Search results for: fuzzy genetic network programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7514

Search results for: fuzzy genetic network programming

1514 Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory

Authors: Chiung-Hui Chen

Abstract:

The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services.

Keywords: behavior, big data, hierarchical hidden Markov model, intelligent object

Procedia PDF Downloads 239
1513 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar

Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola

Abstract:

This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.

Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index

Procedia PDF Downloads 161
1512 Clique and Clan Analysis of Patient-Sharing Physician Collaborations

Authors: Shahadat Uddin, Md Ekramul Hossain, Arif Khan

Abstract:

The collaboration among physicians during episodes of care for a hospitalised patient has a significant contribution towards effective health outcome. This research aims at improving this health outcome by analysing the attributes of patient-sharing physician collaboration network (PCN) on hospital data. To accomplish this goal, we present a research framework that explores the impact of several types of attributes (such as clique and clan) of PCN on hospitalisation cost and hospital length of stay. We use electronic health insurance claim dataset to construct and explore PCNs. Each PCN is categorised as ‘low’ and ‘high’ in terms of hospitalisation cost and length of stay. The results from the proposed model show that the clique and clan of PCNs affect the hospitalisation cost and length of stay. The clique and clan of PCNs show the difference between ‘low’ and ‘high’ PCNs in terms of hospitalisation cost and length of stay. The findings and insights from this research can potentially help the healthcare stakeholders to better formulate the policy in order to improve quality of care while reducing cost.

Keywords: clique, clan, electronic health records, physician collaboration

Procedia PDF Downloads 144
1511 AI Software Algorithms for Drivers Monitoring within Vehicles Traffic - SiaMOTO

Authors: Ioan Corneliu Salisteanu, Valentin Dogaru Ulieru, Mihaita Nicolae Ardeleanu, Alin Pohoata, Bogdan Salisteanu, Stefan Broscareanu

Abstract:

Creating a personalized statistic for an individual within the population using IT systems, based on the searches and intercepted spheres of interest they manifest, is just one 'atom' of the artificial intelligence analysis network. However, having the ability to generate statistics based on individual data intercepted from large demographic areas leads to reasoning like that issued by a human mind with global strategic ambitions. The DiaMOTO device is a technical sensory system that allows the interception of car events caused by a driver, positioning them in time and space. The device's connection to the vehicle allows the creation of a source of data whose analysis can create psychological, behavioural profiles of the drivers involved. The SiaMOTO system collects data from many vehicles equipped with DiaMOTO, driven by many different drivers with a unique fingerprint in their approach to driving. In this paper, we aimed to explain the software infrastructure of the SiaMOTO system, a system designed to monitor and improve driver driving behaviour, as well as the criteria and algorithms underlying the intelligent analysis process.

Keywords: artificial intelligence, data processing, driver behaviour, driver monitoring, SiaMOTO

Procedia PDF Downloads 96
1510 Multichannel Surface Electromyography Trajectories for Hand Movement Recognition Using Intrasubject and Intersubject Evaluations

Authors: Christina Adly, Meena Abdelmeseeh, Tamer Basha

Abstract:

This paper proposes a system for hand movement recognition using multichannel surface EMG(sEMG) signals obtained from 40 subjects using 40 different exercises, which are available on the Ninapro(Non-Invasive Adaptive Prosthetics) database. First, we applied processing methods to the raw sEMG signals to convert them to their amplitudes. Second, we used deep learning methods to solve our problem by passing the preprocessed signals to Fully connected neural networks(FCNN) and recurrent neural networks(RNN) with Long Short Term Memory(LSTM). Using intrasubject evaluation, The accuracy using the FCNN is 72%, with a processing time for training around 76 minutes, and for RNN's accuracy is 79.9%, with 8 minutes and 22 seconds processing time. Third, we applied some postprocessing methods to improve the accuracy, like majority voting(MV) and Movement Error Rate(MER). The accuracy after applying MV is 75% and 86% for FCNN and RNN, respectively. The MER value has an inverse relationship with the prediction delay while varying the window length for measuring the MV. The different part uses the RNN with the intersubject evaluation. The experimental results showed that to get a good accuracy for testing with reasonable processing time, we should use around 20 subjects.

Keywords: hand movement recognition, recurrent neural network, movement error rate, intrasubject evaluation, intersubject evaluation

Procedia PDF Downloads 151
1509 Microfluidic Fluid Shear Mechanotransduction Device Using Linear Optimization of Hydraulic Channels

Authors: Sanat K. Dash, Rama S. Verma, Sarit K. Das

Abstract:

A logarithmic microfluidic shear device was designed and fabricated for cellular mechanotransduction studies. The device contains four cell culture chambers in which flow was modulated to achieve a logarithmic increment. Resistance values were optimized to make the device compact. The network of resistances was developed according to a unique combination of series and parallel resistances as found via optimization. Simulation results done in Ansys 16.1 matched the analytical calculations and showed the shear stress distribution at different inlet flow rates. Fabrication of the device was carried out using conventional photolithography and PDMS soft lithography. Flow profile was validated taking DI water as working fluid and measuring the volume collected at all four outlets. Volumes collected at the outlets were in accordance with the simulation results at inlet flow rates ranging from 1 ml/min to 0.1 ml/min. The device can exert fluid shear stresses ranging four orders of magnitude on the culture chamber walls which will cover shear stress values from interstitial flow to blood flow. This will allow studying cell behavior in the long physiological range of shear stress in a single run reducing number of experiments.

Keywords: microfluidics, mechanotransduction, fluid shear stress, physiological shear

Procedia PDF Downloads 133
1508 Application of Italian Guidelines for Existing Bridge Management

Authors: Giovanni Menichini, Salvatore Giacomo Morano, Gloria Terenzi, Luca Salvatori, Maurizio Orlando

Abstract:

The “Guidelines for Risk Classification, Safety Assessment, and Structural Health Monitoring of Existing Bridges” were recently approved by the Italian Government to define technical standards for managing the national network of existing bridges. These guidelines provide a framework for risk mitigation and safety assessment of bridges, which are essential elements of the built environment and form the basis for the operation of transport systems. Within the guideline framework, a workflow based on three main points was proposed: (1) risk-based, i.e., based on typical parameters of hazard, vulnerability, and exposure; (2) multi-level, i.e., including six assessment levels of increasing complexity; and (3) multirisk, i.e., assessing structural/foundational, seismic, hydrological, and landslide risks. The paper focuses on applying the Italian Guidelines to specific case studies, aiming to identify the parameters that predominantly influence the determination of the “class of attention”. The significance of each parameter is determined via sensitivity analysis. Additionally, recommendations for enhancing the process of assigning the class of attention are proposed.

Keywords: bridge safety assessment, Italian guidelines implementation, risk classification, structural health monitoring

Procedia PDF Downloads 62
1507 Maximum-likelihood Inference of Multi-Finger Movements Using Neural Activities

Authors: Kyung-Jin You, Kiwon Rhee, Marc H. Schieber, Nitish V. Thakor, Hyun-Chool Shin

Abstract:

It remains unknown whether M1 neurons encode multi-finger movements independently or as a certain neural network of single finger movements although multi-finger movements are physically a combination of single finger movements. We present an evidence of correlation between single and multi-finger movements and also attempt a challenging task of semi-blind decoding of neural data with minimum training of the neural decoder. Data were collected from 115 task-related neurons in M1 of a trained rhesus monkey performing flexion and extension of each finger and the wrist (12 single and 6 two-finger-movements). By exploiting correlation of temporal firing pattern between movements, we found that correlation coefficient for physically related movements pairs is greater than others; neurons tuned to single finger movements increased their firing rate when multi-finger commands were instructed. According to this knowledge, neural semi-blind decoding is done by choosing the greatest and the second greatest likelihood for canonical candidates. We achieved a decoding accuracy about 60% for multiple finger movement without corresponding training data set. this results suggest that only with the neural activities on single finger movements can be exploited to control dexterous multi-fingered neuroprosthetics.

Keywords: finger movement, neural activity, blind decoding, M1

Procedia PDF Downloads 327
1506 Integrative-Cyclical Approach to the Study of Quality Control of Resource Saving by the Use of Innovation Factors

Authors: Anatoliy A. Alabugin, Nikolay K. Topuzov, Sergei V. Aliukov

Abstract:

It is well known, that while we do a quantitative evaluation of the quality control of some economic processes (in particular, resource saving) with help innovation factors, there are three groups of problems: high uncertainty of indicators of the quality management, their considerable ambiguity, and high costs to provide a large-scale research. These problems are defined by the use of contradictory objectives of enhancing of the quality control in accordance with innovation factors and preservation of economic stability of the enterprise. The most acutely, such factors are felt in the countries lagging behind developed economies of the world according to criteria of innovativeness and effectiveness of management of the resource saving. In our opinion, the following two methods for reconciling of the above-mentioned objectives and reducing of conflictness of the problems are to solve this task most effectively: 1) the use of paradigms and concepts of evolutionary improvement of quality of resource-saving management in the cycle "from the project of an innovative product (technology) - to its commercialization and update parameters of customer value"; 2) the application of the so-called integrative-cyclical approach which consistent with complexity and type of the concept, to studies allowing to get quantitative assessment of the stages of achieving of the consistency of these objectives (from baseline of imbalance, their compromise to achievement of positive synergies). For implementation, the following mathematical tools are included in the integrative-cyclical approach: index-factor analysis (to identify the most relevant factors); regression analysis of relationship between the quality control and the factors; the use of results of the analysis in the model of fuzzy sets (to adjust the feature space); method of non-parametric statistics (for a decision on the completion or repetition of the cycle in the approach in depending on the focus and the closeness of the connection of indicator ranks of disbalance of purposes). The repetition is performed after partial substitution of technical and technological factors ("hard") by management factors ("soft") in accordance with our proposed methodology. Testing of the proposed approach has shown that in comparison with the world practice there are opportunities to improve the quality of resource-saving management using innovation factors. We believe that the implementation of this promising research, to provide consistent management decisions for reducing the severity of the above-mentioned contradictions and increasing the validity of the choice of resource-development strategies in terms of parameters of quality management and sustainability of enterprise, is perspective. Our existing experience in the field of quality resource-saving management and the achieved level of scientific competence of the authors allow us to hope that the use of the integrative-cyclical approach to the study and evaluation of the resulting and factor indicators will help raise the level of resource-saving characteristics up to the value existing in the developed economies of post-industrial type.

Keywords: integrative-cyclical approach, quality control, evaluation, innovation factors. economic sustainability, innovation cycle of management, disbalance of goals of development

Procedia PDF Downloads 250
1505 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms

Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,

Abstract:

Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.

Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model

Procedia PDF Downloads 288
1504 Synthesis and Electromagnetic Wave Absorbing Property of Amorphous Carbon Nanotube Networks on a 3D Graphene Aerogel/BaFe₁₂O₁₉ Nanorod Composite

Authors: Tingkai Zhao, Jingtian Hu, Xiarong Peng, Wenbo Yang, Tiehu Li

Abstract:

Homogeneous amorphous carbon nanotube (ACNT) networks have been synthesized using floating catalyst chemical vapor deposition method on a three-dimensional (3D) graphene aerogel (GA)/BaFe₁₂O₁₉ nanorod (BNR) composite which prepared by a self-propagating combustion process. The as-synthesized ACNT/GA/BNR composite which has 3D network structures could be directly used as a good absorber in the electromagnetic wave absorbent materials. The experimental results indicated that the maximum absorbing peak of ACNT/GA/BNR composite with a thickness of 2 mm was -18.35 dB at 10.64 GHz in the frequency range of 2-18 GHz. The bandwidth of the reflectivity below -10 dB is 3.32 GHz. The 3D graphene aerogel structures which composed of dense interlined tubes and amorphous structure of ACNTs bearing quantities of dihedral angles could consume the incident waves through multiple reflection and scattering inside the 3D web structures. The interlinked ACNTs have both the virtues of amorphous CNTs (multiple reflections inside the wall) and crystalline CNTs (high conductivity), consuming the electromagnetic wave as resistance heat. ACNT/GA/BNR composite has a good electromagnetic wave absorbing performance.

Keywords: amorphous carbon nanotubes, graphene aerogel, barium ferrite nanorod, electromagnetic wave absorption

Procedia PDF Downloads 288
1503 Modeling of Micro-Grid System Components Using MATLAB/Simulink

Authors: Mahmoud Fouad, Mervat Badr, Marwa Ibrahim

Abstract:

Micro-grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. Renewable power sources such as wind, solar and hydro offer high potential of benign power for future micro-grid systems. Micro-Grid (MG) is basically a low voltage (LV) or medium voltage (MV) distribution network which consists of a number of called distributed generators (DG’s); micro-sources such as photovoltaic array, fuel cell, wind turbine etc. energy storage systems and loads; operating as a single controllable system, that could be operated in both grid-connected and islanded mode. The capacity of the DG’s is sufficient to support all; or most, of the load connected to the micro-grid. This paper presents a micro-grid system based on wind and solar power sources and addresses issues related to operation, control, and stability of the system. Using Matlab/Simulink, the system is modeled and simulated to identify the relevant technical issues involved in the operation of a micro-grid system based on renewable power generation units.

Keywords: micro-grid system, photovoltaic, wind turbine, energy storage, distributed generation, modeling

Procedia PDF Downloads 439
1502 Crow Search Algorithm-Based Task Offloading Strategies for Fog Computing Architectures

Authors: Aniket Ganvir, Ritarani Sahu, Suchismita Chinara

Abstract:

The rapid digitization of various aspects of life is leading to the creation of smart IoT ecosystems, where interconnected devices generate significant amounts of valuable data. However, these IoT devices face constraints such as limited computational resources and bandwidth. Cloud computing emerges as a solution by offering ample resources for offloading tasks efficiently despite introducing latency issues, especially for time-sensitive applications like fog computing. Fog computing (FC) addresses latency concerns by bringing computation and storage closer to the network edge, minimizing data travel distance, and enhancing efficiency. Offloading tasks to fog nodes or the cloud can conserve energy and extend IoT device lifespan. The offloading process is intricate, with tasks categorized as full or partial, and its optimization presents an NP-hard problem. Traditional greedy search methods struggle to address the complexity of task offloading efficiently. To overcome this, the efficient crow search algorithm (ECSA) has been proposed as a meta-heuristic optimization algorithm. ECSA aims to effectively optimize computation offloading, providing solutions to this challenging problem.

Keywords: IoT, fog computing, task offloading, efficient crow search algorithm

Procedia PDF Downloads 61
1501 Transnational Educators in Japan, Russia, and America: Historical Trends in Global Education in the 1990’s and Early 2000’s

Authors: Peter J. Glinos

Abstract:

The Alternative Education Resource Organization (AERO), one of the largest international hubs for alternative educators led by Jerry Mintz, has had a major impact on the global alternative education movement. The organization’s publications, like the AERO-Gramme Newsletter and its successor, the Education Revolution Magazine, allowed members across the globe to discuss issues, share support, and submit writings on policies and reforms. Stored on AERO's online digital archive, this work uses these publications from 1989 to 2011 to investigate the network's entanglements with America, Canada, Russia, Ukraine, Israel, Palestine, Japan, India, and Guatemala. Inspired by Reinhart Koselleck, this historical analysis will trace AERO’s entanglements within the United States, Japan, and Russia, contextualizing each of these multiple temporalities within the history of each nation’s education system, the developments within AERO, and the global geo-political climate at the time of AERO’s expansion. To help remedy the lack of attention paid by global historians to the role state organizations play supporting global networks, as noted in What is Global History? by Sebastian Conrad, this work will focus on the relationship between AERO and state actors.

Keywords: global history, history of education, neoliberalism, transnational history, alternative education

Procedia PDF Downloads 33
1500 Enhancing Internet of Things Security: A Blockchain-Based Approach for Preventing Spoofing Attacks

Authors: Salha Abdullah Ali Al-Shamrani, Maha Muhammad Dhaher Aljuhani, Eman Ali Ahmed Aldhaheri

Abstract:

With the proliferation of Internet of Things (IoT) devices in various industries, there has been a concurrent rise in security vulnerabilities, particularly spoofing attacks. This study explores the potential of blockchain technology in enhancing the security of IoT systems and mitigating these attacks. Blockchain's decentralized and immutable ledger offers significant promise for improving data integrity, transaction transparency, and tamper-proofing. This research develops and implements a blockchain-based IoT architecture and a reference network to simulate real-world scenarios and evaluate a blockchain-integrated intrusion detection system. Performance measures including time delay, security, and resource utilization are used to assess the system's effectiveness, comparing it to conventional IoT networks without blockchain. The results provide valuable insights into the practicality and efficacy of employing blockchain as a security mechanism, shedding light on the trade-offs between speed and security in blockchain deployment for IoT. The study concludes that despite minor increases in time consumption, the security benefits of incorporating blockchain technology into IoT systems outweigh potential drawbacks, demonstrating a significant potential for blockchain in bolstering IoT security.

Keywords: internet of things, spoofing, IoT, access control, blockchain, raspberry pi

Procedia PDF Downloads 78
1499 Measuring and Evaluating the Effectiveness of Mobile High Efficiency Particulate Air Filtering on Particulate Matter within the Road Traffic Network of a Sample of Non-Sparse and Sparse Urban Environments in the UK

Authors: Richard Maguire

Abstract:

This research evaluates the efficiency of using mobile HEPA filters to reduce localized Particulate Matter (PM), Total Volatile Organic Chemical (TVOC) and Formaldehyde (HCHO) Air Pollution. The research is being performed using a standard HEPA filter that is tube fitted and attached to a motor vehicle. The velocity of the vehicle is used to generate the pressure difference that allows the filter to remove PM, VOC and HCOC pollution from the localized atmosphere of a road transport traffic route. The testing has been performed on a sample of traffic routes in Non-Sparse and Sparse urban environments within the UK. Pre and Post filter measuring of the PM2.5 Air Quality has been carried out along with demographics of the climate environment, including live filming of the traffic conditions. This provides a base line for future national and international research. The effectiveness measurement is generated through evaluating the difference in PM2.5 Air Quality measured pre- and post- the mobile filter test equipment. A series of further research opportunities and future exploitation options are made based on the results of the research.

Keywords: high efficiency particulate air, HEPA filter, particulate matter, traffic pollution

Procedia PDF Downloads 126
1498 Review of the Legislative and Policy Issues in Promoting Infrastructure Development to Promote Automation in Telecom Industry

Authors: Marvin Ricardo Awarab

Abstract:

There has never been a greater need for telecom services. The Internet of Things (IoT), 5G networking, and edge computing are the driving forces behind this increased demand. The fierce demand offers communications service providers significant income opportunities. The telecom sector is centered on automation, and realizing a digital operation that functions as a real-time business will be crucial for the industry as a whole. Automation in telecom refers to the application of technology to create a more effective, quick, and scalable alternative to the conventional method of operating the telecom industry. With the promotion of 5G and the Internet of Things (IoT), telecom companies will continue to invest extensively in telecom automation technology. Automation offers benefits in the telecom industry; developing countries such as Namibia may not fully tap into such benefits because of the lack of funds and infrastructural resources to invest in automation. This paper fully investigates the benefits of automation in the telecom industry. Furthermore, the paper identifies hiccups that developing countries such as Namibia face in their quest to fully introduce automation in the telecom industry. Additionally, the paper proposes possible avenues that Namibia, as a developing country, adopt investing in automation infrastructural resources with the aim of reaping the full benefits of automation in the telecom industry.

Keywords: automation, development, internet, internet of things, network, telecom, telecommunications policy, 5G

Procedia PDF Downloads 69
1497 A Modeling Approach for Blockchain-Oriented Information Systems Design

Authors: Jiaqi Yan, Yani Shi

Abstract:

The blockchain technology is regarded as the most promising technology that has the potential to trigger a technological revolution. However, besides the bitcoin industry, we have not yet seen a large-scale application of blockchain in those domains that are supposed to be impacted, such as supply chain, financial network, and intelligent manufacturing. The reasons not only lie in the difficulties of blockchain implementation, but are also root in the challenges of blockchain-oriented information systems design. As the blockchain members are self-interest actors that belong to organizations with different existing information systems. As they expect different information inputs and outputs of the blockchain application, a common language protocol is needed to facilitate communications between blockchain members. Second, considering the decentralization of blockchain organization, there is not any central authority to organize and coordinate the business processes. Thus, the information systems built on blockchain should support more adaptive business process. This paper aims to address these difficulties by providing a modeling approach for blockchain-oriented information systems design. We will investigate the information structure of distributed-ledger data with conceptual modeling techniques and ontology theories, and build an effective ontology mapping method for the inter-organization information flow and blockchain information records. Further, we will study the distributed-ledger-ontology based business process modeling to support adaptive enterprise on blockchain.

Keywords: blockchain, ontology, information systems modeling, business process

Procedia PDF Downloads 457
1496 Effect on Physicochemical and Sensory Attributes of Bread Substituted with Different Levels of Matured Soursop (Anona muricata) Flour

Authors: Mardiana Ahamad Zabidi, Akmalluddin Md. Yunus

Abstract:

Soursop (Anona muricata) is one of the underutilized tropical fruits containing nutrients, particularly dietary fibre and antioxidant properties that are beneficial to human health. This objective of this study is to investigate the feasibility of matured soursop pulp flour (SPF) to be substituted with high-protein wheat flour in bread. Bread formulation was substituted with different levels of SPF (0%, 5%, 10% and 15%). The effect on physicochemical properties and sensory attributes were evaluated. Higher substitution level of SPF resulted in significantly higher (p<0.05) fibre, protein and ash content, while fat and carbohydrate content reduced significantly (p<0.05). FESEM showed that the bread crumb surface of control and 5% SPF appeared to distribute evenly and coalesced by thin gluten film. However, higher SPF substitution level in bread formulation exhibited a deleterious effect by formation of discontinuous gluten network. For texture profile analysis, 5% SPF bread resulted in the lowest value of hardness. The score of sensory evaluation showed that 5% SPF bread received good acceptability and is comparable with control bread.

Keywords: soursop pulp flour, bread, physicochemical properties, sensory attributes, scanning electron microscopy (SEM)

Procedia PDF Downloads 325
1495 Image Segmentation Techniques: Review

Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo

Abstract:

Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.

Keywords: clustering-based, convolution-network, edge-based, region-growing

Procedia PDF Downloads 102
1494 In silico Analysis of Differentially Expressed Genes in High-Grade Squamous Intraepithelial Lesion and Squamous Cell Carcinomas Stages of Cervical Cancer

Authors: Rahul Agarwal, Ashutosh Singh

Abstract:

Cervical cancer is one of the women related cancers which starts from the pre-cancerous cells and a fraction of women with pre-cancers of the cervix will develop cervical cancer. Cervical pre-cancers if treated in pre-invasive stage can prevent almost all true cervical squamous cell carcinoma. The present study investigates the genes and pathways that are involved in the progression of cervical cancer and are responsible in transition from pre-invasive stage to other advanced invasive stages. The study used GDS3292 microarray data to identify the stage specific genes in cervical cancer and further to generate the network of the significant genes. The microarray data GDS3292 consists of the expression profiling of 10 normal cervices, 7 HSILs and 21 SCCs samples. The study identifies 70 upregulated and 37 downregulated genes in HSIL stage while 95 upregulated and 60 downregulated genes in SCC stages. Biological process including cell communication, signal transduction are highly enriched in both HSIL and SCC stages of cervical cancer. Further, the ppi interaction of genes involved in HSIL and SCC stages helps in identifying the interacting partners. This work may lead to the identification of potential diagnostic biomarker which can be utilized for early stage detection.

Keywords: cervical cancer, HSIL, microarray, SCC

Procedia PDF Downloads 235
1493 Circular Tool and Dynamic Approach to Grow the Entrepreneurship of Macroeconomic Metabolism

Authors: Maria Areias, Diogo Simões, Ana Figueiredo, Anishur Rahman, Filipa Figueiredo, João Nunes

Abstract:

It is expected that close to 7 billion people will live in urban areas by 2050. In order to improve the sustainability of the territories and its transition towards circular economy, it’s necessary to understand its metabolism and promote and guide the entrepreneurship answer. The study of a macroeconomic metabolism involves the quantification of the inputs, outputs and storage of energy, water, materials and wastes for an urban region. This quantification and analysis representing one opportunity for the promotion of green entrepreneurship. There are several methods to assess the environmental impacts of an urban territory, such as human and environmental risk assessment (HERA), life cycle assessment (LCA), ecological footprint assessment (EF), material flow analysis (MFA), physical input-output table (PIOT), ecological network analysis (ENA), multicriteria decision analysis (MCDA) among others. However, no consensus exists about which of those assessment methods are best to analyze the sustainability of these complex systems. Taking into account the weaknesses and needs identified, the CiiM - Circular Innovation Inter-Municipality project aims to define an uniform and globally accepted methodology through the integration of various methodologies and dynamic approaches to increase the efficiency of macroeconomic metabolisms and promoting entrepreneurship in a circular economy. The pilot territory considered in CiiM project has a total area of 969,428 ha, comprising a total of 897,256 inhabitants (about 41% of the population of the Center Region). The main economic activities in the pilot territory, which contribute to a gross domestic product of 14.4 billion euros, are: social support activities for the elderly; construction of buildings; road transport of goods, retailing in supermarkets and hypermarkets; mass production of other garments; inpatient health facilities; and the manufacture of other components and accessories for motor vehicles. The region's business network is mostly constituted of micro and small companies (similar to the Central Region of Portugal), with a total of 53,708 companies identified in the CIM Region of Coimbra (39 large companies), 28,146 in the CIM Viseu Dão Lafões (22 large companies) and 24,953 in CIM Beiras and Serra da Estrela (13 large companies). For the construction of the database was taking into account data available at the National Institute of Statistics (INE), General Directorate of Energy and Geology (DGEG), Eurostat, Pordata, Strategy and Planning Office (GEP), Portuguese Environment Agency (APA), Commission for Coordination and Regional Development (CCDR) and Inter-municipal Community (CIM), as well as dedicated databases. In addition to the collection of statistical data, it was necessary to identify and characterize the different stakeholder groups in the pilot territory that are relevant to the different metabolism components under analysis. The CIIM project also adds the potential of a Geographic Information System (GIS) so that it is be possible to obtain geospatial results of the territorial metabolisms (rural and urban) of the pilot region. This platform will be a powerful visualization tool of flows of products/services that occur within the region and will support the stakeholders, improving their circular performance and identifying new business ideas and symbiotic partnerships.

Keywords: circular economy tools, life cycle assessment macroeconomic metabolism, multicriteria decision analysis, decision support tools, circular entrepreneurship, industrial and regional symbiosis

Procedia PDF Downloads 107
1492 Providing a Secure, Reliable and Decentralized Document Management Solution Using Blockchain by a Virtual Identity Card

Authors: Meet Shah, Ankita Aditya, Dhruv Bindra, V. S. Omkar, Aashruti Seervi

Abstract:

In today's world, we need documents everywhere for a smooth workflow in the identification process or any other security aspects. The current system and techniques which are used for identification need one thing, that is ‘proof of existence’, which involves valid documents, for example, educational, financial, etc. The main issue with the current identity access management system and digital identification process is that the system is centralized in their network, which makes it inefficient. The paper presents the system which resolves all these cited issues. It is based on ‘blockchain’ technology, which is a 'decentralized system'. It allows transactions in a decentralized and immutable manner. The primary notion of the model is to ‘have everything with nothing’. It involves inter-linking required documents of a person with a single identity card so that a person can go anywhere without having the required documents with him/her. The person just needs to be physically present at a place wherein documents are necessary, and using a fingerprint impression and an iris scan print, the rest of the verification will progress. Furthermore, some technical overheads and advancements are listed. This paper also aims to layout its far-vision scenario of blockchain and its impact on future trends.

Keywords: blockchain, decentralized system, fingerprint impression, identity management, iris scan

Procedia PDF Downloads 133
1491 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis

Authors: Shriya Shukla, Lachin Fernando

Abstract:

Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.

Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning

Procedia PDF Downloads 136
1490 Social Networking Sites: A Platform for Communication and Collaboration for Visually Impaired

Authors: Sufia Khowaja, Nishat Fatima

Abstract:

Social networking sites are significant for visually impaired to overcome the unique challenges they face and access the resources they need to succeed in their education and beyond which might be difficult to obtain through traditional means. It provides them an opportunity to build relationships, stay connected with their support network as well as to develop social skills which give them emotional support to fell less isolated. In this connection the study is conducted with the aim to determine the use of social networking sites, purpose of using and activities performed by visually impaired at Delhi University, Delhi, Jawaharlal Nehru University, Delhi and Jamia Milia Islamia, Delhi. The study followed survey technique in which structured interview is followed to collect data from 137 visually impaired students and analysed using ‘SPSS ver23’. The findings of the study revealed that mostly used social networking sites are whatsapp by 89.23% students of DU, 95.12% of JNU, 87.09% of JMI, followed by e-mail by 78.46% of DU, 78.04% of JNU, 64.51%; youtube by 73.84% DU, 90.24% JNU, 80.64% JMI. Purpose for using these sites is for academics mentioned by 96.92% DU, 100% JNU, 93.54% JMI. Activities performed on sites are sending and receiving messaging 96.92% DU, 92.68% JNU, 93.55% JMI, communicating with friends and family as well as getting academic information. Findings of the study will be helpful for libraries to disseminate their services and resources as well as latest updates to their visually impaired users with the help of most used tools.

Keywords: social networking sites, visually impaired, Delhi University, Jawaharlal Nehru University, Jamia Milia Islamia

Procedia PDF Downloads 95
1489 Epigenetic and Archeology: A Quest to Re-Read Humanity

Authors: Salma A. Mahmoud

Abstract:

Epigenetic, or alteration in gene expression influenced by extragenetic factors, has emerged as one of the most promising areas that will address some of the gaps in our current knowledge in understanding patterns of human variation. In the last decade, the research investigating epigenetic mechanisms in many fields has flourished and witnessed significant progress. It paved the way for a new era of integrated research especially between anthropology/archeology and life sciences. Skeletal remains are considered the most significant source of information for studying human variations across history, and by utilizing these valuable remains, we can interpret the past events, cultures and populations. In addition to archeological, historical and anthropological importance, studying bones has great implications in other fields such as medicine and science. Bones also can hold within them the secrets of the future as they can act as predictive tools for health, society characteristics and dietary requirements. Bones in their basic forms are composed of cells (osteocytes) that are affected by both genetic and environmental factors, which can only explain a small part of their variability. The primary objective of this project is to examine the epigenetic landscape/signature within bones of archeological remains as a novel marker that could reveal new ways to conceptualize chronological events, gender differences, social status and ecological variations. We attempted here to address discrepancies in common variants such as methylome as well as novel epigenetic regulators such as chromatin remodelers, which to our best knowledge have not yet been investigated by anthropologists/ paleoepigenetists using plethora of techniques (biological, computational, and statistical). Moreover, extracting epigenetic information from bones will highlight the importance of osseous material as a vector to study human beings in several contexts (social, cultural and environmental), and strengthen their essential role as model systems that can be used to investigate and construct various cultural, political and economic events. We also address all steps required to plan and conduct an epigenetic analysis from bone materials (modern and ancient) as well as discussing the key challenges facing researchers aiming to investigate this field. In conclusion, this project will serve as a primer for bioarcheologists/anthropologists and human biologists interested in incorporating epigenetic data into their research programs. Understanding the roles of epigenetic mechanisms in bone structure and function will be very helpful for a better comprehension of their biology and highlighting their essentiality as interdisciplinary vectors and a key material in archeological research.

Keywords: epigenetics, archeology, bones, chromatin, methylome

Procedia PDF Downloads 111
1488 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models

Authors: Jay L. Fu

Abstract:

Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.

Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction

Procedia PDF Downloads 146
1487 Recovery the Regeneration Gas from Liquefied Petroleum Gas Dryer to Off Gas Compressors

Authors: Hassan Hussin Zwida

Abstract:

The liquified LPG (Liquefied Petroleum Gas) drying system at the Complex is designed to remove water and mercaptans from the LPG stream. Upon saturation of the desiccant beds, a regeneration cycle becomes necessary. The original design routed the regeneration gas, produced during the LPG dryer heating cycle, to the sulfur recovery unit to the incineration. However, concerns regarding high temperatures and potential unit disruptions led to a modification where the gas is currently vented to the acid flare for the initial hour before being diverted to the LP network fuel gas system. While this addresses the temperature concerns, it generates significant smoke due to the presence of liquid hydrocarbons. This paper proposes an approach to recover the regeneration gas and redirect it back to the gas plant's (off-gas compressors) instead of sending it to the AC (Acid Flare), by utilizing the existing pipe 6” and connected to off gas compressor KO (Knock-Out ) Drums . This option is simple to operate, flexible, environment-friendly solution as long-term solution, lower in capital expenditure and increase the company's profitability. The feasibility of this proposal is supported by dynamic simulations. The simulations suggest the possibility of operating two out of the three off-gas compressors and LPG (Liquefied petroleum gas) as a liquid phase, is foreseen to be carried over and gathered at the bottom level of the KO (Knock-Out) Drum.

Keywords: thermal incinerator, off-gas compressors, environment, knock-out drums, acid flare

Procedia PDF Downloads 61
1486 The Potential of Sentiment Analysis to Categorize Social Media Comments Using German Libraries

Authors: Felix Boehnisch, Alexander Lutz

Abstract:

Based on the number of users and the amount of content posted daily, Facebook is considered the largest social network in the world. This content includes images or text posts from companies but also private persons, which are also commented on by other users. However, it can sometimes be difficult for companies to keep track of all the posts and the reactions to them, especially when there are several posts a day that contain hundreds to thousands of comments. To facilitate this, the following paper deals with the possible applications of sentiment analysis to social media comments in order to be able to support the work in social media marketing. In a first step, post comments were divided into positive and negative by a subjective rating, then the same comments were checked for their polarity value by the two german python libraries TextBlobDE and SentiWS and also grouped into positive, negative, or even neutral. As a control, the subjective classifications were compared with the machine-generated ones by a confusion matrix, and relevant quality criteria were determined. The accuracy of both libraries was not really meaningful, with 60% to 66%. However, many words or sentences were not evaluated at all, so there seems to be room for optimization to possibly get more accurate results. In future studies, the use of these specific German libraries can be optimized to gain better insights by either applying them to stricter cleaned data or by adding a sentiment value to emojis, which have been removed from the comments in advance, as they are not contained in the libraries.

Keywords: Facebook, German libraries, polarity, sentiment analysis, social media comments

Procedia PDF Downloads 185
1485 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning

Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam

Abstract:

Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.

Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped

Procedia PDF Downloads 319