for instance. Otherwise, the most of the embedded system designers utilize Simulink for modeling. The issue is how to simplify the c code generation, for a multi-cores platform, of an application modeled by Simulink. To overcome this problem, we propose a workflow allowing an automatic transformation from the Simulink model to the SDF graph and providing an efficient schedule permitting to optimize the number of cores and to minimize latency. This workflow goes from a Simulink application and a hardware architecture described by IP.XACT language. Based on the synchronous and hierarchical behavior of both models, the Simulink block diagram is automatically transformed into an SDF graph. Once this process is successfully achieved, the scheduler calculates the optimal cores’ number needful by minimizing the maximum density of the whole application. Then, a core is chosen to execute a specific graph task in a specific order and, subsequently, a compatible C code is generated. In order to perform this proposal, we extend Preesm, a rapid prototyping tool, to take the Simulink model as entry input and to support the optimal schedule. Afterward, we compared our results to this tool results, using a simple illustrative application. The comparison shows that our results strictly dominate the Preesm results in terms of number of cores and latency. In fact, if Preesm needs m processors and latency L, our workflow need processors and latency L'< L.

Keywords: hardware/software system, latency, modeling, multi-cores platform, scheduler, SDF graph, Simulink model, workflow

Procedia PDF Downloads 273
10865 Towards the Development of Uncertainties Resilient Business Model for Driving the Solar Panel Industry in Nigeria Power Sector

Authors: Balarabe Z. Ahmad, Anne-Lorène Vernay

Abstract:

The emergence of electricity in Nigeria was dated back to 1896. The power plants have the potential to generate 12,522 MW of electric power. Whereas current dispatch is about 4,000 MW, access to electrification is about 60%, with consumption at 0.14 MWh/capita. The government embarked on energy reforms to mitigate energy poverty. The reform targeted the provision of electricity access to 75% of the population by 2020 and 90% by 2030. Growth of total electricity demand by a factor of 5 by 2035 had been projected. This means that Nigeria will require almost 530 TWh of electricity which can be delivered through generators with a capacity of 65 GW. Analogously, the geographical location of Nigeria has placed it in an advantageous position as the source of solar energy; the availability of a high sunshine belt is obvious in the country. The implication is that the far North, where energy poverty is high, equally has about twice the solar radiation as against southern Nigeria. Hence, the chance of generating solar electricity is 66% possible at 11850 x 103 GWh per year, which is one hundred times the current electricity consumption rate in the country. Harvesting these huge potentials may be a mirage if the entrepreneurs in the solar panel business are left with the conventional business models that are not uncertainty resilient. Currently, business entities in RE in Nigeria are uncertain of; accessing the national grid, purchasing potentials of cooperating organizations, currency fluctuation and interest rate increases. Uncertainties such as the security of projects and government policy are issues entrepreneurs must navigate to remain sustainable in the solar panel industry in Nigeria. The aim of this paper is to identify how entrepreneurial firms consider uncertainties in developing workable business models for commercializing solar energy projects in Nigeria. In an attempt to develop a novel business model, the paper investigated how entrepreneurial firms assess and navigate uncertainties. The roles of key stakeholders in helping entrepreneurs to manage uncertainties in the Nigeria RE sector were probed in the ongoing study. The study explored empirical uncertainties that are peculiar to RE entrepreneurs in Nigeria. A mixed-mode of research was embraced using qualitative data from face-to-face interviews conducted on the Solar Energy Entrepreneurs and the experts drawn from key stakeholders. Content analysis of the interview was done using Atlas. It is a nine qualitative tool. The result suggested that all stakeholders are required to synergize in developing an uncertainty resilient business model. It was opined that the RE entrepreneurs need modifications in the business recommendations encapsulated in the energy policy in Nigeria to strengthen their capability in delivering solar energy solutions to the yawning Nigerians.

Keywords: uncertainties, entrepreneurial, business model, solar-panel

Procedia PDF Downloads 153
10864 Ambiguity-Identification Prompting for Large Language Model to Better Understand Complex Legal Texts

Authors: Haixu Yu, Wenhui Cao

Abstract:

Tailoring Large Language Models (LLMs) to perform legal reasoning has been a popular trend in the study of AI and law. Researchers have mainly employed two methods to unlock the potential of LLMs, namely by finetuning the LLMs to expand their knowledge of law and by restructuring the prompts (In-Context Learning) to optimize the LLMs’ understanding of the legal questions. Although claiming the finetuning and renovated prompting can make LLMs more competent in legal reasoning, most state-of-the-art studies show quite limited improvements of practicability. In this paper, drawing on the study of the complexity and low interpretability of legal texts, we propose a prompting strategy based on the Chain of Thought (CoT) method. Instead of merely instructing the LLM to reason “step by step”, the prompting strategy requires the tested LLM to identify the ambiguity in the questions as the first step and then allows the LLM to generate corresponding answers in line with different understandings of the identified terms as the following step. The proposed prompting strategy attempts to encourage LLMs to "interpret" the given text from various aspects. Experiments that require the LLMs to answer “case analysis” questions of bar examination with general LLMs such as GPT 4 and legal LLMs such as LawGPT show that the prompting strategy can improve LLMs’ ability to better understand complex legal texts.

Keywords: ambiguity-identification, prompt, large language model, legal text understanding

Procedia PDF Downloads 64
10863 Integrated Process Modelling of a Thermophilic Biogas Plant

Authors: Obiora E. Anisiji, Jeremiah L. Chukwuneke, Chinonso H. Achebe, Paul C. Okolie

Abstract:

This work developed a mathematical model of a biogas plant from a mechanistic point of view, for urban area clean energy requirement. It aimed at integrating thermodynamics; which deals with the direction in which a process occurs and Biochemical kinetics; which gives the understanding of the rates of biochemical reaction. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analysis were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500m3 biogas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of biogas production is essentially a function of enthalpy ratio, the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.

Keywords: anaerobic digestion, biogas plant, biogas production, bio-reactor, energy, fermentation, rate of production, temperature, therm

Procedia PDF Downloads 439
10862 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar

Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola

Abstract:

This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.

Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index

Procedia PDF Downloads 161
10861 Developing House’s Model to Assess the Translation of Key Cultural Texts

Authors: Raja Al-Ghamdi

Abstract:

This paper aims to systematically assess the translation of key cultural texts. The paper, therefore, proposes a modification of the discourse analysis model for translation quality assessment introduced by the linguist Juliane House (1977, 1997, 2015). The data for analysis has been chosen from a religious text that has never been investigated before. It is an overt translation of the biography of Prophet Mohammad. The book is written originally in Arabic and translated into English. A soft copy of the translation, entitled The Sealed Nectar, is posted on numerous websites including the Internet Archive library which offers a free access to everyone. The text abounds with linguistic and cultural phenomena relevant to Islamic and Arab lingua-cultural context which make its translation a challenge, as well as its assessment. Interesting findings show that (1) culturemes are rich points and both the translator’s subjectivity and intervention are apparent in mediating them, (2) given the nature of historical narration, the source text reflects the author’s positive shading, whereas the target text reflects the translator’s axiological orientation as neutrally shaded, and, (3) linguistic gaps, metaphorical expressions and intertextuality are major stimuli to compensation strategies.

Keywords: Arabic-English discourse analysis, key cultural texts, overt translation, quality assessment

Procedia PDF Downloads 285
10860 Risk Assessment of Flood Defences by Utilising Condition Grade Based Probabilistic Approach

Authors: M. Bahari Mehrabani, Hua-Peng Chen

Abstract:

Management and maintenance of coastal defence structures during the expected life cycle have become a real challenge for decision makers and engineers. Accurate evaluation of the current condition and future performance of flood defence structures is essential for effective practical maintenance strategies on the basis of available field inspection data. Moreover, as coastal defence structures age, it becomes more challenging to implement maintenance and management plans to avoid structural failure. Therefore, condition inspection data are essential for assessing damage and forecasting deterioration of ageing flood defence structures in order to keep the structures in an acceptable condition. The inspection data for flood defence structures are often collected using discrete visual condition rating schemes. In order to evaluate future condition of the structure, a probabilistic deterioration model needs to be utilised. However, existing deterioration models may not provide a reliable prediction of performance deterioration for a long period due to uncertainties. To tackle the limitation, a time-dependent condition-based model associated with a transition probability needs to be developed on the basis of condition grade scheme for flood defences. This paper presents a probabilistic method for predicting future performance deterioration of coastal flood defence structures based on condition grading inspection data and deterioration curves estimated by expert judgement. In condition-based deterioration modelling, the main task is to estimate transition probability matrices. The deterioration process of the structure related to the transition states is modelled according to Markov chain process, and a reliability-based approach is used to estimate the probability of structural failure. Visual inspection data according to the United Kingdom Condition Assessment Manual are used to obtain the initial condition grade curve of the coastal flood defences. The initial curves then modified in order to develop transition probabilities through non-linear regression based optimisation algorithms. The Monte Carlo simulations are then used to evaluate the future performance of the structure on the basis of the estimated transition probabilities. Finally, a case study is given to demonstrate the applicability of the proposed method under no-maintenance and medium-maintenance scenarios. Results show that the proposed method can provide an effective predictive model for various situations in terms of available condition grading data. The proposed model also provides useful information on time-dependent probability of failure in coastal flood defences.

Keywords: condition grading, flood defense, performance assessment, stochastic deterioration modelling

Procedia PDF Downloads 241
10859 Changing Landscape of International Law of Governance: ‘One Belt One Road Initiative’ as a Case Study

Authors: Tikumporn Rodkhunmuang

Abstract:

The importance of ‘international law of governance’ is the means and end to deal with international affairs. This research paper seeks to first study the historical development of international law of governance from the classical period of the international legal framework of global governance until the contemporary period of its framework. Second, the international law of governance is extremely turning into the crucial point in its long history because of the changing of China's foreign policies towards ‘One Belt One Road Initiative’. Third, the proposing model of the existing international law of governance within Chinese characteristics will be the new rules and modalities of modern diplomacy and governed international affairs. Methodologically speaking, this research paper is conducting under mixed methods research, which are also included numerical analysis and theoretical considerations. As a result, this research paper is the critical point of the international legal framework of global governance that changing the diplomatic paradigm as well as turning China into a great-power in international politics. So, this research paper is useful for international legal scholars and diplomats for slightly changing their understanding of the rapidly changing their norms from western norms to the eastern norms of international law. Therefore, the outcome of the research is the modern model of China to make a diplomatic relationship with other countries in the global society.

Keywords: global governance, international law, landscape, one belt one road

Procedia PDF Downloads 190
10858 Removal of Pb(II) Ions from Wastewater Using Magnetic Chitosan–Ethylene Glycol Diglycidyl Ether Beads as Adsorbent

Authors: Pyar Singh Jassal, Priti Rani, Rajni Johar

Abstract:

The adsorption of Pb(II) ions from wastewater using ethylene glycol diglycidyl ether cross-linked magnetic chitosan beads (EGDE-MCB) was carried out by considering a number of parameters. The removal efficiency of the metal ion by magnetic chitosan beads (MCB) and its cross-linked derivatives depended on viz contact time, dose of the adsorbent, pH, temperature, etc. The concentration of Cd( II) at different time intervals was estimated by differential pulse anodic stripping voltammetry (DPSAV) using 797 voltametric analyzer computrace. The adsorption data could be well interpreted by Langmuir and Freundlich adsorption model. The equilibrium parameter, RL values, support that the adsorption (0Keywords: magnetic chitosan beads, ethylene glycol diglycidyl ether, equilibrium parameters, desorption

Procedia PDF Downloads 91
10857 Improving Research by the Integration of a Collaborative Dimension in an Information Retrieval (IR) System

Authors: Amel Hannech, Mehdi Adda, Hamid Mcheick

Abstract:

In computer science, the purpose of finding useful information is still one of the most active and important research topics. The most popular application of information retrieval (IR) are Search Engines, they meet users' specific needs and aim to locate the effective information in the web. However, these search engines have some limitations related to the relevancy of the results and the ease to explore those results. In this context, we proposed in previous works a Multi-Space Search Engine model that is based on a multidimensional interpretation universe. In the present paper, we integrate an additional dimension that allows to offer users new research experiences. The added component is based on creating user profiles and calculating the similarity between them that then allow the use of collaborative filtering in retrieving search results. To evaluate the effectiveness of the proposed model, a prototype is developed. The experiments showed that the additional dimension has improved the relevancy of results by predicting the interesting items of users based on their experiences and the experiences of other similar users. The offered personalization service allows users to approve the pertinent items, which allows to enrich their profiles and further improve research.

Keywords: information retrieval, v-facets, user behavior analysis, user profiles, topical ontology, association rules, data personalization

Procedia PDF Downloads 267
10856 Interaction of Non-Gray-Gas Radiation with Opposed Mixed Convection in a Lid-Driven Square Cavity

Authors: Mohammed Cherifi, Abderrahmane Benbrik, Siham Laouar-Meftah, Denis Lemonnier

Abstract:

The present study was conducted to numerically investigate the interaction of non-gray-gas radiation with opposed mixed convection in a vertical two-sided lid-driven square cavity. The opposing flows are simultaneously generated by the vertical boundary walls which slide at a constant speed and the natural convection due to the gradient temperature of differentially heated cavity. The horizontal walls are thermally insulated and perfectly reflective. The enclosure is filled with air-H2O-CO2 gas mixture, which is considered as a non-gray, absorbing, emitting and not scattering medium. The governing differential equations are solved by a finite-volume method, by adopting the SIMPLER algorithm for pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Three cases of the effects of radiation (transparent, gray and non-gray medium) are studied. Comparison is also made with the parametric studies of the effect of the mixed convection parameter, Ri (0.1, 1, 10), on the fluid flow and heat transfer have been performed.

Keywords: opposed mixed convection, non-gray-gas radiation, two-sided lid-driven cavity, discrete ordinate method, SLW model

Procedia PDF Downloads 326
10855 The Modulation of Health and Inflammatory Status in Young Pigs by Grape Waste Enriched in Polyphenols

Authors: Gina Cecilia Pistol, Loredana Calin, Mariana Stancu, Veronica Chedea, Ionelia Taranu

Abstract:

Inflammatory-associated diseases have an increased trend in the past decades. The pharmacological strategies aimed to treat these inflammatory diseases are very expensive and with non-beneficial results. The current trend is to find alternative strategies to counteract or to control inflammatory component of diseases. The grape by-products either seeds or pomace are rich in bioactive compounds (e.g. polyphenols) which may be beneficial in prevention of inflammation associated with cancer progression and other pathologies with inflammatory component. The in vivo models are very useful for studying the immune and inflammatory status. The domestic pig (Sus scrofa domesticus) is related to human from anatomic and physiologic point of view, representing a feasible model for studying the human inflammatory pathologies. Starting from these data, we evaluated the effect of a diet containing 5% grape seed cakes (GS) on piglets blood biochemical parameters and immune pro- and anti-inflammatory biomarkers (IL-1 beta, IL-8, TNF-alpha, IL-6, IFN-gamma, IL-10, IL-4) in spleen and lymph nodes. 12 weaned piglets were fed for 30 days with a control diet or an experimental diet containing 5% GS. At the end of trial, plasma and tissue samples (spleen and lymph nodes) were collected and the biochemical and inflammatory markers were analysed by using biochemistry analyser and ELISA techniques. Our results showed that diet included 5% GS did not influence the health status determined by plasma biochemical parameters. Only a tendency for a slight increase of the biochemical parameters associated with energetic profile (glucose, cholesterol, triglycerides) was observed. Also, GS diet had no effect on pro- and anti-inflammatory cytokines content in spleen and lymph nodes tissue. Further experiments are needed in order to investigate other rate of dietary inclusion which could provide more evidence about the effect of grape bioactive compounds on pigs used as animal model.

Keywords: animal model, inflammation, grape seed by-product, immune organs

Procedia PDF Downloads 292
10854 Building Information Modelling-Based Diminished Reality Visualisation to Facilitate Building Renovation Projects

Authors: Roghieh Eskandari, Ali Motamedi

Abstract:

There is a significant demand for renovation as-built assets are aging. To plan for a desirable and comfortable indoor environment, stakeholders use simulation technics to assess potential renovation scenarios with the innovative designs. Diminished Reality (DR), which is a technique of visually removing unwanted objects from the real-world scene in real-time, can contribute to the renovation design visualization for stakeholders by removing existing structures and assets from the scene. Using DR, the objects to be demolished or changed will be visually removed from the scene for a better understanding of the intended design scenarios for stakeholders. This research proposes an integrated system for renovation plan visualization using Building Information Modelling (BIM) data and mixed reality (MR) technologies. It presents a BIM-based DR method that utilizes a textured BIM model of the environment to accurately register the virtual model of the occluded background to the physical world in real-time. This system can facilitate the simulation of the renovation plan by visually diminishing building elements in an indoor environment.

Keywords: diminished reality, building information modelling, mixed reality, stock renovation

Procedia PDF Downloads 118
10853 Vine Copula Structure among Yield, Price and Weather Variables for Rating Crop Insurance Premium

Authors: Jiemiao Chen, Shuoxun Xu

Abstract:

The main goal of our research is to apply the Vine copula measuring dependency between price, temperature, and precipitation indices to calculate a fair crop insurance premium. This research is focused on Worth, Iowa, United States, over the period from 2000 to 2020, where the farmers are dependent on precipitation and average temperature during the growth period of corn. Our proposed insurance considers both the natural risk and the price risk in agricultural production. We first estimate the distributions of crops using parametric methods based on Goodness of Fit tests, and then Vine Copula is applied to model dependence between yield price, crop yield, and weather indices. Once the vine structure and its parameters are determined based on AIC/BIC criteria and forecasting price and yield are obtained from the ARIMA model, we calculate this crop insurance premium using the simulation data generated from the vine copula by the Monte Carlo Simulation method. It is shown that, compared with traditional crop insurance, our proposed insurance is more fair and thus less costly for the farmers and government.

Keywords: vine copula, weather index, crop insurance premium, insurance risk management, Monte Carlo simulation

Procedia PDF Downloads 203
10852 Assessing Impacts of Climate Variability and Change on Water Productivity and Nutrient Use Efficiency of Maize in the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Changes in precipitation, temperature and atmospheric CO2 concentration are expected to alter agricultural productivity patterns worldwide. The interactive effects of soil moisture and nutrient availability are the two key edaphic factors that determine crop yield and are sensitive to climatic changes. The study assessed the potential impacts of climate change on maize yield and corresponding water productivity and nutrient use efficiency under climate change scenarios for the Central Rift Valley of Ethiopia by mid (2041-2070) and end century (2071-2100). Projected impacts were evaluated using climate scenarios generated from four General Circulation Models (GCMs) dynamically downscaled by the Swedish RCA4 Regional Climate Model (RCM) in combination with two Representative Concentration Pathways (RCP 4.5 and RCP8.5). Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate yield, water and nutrient use for the study periods. Results indicate that rainfed maize yield might decrease on average by 16.5 and 23% by the 2050s and 2080s, respectively, due to climate change. Water productivity is expected to decline on average by 2.2 and 12% in the CRV by mid and end centuries with respect to the baseline. Nutrient uptake and corresponding nutrient use efficiency (NUE) might also be negatively affected by climate change. Phosphorus uptake probably will decrease in the CRV on average by 14.5 to 18% by 2050s, while N uptake may not change significantly at Melkassa. Nitrogen and P use efficiency indicators showed decreases in the range between 8.5 to 10.5% and between 9.3 to 10.5%, respectively, by 2050s relative to the baseline average. The simulation results further indicated that a combination of increased water availability and optimum nutrient application might increase both water productivity and nutrient use efficiency in the changed climate, which can ensure modest production in the future. Potential options that can improve water availability and nutrient uptake should be identified for the study locations using a crop modeling approach.

Keywords: crop model, climate change scenario, nutrient uptake, nutrient use efficiency, water productivity

Procedia PDF Downloads 91
10851 Mobile Phones in Saudi Arabian EFL Classrooms

Authors: Srinivasa Rao Idapalapati, Manssour Habbash

Abstract:

As mobile connectedness continues to sweep across the landscape, the value of deploying mobile technology to the service of learning and teaching appears to be both self-evident and unavoidable. To this end, this study explores the reasons for the reluctance of teachers in Saudi Arabia to use mobiles in EFL (English as a Foreign Language) classes for teaching and learning purposes. The main objective of this study is a qualitative analysis of the responses of the views of the teachers at a university in Saudi Arabia about the use of mobile phones in classrooms for educational purposes. Driven by the hypothesis that the teachers in Saudi Arabian universities aren’t prepared well enough to use mobile phones in classrooms for educational purposes, this study examines the data obtained through a questionnaire provided to about hundred teachers working at a university in Saudi Arabia through convenient sampling method. The responses are analyzed by qualitative interpretive method and found that teachers and the students are in confusion whether to use mobiles, and need some training sessions on the use of mobile phones in classrooms for educational purposes. The outcome of the analysis is discussed in light of the concerns bases adoption model and the inferences are provided in a descriptive mode.

Keywords: mobile assisted language learning, technology adoption, classroom instruction, concerns based adoption model

Procedia PDF Downloads 366
10850 Application of Multilayer Perceptron and Markov Chain Analysis Based Hybrid-Approach for Predicting and Monitoring the Pattern of LULC Using Random Forest Classification in Jhelum District, Punjab, Pakistan

Authors: Basit Aftab, Zhichao Wang, Feng Zhongke

Abstract:

Land Use and Land Cover Change (LULCC) is a critical environmental issue that has significant effects on biodiversity, ecosystem services, and climate change. This study examines the spatiotemporal dynamics of land use and land cover (LULC) across a three-decade period (1992–2022) in a district area. The goal is to support sustainable land management and urban planning by utilizing the combination of remote sensing, GIS data, and observations from Landsat satellites 5 and 8 to provide precise predictions of the trajectory of urban sprawl. In order to forecast the LULCC patterns, this study suggests a hybrid strategy that combines the Random Forest method with Multilayer Perceptron (MLP) and Markov Chain analysis. To predict the dynamics of LULC change for the year 2035, a hybrid technique based on multilayer Perceptron and Markov Chain Model Analysis (MLP-MCA) was employed. The area of developed land has increased significantly, while the amount of bare land, vegetation, and forest cover have all decreased. This is because the principal land types have changed due to population growth and economic expansion. The study also discovered that between 1998 and 2023, the built-up area increased by 468 km² as a result of the replacement of natural resources. It is estimated that 25.04% of the study area's urbanization will be increased by 2035. The performance of the model was confirmed with an overall accuracy of 90% and a kappa coefficient of around 0.89. It is important to use advanced predictive models to guide sustainable urban development strategies. It provides valuable insights for policymakers, land managers, and researchers to support sustainable land use planning, conservation efforts, and climate change mitigation strategies.

Keywords: land use land cover, Markov chain model, multi-layer perceptron, random forest, sustainable land, remote sensing.

Procedia PDF Downloads 38
10849 Community and School Partnerships: Raising Student Outcomes through Shared Goals and Values Using Integrated Learning as a Change Model

Authors: Sheila Santharamohana, Susan Bennett

Abstract:

Historically, the attrition rates in secondary schools of Indigenous people or Orang Asli of Malaysia have been a cause for nationwide concern. Efforts to increase student engagement focusing on curriculum re-design and aid have not had the targeted impact. The scope of the research explored a change model incorporating project-based learning and wrap-around support through school-community partnerships to increase Orang Asli engagement, student outcomes and improve cultural connectedness. The evaluation methodology was mixed-method comprising a student questionnaire, interviews, and document analysis. Data and evidence were gathered from school staff, community, the Orang Asli governmental authority (JAKOA) and external agencies. Findings from the year-long research suggests shared values and goals in school-community partnerships foster responsive leadership and is key to safeguarding vulnerable Orang Asli, resulting in improved student outcomes. The research highlighted the barriers to the recognition and distinct needs and unique values of the Orang Asli that impact their educational equity and outcomes.

Keywords: Indigenous Education, Cultural Connectedness, School-Community Partnership, Student Outcomes

Procedia PDF Downloads 145
10848 Towards Visual Personality Questionnaires Based on Deep Learning and Social Media

Authors: Pau Rodriguez, Jordi Gonzalez, Josep M. Gonfaus, Xavier Roca

Abstract:

Image sharing in social networks has increased exponentially in the past years. Officially, there are 600 million Instagrammers uploading around 100 million photos and videos per day. Consequently, there is a need for developing new tools to understand the content expressed in shared images, which will greatly benefit social media communication and will enable broad and promising applications in education, advertisement, entertainment, and also psychology. Following these trends, our work aims to take advantage of the existing relationship between text and personality, already demonstrated by multiple researchers, so that we can prove that there exists a relationship between images and personality as well. To achieve this goal, we consider that images posted on social networks are typically conditioned on specific words, or hashtags, therefore any relationship between text and personality can also be observed with those posted images. Our proposal makes use of the most recent image understanding models based on neural networks to process the vast amount of data generated by social users to determine those images most correlated with personality traits. The final aim is to train a weakly-supervised image-based model for personality assessment that can be used even when textual data is not available, which is an increasing trend. The procedure is described next: we explore the images directly publicly shared by users based on those accompanying texts or hashtags most strongly related to personality traits as described by the OCEAN model. These images will be used for personality prediction since they have the potential to convey more complex ideas, concepts, and emotions. As a result, the use of images in personality questionnaires will provide a deeper understanding of respondents than through words alone. In other words, from the images posted with specific tags, we train a deep learning model based on neural networks, that learns to extract a personality representation from a picture and use it to automatically find the personality that best explains such a picture. Subsequently, a deep neural network model is learned from thousands of images associated with hashtags correlated to OCEAN traits. We then analyze the network activations to identify those pictures that maximally activate the neurons: the most characteristic visual features per personality trait will thus emerge since the filters of the convolutional layers of the neural model are learned to be optimally activated depending on each personality trait. For example, among the pictures that maximally activate the high Openness trait, we can see pictures of books, the moon, and the sky. For high Conscientiousness, most of the images are photographs of food, especially healthy food. The high Extraversion output is mostly activated by pictures of a lot of people. In high Agreeableness images, we mostly see flower pictures. Lastly, in the Neuroticism trait, we observe that the high score is maximally activated by animal pets like cats or dogs. In summary, despite the huge intra-class and inter-class variabilities of the images associated to each OCEAN traits, we found that there are consistencies between visual patterns of those images whose hashtags are most correlated to each trait.

Keywords: emotions and effects of mood, social impact theory in social psychology, social influence, social structure and social networks

Procedia PDF Downloads 205
10847 Contact-Impact Analysis of Continuum Compliant Athletic Systems

Authors: Theddeus Tochukwu Akano, Omotayo Abayomi Fakinlede

Abstract:

Proper understanding of the behavior of compliant mechanisms use by athletes is important in order to avoid catastrophic failure. Such compliant mechanisms like the flex-run require the knowledge of their dynamic response and deformation behavior under quickly varying loads. The modeling of finite deformations of the compliant athletic system is described by Neo-Hookean model under contact-impact conditions. The dynamic impact-contact governing equations for both the target and impactor are derived based on the updated Lagrangian approach. A method where contactor and target are considered as a united body is applied in the formulation of the principle of virtual work for the bodies. In this paper, methods of continuum mechanics and nonlinear finite element method were deployed to develop a model that could capture the behavior of the compliant athletic system under quickly varying loads. A hybrid system of symbolic algebra (AceGEN) and a compiled back end (AceFEM) were employed, leveraging both ease of use and computational efficiency. The simulated results reveal the effect of the various contact-impact conditions on the deformation behavior of the impacting compliant mechanism.

Keywords: eigenvalue problems, finite element method, robin boundary condition, sturm-liouville problem

Procedia PDF Downloads 477
10846 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning

Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih

Abstract:

Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.

Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network

Procedia PDF Downloads 195
10845 Vehicle Risk Evaluation in Low Speed Accidents: Consequences for Relevant Test Scenarios

Authors: Philip Feig, Klaus Gschwendtner, Julian Schatz, Frank Diermeyer

Abstract:

Projects of accident research analysis are mostly focused on accidents involving personal damage. Property damage only has a high frequency of occurrence combined with high economic impact. This paper describes main influencing parameters for the extent of damage and presents a repair cost model. For a prospective evaluation method of the monetary effect of advanced driver assistance systems (ADAS), it is necessary to be aware of and quantify all influencing parameters. Furthermore, this method allows the evaluation of vehicle concepts in combination with an ADAS at an early point in time of the product development process. In combination with a property damage database and the introduced repair cost model relevant test scenarios for specific vehicle configurations and their individual property damage risk may be determined. Currently, equipment rates of ADAS are low and a purchase incentive for customers would be beneficial. The next ADAS generation will prevent property damage to a large extent or at least reduce damage severity. Both effects may be a purchasing incentive for the customer and furthermore contribute to increased traffic safety.

Keywords: accident research, accident scenarios, ADAS, effectiveness, property damage analysis

Procedia PDF Downloads 344
10844 Hybrid Method for Smart Suggestions in Conversations for Online Marketplaces

Authors: Yasamin Rahimi, Ali Kamandi, Abbas Hoseini, Hesam Haddad

Abstract:

Online/offline chat is a convenient approach in the electronic markets of second-hand products in which potential customers would like to have more information about the products to fill the information gap between buyers and sellers. Online peer in peer market is trying to create artificial intelligence-based systems that help customers ask more informative questions in an easier way. In this article, we introduce a method for the question/answer system that we have developed for the top-ranked electronic market in Iran called Divar. When it comes to secondhand products, incomplete product information in a purchase will result in loss to the buyer. One way to balance buyer and seller information of a product is to help the buyer ask more informative questions when purchasing. Also, the short time to start and achieve the desired result of the conversation was one of our main goals, which was achieved according to A/B tests results. In this paper, we propose and evaluate a method for suggesting questions and answers in the messaging platform of the e-commerce website Divar. Creating such systems is to help users gather knowledge about the product easier and faster, All from the Divar database. We collected a dataset of around 2 million messages in Persian colloquial language, and for each category of product, we gathered 500K messages, of which only 2K were Tagged, and semi-supervised methods were used. In order to publish the proposed model to production, it is required to be fast enough to process 10 million messages daily on CPU processors. In order to reach that speed, in many subtasks, faster and simplistic models are preferred over deep neural models. The proposed method, which requires only a small amount of labeled data, is currently used in Divar production on CPU processors, and 15% of buyers and seller’s messages in conversations is directly chosen from our model output, and more than 27% of buyers have used this model suggestions in at least one daily conversation.

Keywords: smart reply, spell checker, information retrieval, intent detection, question answering

Procedia PDF Downloads 190
10843 A Mixed Method Approach for Modeling Entry Capacity at Rotary Intersections

Authors: Antonio Pratelli, Lorenzo Brocchini, Reginald Roy Souleyrette

Abstract:

A rotary is a traffic circle intersection where vehicles entering from branches give priority to circulating flow. Vehicles entering the intersection from converging roads move around the central island and weave out of the circle into their desired exiting branch. This creates merging and diverging conflicts among any entry and its successive exit, i.e., a section. Therefore, rotary capacity models are usually based on the weaving of the different movements in any section of the circle, and the maximum rate of flow value is then related to each weaving section of the rotary. Nevertheless, the single-section capacity value does not lead to the typical performance characteristics of the intersection, such as the entry average delay which is directly linked to its level of service. From another point of view, modern roundabout capacity models are based on the limitation of the flow entering from the single entrance due to the amount of flow circulating in front of the entrance itself. Modern roundabouts capacity models generally lead also to a performance evaluation. This paper aims to incorporate a modern roundabout capacity model into an old rotary capacity method to obtain from the latter the single input capacity and ultimately achieve the related performance indicators. Put simply; the main objective is to calculate the average delay of each single roundabout entrance to apply the most common Highway Capacity Manual, or HCM, criteria. The paper is organized as follows: firstly, the rotary and roundabout capacity models are sketched, and it has made a brief introduction to the model combination technique with some practical instances. The successive section is deserved to summarize the TRRL old rotary capacity model and the most recent HCM-7th modern roundabout capacity model. Then, the two models are combined through an iteration-based algorithm, especially set-up and linked to the concept of roundabout total capacity, i.e., the value reached due to a traffic flow pattern leading to the simultaneous congestion of all roundabout entrances. The solution is the average delay for each entrance of the rotary, by which is estimated its respective level of service. In view of further experimental applications, at this research stage, a collection of existing rotary intersections operating with the priority-to-circle rule has already started, both in the US and in Italy. The rotaries have been selected by direct inspection of aerial photos through a map viewer, namely Google Earth. Each instance has been recorded by location, general urban or rural, and its main geometrical patterns. Finally, conclusion remarks are drawn, and a discussion on some further research developments has opened.

Keywords: mixed methods, old rotary and modern roundabout capacity models, total capacity algorithm, level of service estimation

Procedia PDF Downloads 92
10842 The Integration and Practice of Indigenous Knowledge System and Sustainable Environmental Education Concept

Authors: Shih-Tsung Chen, Yenchin Hsiao

Abstract:

Evergreen Lily is a newly-built school after Morakot Typhoon took place. The school is located on Majia farm, which is surrounded by mountains. The fund in the construction of the school is solely sponsored by Chang Yung-Fa Foundation. There are 483 permanent houses near the school belonging to three tribes, Dashe, Majia, and Haocha. Due to the most ancient heritages of Paiwan and Rukai in these three tribes, the school is full of cultural atmosphere. From modern and traditional perspectives, Evergreen Lily strives to establish and develop a long-lasting educational model to meet the expectation of the tribes, parents, and the public. This study is a case study of how to develop indigenous education in newly established schools after the Morakot Hurricane disaster to meet the concept of environmental education. The systematic curriculum construction of education and cultural integration and the systematic practice of curriculum practice will be discussed, and the concept and practice of tribal education curriculum and sustainable environmental education will be understood. This study found that this school integrates the spirit of natural philosophy, democratic education, ethnic and experimental education, and constructs a knowledge system that includes three levels of spiritual culture, institutional culture, and material culture, as well as six dimensions of life philosophy, natural ecology, organizational system, tribal literature and history, song and dance, and technical and artistic methods. Adhering to the concept of harmonious education and the sustainable common good, the development of school-based tribal academic courses accounts for about one-third of the total number of teaching sessions, and there are different cultural themes in grades one to six, and there are clear teaching modules to effectively enhance students' potential inspiration. The complete curriculum implementation model can be described as a model for the development of indigenous schools to sustainable environmental education.

Keywords: environmental education, indigenous education, sustainable development, school-based curriculum

Procedia PDF Downloads 163
10841 Impact of Boundary Conditions on the Behavior of Thin-Walled Laminated Column with L-Profile under Uniform Shortening

Authors: Jaroslaw Gawryluk, Andrzej Teter

Abstract:

Simply supported angle columns subjected to uniform shortening are tested. The experimental studies are conducted on a testing machine using additional Aramis and the acoustic emission system. The laminate samples are subjected to axial uniform shortening. The tested columns are loaded with the force values from zero to the maximal load destroying the L-shaped column, which allowed one to observe the column post-buckling behavior until its collapse. Laboratory tests are performed at a constant velocity of the cross-bar equal to 1 mm/min. In order to eliminate stress concentrations between sample and support, flexible pads are used. Analyzed samples are made with carbon-epoxy laminate using the autoclave method. The configurations of laminate layers are: [60,0₂,-60₂,60₃,-60₂,0₃,-60₂,0,60₂]T, where direction 0 is along the length of the profile. Material parameters of laminate are: Young’s modulus along the fiber direction - 170GPa, Young’s modulus along the fiber transverse direction - 7.6GPa, shear modulus in-plane - 3.52GPa, Poisson’s ratio in-plane - 0.36. The dimensions of all columns are: length-300 mm, thickness-0.81mm, width of the flanges-40mm. Next, two numerical models of the column with and without flexible pads are developed using the finite element method in Abaqus software. The L-profile laminate column is modeled using the S8R shell elements. The layup-ply technique is used to define the sequence of the laminate layers. However, the model of grips is made of the R3D4 discrete rigid elements. The flexible pad is consists of the C3D20R type solid elements. In order to estimate the moment of the first laminate layer damage, the following initiation criteria were applied: maximum stress criterion, Tsai-Hill, Tsai-Wu, Azzi-Tsai-Hill, and Hashin criteria. The best compliance of results was observed for the Hashin criterion. It was found that the use of the pad in the numerical model significantly influences the damage mechanism. The model without pads characterized a much more stiffness, as evidenced by a greater bifurcation load and damage initiation load in all analyzed criteria, lower shortening, and less deflection of the column in its center than the model with flexible pads. Acknowledgment: The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: angle column, compression, experiment, FEM

Procedia PDF Downloads 210
10840 Numerical Analysis of Heat Transfer in Water Channels of the Opposed-Piston Diesel Engine

Authors: Michal Bialy, Marcin Szlachetka, Mateusz Paszko

Abstract:

This paper discusses the CFD results of heat transfer in water channels in the engine body. The research engine was a newly designed Diesel combustion engine. The engine has three cylinders with three pairs of opposed pistons inside. The engine will be able to generate 100 kW mechanical power at a crankshaft speed of 3,800-4,000 rpm. The water channels are in the engine body along the axis of the three cylinders. These channels are around the three combustion chambers. The water channels transfer combustion heat that occurs the cylinders to the external radiator. This CFD research was based on the ANSYS Fluent software and aimed to optimize the geometry of the water channels. These channels should have a maximum flow of heat from the combustion chamber or the external radiator. Based on the parallel simulation research, the boundary and initial conditions enabled us to specify average values of key parameters for our numerical analysis. Our simulation used the average momentum equations and turbulence model k-epsilon double equation. There was also used a real k-epsilon model with a function of a standard wall. The turbulence intensity factor was 10%. The working fluid mass flow rate was calculated for a single typical value, specified in line with the research into the flow rate of automotive engine cooling pumps used in engines of similar power. The research uses a series of geometric models which differ, for instance, in the shape of the cross-section of the channel along the axis of the cylinder. The results are presented as colourful distribution maps of temperature, speed fields and heat flow through the cylinder walls. Due to limitations of space, our paper presents the results on the most representative geometric model only. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: Ansys fluent, combustion engine, computational fluid dynamics CFD, cooling system

Procedia PDF Downloads 224
10839 Comparative Evaluation of Root Uptake Models for Developing Moisture Uptake Based Irrigation Schedules for Crops

Authors: Vijay Shankar

Abstract:

In the era of water scarcity, effective use of water via irrigation requires good methods for determining crop water needs. Implementation of irrigation scheduling programs requires an accurate estimate of water use by the crop. Moisture depletion from the root zone represents the consequent crop evapotranspiration (ET). A numerical model for simulating soil water depletion in the root zone has been developed by taking into consideration soil physical properties, crop and climatic parameters. The governing differential equation for unsaturated flow of water in the soil is solved numerically using the fully implicit finite difference technique. The water uptake by plants is simulated by using three different sink functions. The non-linear model predictions are in good agreement with field data and thus it is possible to schedule irrigations more effectively. The present paper describes irrigation scheduling based on moisture depletion from the different layers of the root zone, obtained using different sink functions for three cash, oil and forage crops: cotton, safflower and barley, respectively. The soil is considered at a moisture level equal to field capacity prior to planting. Two soil moisture regimes are then imposed for irrigated treatment, one wherein irrigation is applied whenever soil moisture content is reduced to 50% of available soil water; and other wherein irrigation is applied whenever soil moisture content is reduced to 75% of available soil water. For both the soil moisture regimes it has been found that the model incorporating a non-linear sink function which provides best agreement of computed root zone moisture depletion with field data, is most effective in scheduling irrigations. Simulation runs with this moisture uptake function result in saving 27.3 to 45.5% & 18.7 to 37.5%, 12.5 to 25% % &16.7 to 33.3% and 16.7 to 33.3% & 20 to 40% irrigation water for cotton, safflower and barley respectively, under 50 & 75% moisture depletion regimes over other moisture uptake functions considered in the study. Simulation developed can be used for an optimized irrigation planning for different crops, choosing a suitable soil moisture regime depending upon the irrigation water availability and crop requirements.

Keywords: irrigation water, evapotranspiration, root uptake models, water scarcity

Procedia PDF Downloads 336