Search results for: linguistic information
5567 The Barriers in the Adoption of E-readiness and Affective E-Business of Developing Countries: From the Prospective of Pakistani Organizations
Authors: Asma Moomal, Maslin Masrom
Abstract:
The literature has identified that the competition among the business firms has been intensified due to the change in operating environment such as; knowledge diffusion, amount of R&D investments, and the adoption of technological innovation. Correspondingly, the E-business has potential to add a higher value to business and consumers in developed countries than in developing countries. However, the technological innovation (such as e-readiness) also considered as the major influential element on the firms competitiveness and development, Yet most of the developing countries including Pakistan failed to reap the benefits offered by modern information and communication technologies adoption (e-readiness), e-business and other innovative technologies. Thus, this paper reviewed the relevant literature in order to examine the barriers to the adoption of e-readiness and e-business in the organizations of Pakistan. The data collection technique used in this study was done through the secondary data resources (i.e. the existing literature analysis). The result of the study reveals that the most of the organizations of Pakistan like other developing countries are lagging behind in terms of adoption of e-readiness and e-business as compared to the developed countries of the world.Keywords: e-readiness, e-business, potential, technological innovation
Procedia PDF Downloads 5235566 Failure Inference and Optimization for Step Stress Model Based on Bivariate Wiener Model
Authors: Soudabeh Shemehsavar
Abstract:
In this paper, we consider the situation under a life test, in which the failure time of the test units are not related deterministically to an observable stochastic time varying covariate. In such a case, the joint distribution of failure time and a marker value would be useful for modeling the step stress life test. The problem of accelerating such an experiment is considered as the main aim of this paper. We present a step stress accelerated model based on a bivariate Wiener process with one component as the latent (unobservable) degradation process, which determines the failure times and the other as a marker process, the degradation values of which are recorded at times of failure. Parametric inference based on the proposed model is discussed and the optimization procedure for obtaining the optimal time for changing the stress level is presented. The optimization criterion is to minimize the approximate variance of the maximum likelihood estimator of a percentile of the products’ lifetime distribution.Keywords: bivariate normal, Fisher information matrix, inverse Gaussian distribution, Wiener process
Procedia PDF Downloads 3175565 Securing Internet of Things Devices in Healthcare industry: An Investigation into Efficient and Effective Authorization Procedures
Authors: Maruf Farhan, Abdul Salih, Sikandar Ali Tahir
Abstract:
Protecting patient information's confidentiality is paramount considering the widespread use of Internet of Things (IoT) gadgets in medical settings. This study's subjects are decentralized identifiers (DIDs) and verifiable credentials (VCs) in conjunction with an OAuth-based authorization framework, as they are the key to protecting IoT healthcare devices. DIDs enable autonomous authentication and trust formation between IoT devices and other entities. To authorize users and enforce access controls based on verified claims, VCs offer a secure and adaptable solution. Through the proposed method, medical facilities can improve the privacy and security of their IoT devices while streamlining access control administration. A Smart pill dispenser in a hospital setting is used to illustrate the advantages of this method. The findings demonstrate the value of DIDs, VCs, and OAuth-based delegation in protecting the IoT devices. Improved processes for authorizing and controlling access to IoT devices are possible thanks to the research findings, which also help ensure patient confidentiality in the healthcare sector.Keywords: Iot, DID, authorization, verifiable credentials
Procedia PDF Downloads 765564 GSM and GPS Based Smart Helmet System for Sudden Accidental Rescue Operation
Authors: A. B. M. Aftabuzzaman, Md. Mahin Hossain, Md. Ifran Sharif Imthi, Md. Razu Ahmed, A. Z. M. Imran
Abstract:
The goals of the study are to develop a safety system that is combined with a smart helmet to reduce the likelihood of two-wheeler bike accidents and cases of drunk driving. The smart helmet and the limit switch both verify when a biker is wearing a helmet. The presence of alcohol in the rider's breath is detected using alcohol sensors. The bike remains turned off if the rider is not wearing a helmet or if the rider's breath contains alcohol. The bike will not start until the rider is wearing a helmet and there is no alcoholic substance present, indicating that the bike rider has not consumed alcohol. When the rider faces in an accident, instantly the smart helmet hits the ground and respective sensors detect the movement and tilt of the protective helmet and instantly sending the information about the location of accident to the rider's relatives and the crisis contact numbers which are introduced in the smart helmet respective device. So this project finding will ensure safe bike journey and improve safe commercial bike services in Bangladesh.Keywords: smart helmet, GSM, GPS, bike, biker accident
Procedia PDF Downloads 1055563 Estimating Gait Parameter from Digital RGB Camera Using Real Time AlphaPose Learning Architecture
Authors: Murad Almadani, Khalil Abu-Hantash, Xinyu Wang, Herbert Jelinek, Kinda Khalaf
Abstract:
Gait analysis is used by healthcare professionals as a tool to gain a better understanding of the movement impairment and track progress. In most circumstances, monitoring patients in their real-life environments with low-cost equipment such as cameras and wearable sensors is more important. Inertial sensors, on the other hand, cannot provide enough information on angular dynamics. This research offers a method for tracking 2D joint coordinates using cutting-edge vision algorithms and a single RGB camera. We provide an end-to-end comprehensive deep learning pipeline for marker-less gait parameter estimation, which, to our knowledge, has never been done before. To make our pipeline function in real-time for real-world applications, we leverage the AlphaPose human posture prediction model and a deep learning transformer. We tested our approach on the well-known GPJATK dataset, which produces promising results.Keywords: gait analysis, human pose estimation, deep learning, real time gait estimation, AlphaPose, transformer
Procedia PDF Downloads 1185562 Business Challenges and Opportunities of Mobile Applications for Equity Trading in India
Authors: Helee Dave
Abstract:
Globalization has helped in the growth and change of the Indian economy to a great extent. The purchasing power of Indians has increased. IT Infrastructure has considerably improved in India. There is an increase in the usage of smartphones. The smartphones facilitate all sorts of work now a day, from getting groceries to planning a tour; it is just one click away. Similar is the case with equity trading. The traders in equity market can now deal with their stocks through mobile applications eliminating the middle man. The traders do not have an option but to open a dematerialization account with the banks which are compulsory enough irrespective of their mode of transaction that is online or offline. Considering that India is a young country having more than 50% of its population below the age of 25 and 65% of its population below the age of 35; this youth is comfortable with the usage of smartphones. The banking industry is also providing a virtual platform supporting equity market industry. Yet equity trading through online applications is at an infant stage. This paper primarily attempts to understand challenges and opportunities faced by equity trading through mobile apps in India.Keywords: BPO, business process outsourcing, de-materialization account, equity, ITES, information technology enabled services
Procedia PDF Downloads 3115561 Analysis of Genetic Variations in Camel Breeds (Camelus dromedarius)
Authors: Yasser M. Saad, Amr A. El Hanafy, Saleh A. Alkarim, Hussein A. Almehdar, Elrashdy M. Redwan
Abstract:
Camels are substantial providers of transport, milk, sport, meat, shelter, security and capital in many countries, particularly in Saudi Arabia. Inter simple sequence repeat technique was used to detect the genetic variations among some camel breeds (Majaheim, Safra, Wadah, and Hamara). Actual number of alleles, effective number of alleles, gene diversity, Shannon’s information index and polymorphic bands were calculated for each evaluated camel breed. Neighbor-joining tree that re-constructed for evaluated these camel breeds showed that, Hamara breed is distantly related from the other evaluated camels. In addition, the polymorphic sites, haplotypes and nucleotide diversity were identified for some camelidae cox1 gene sequences (obtained from NCBI). The distance value between C. bactrianus and C. dromedarius (0.072) was relatively low. Analysis of genetic diversity is an important way for conserving Camelus dromedarius genetic resources.Keywords: camel, genetics, ISSR, neighbor-joining
Procedia PDF Downloads 4725560 Genetic Diversity and Discovery of Unique SNPs in Five Country Cultivars of Sesamum indicum by Next-Generation Sequencing
Authors: Nam-Kuk Kim, Jin Kim, Soomin Park, Changhee Lee, Mijin Chu, Seong-Hun Lee
Abstract:
In this study, we conducted whole genome re-sequencing of 10 cultivars originated from five countries including Korea, China, India, Pakistan and Ethiopia with Sesamum indicum (Zhongzho No. 13) genome as a reference. Almost 80% of the whole genome sequences of the reference genome could be covered by sequenced reads. Numerous SNP and InDel were detected by bioinformatic analysis. Among these variants, 266,051 SNPs were identified as unique to countries. Pakistan and Ethiopia had high densities of SNPs compared to other countries. Three main clusters (cluster 1: Korea, cluster 2: Pakistan and India, cluster 3: Ethiopia and China) were recovered by neighbor-joining analysis using all variants. Interestingly, some variants were detected in DGAT1 (diacylglycerol O-acyltransferase 1) and FADS (fatty acid desaturase) genes, which are known to be related with fatty acid synthesis and metabolism. These results can provide useful information to understand the regional characteristics and develop DNA markers for origin discrimination of sesame.Keywords: Sesamum indicum, NGS, SNP, DNA marker
Procedia PDF Downloads 3275559 Calculation of Pressure-Varying Langmuir and Brunauer-Emmett-Teller Isotherm Adsorption Parameters
Authors: Trevor C. Brown, David J. Miron
Abstract:
Gas-solid physical adsorption methods are central to the characterization and optimization of the effective surface area, pore size and porosity for applications such as heterogeneous catalysis, and gas separation and storage. Properties such as adsorption uptake, capacity, equilibrium constants and Gibbs free energy are dependent on the composition and structure of both the gas and the adsorbent. However, challenges remain, in accurately calculating these properties from experimental data. Gas adsorption experiments involve measuring the amounts of gas adsorbed over a range of pressures under isothermal conditions. Various constant-parameter models, such as Langmuir and Brunauer-Emmett-Teller (BET) theories are used to provide information on adsorbate and adsorbent properties from the isotherm data. These models typically do not provide accurate interpretations across the full range of pressures and temperatures. The Langmuir adsorption isotherm is a simple approximation for modelling equilibrium adsorption data and has been effective in estimating surface areas and catalytic rate laws, particularly for high surface area solids. The Langmuir isotherm assumes the systematic filling of identical adsorption sites to a monolayer coverage. The BET model is based on the Langmuir isotherm and allows for the formation of multiple layers. These additional layers do not interact with the first layer and the energetics are equal to the adsorbate as a bulk liquid. This BET method is widely used to measure the specific surface area of materials. Both Langmuir and BET models assume that the affinity of the gas for all adsorption sites are identical and so the calculated adsorbent uptake at the monolayer and equilibrium constant are independent of coverage and pressure. Accurate representations of adsorption data have been achieved by extending the Langmuir and BET models to include pressure-varying uptake capacities and equilibrium constants. These parameters are determined using a novel regression technique called flexible least squares for time-varying linear regression. For isothermal adsorption the adsorption parameters are assumed to vary slowly and smoothly with increasing pressure. The flexible least squares for pressure-varying linear regression (FLS-PVLR) approach assumes two distinct types of discrepancy terms, dynamic and measurement for all parameters in the linear equation used to simulate the data. Dynamic terms account for pressure variation in successive parameter vectors, and measurement terms account for differences between observed and theoretically predicted outcomes via linear regression. The resultant pressure-varying parameters are optimized by minimizing both dynamic and measurement residual squared errors. Validation of this methodology has been achieved by simulating adsorption data for n-butane and isobutane on activated carbon at 298 K, 323 K and 348 K and for nitrogen on mesoporous alumina at 77 K with pressure-varying Langmuir and BET adsorption parameters (equilibrium constants and uptake capacities). This modeling provides information on the adsorbent (accessible surface area and micropore volume), adsorbate (molecular areas and volumes) and thermodynamic (Gibbs free energies) variations of the adsorption sites.Keywords: Langmuir adsorption isotherm, BET adsorption isotherm, pressure-varying adsorption parameters, adsorbate and adsorbent properties and energetics
Procedia PDF Downloads 2335558 Geotechnical Characterization of an Industrial Waste Landfill: Stability and Environmental Study
Authors: Maria Santana, Jose Estaire
Abstract:
Even though recycling strategies are becoming more important in recent years, there is still a huge amount of industrial by-products that are the disposal of at landfills. Due to the size, possible dangerous composition, and heterogeneity, most of the wastes are located at landfills without a basic geotechnical characterization. This lack of information may have an important influence on the correct stability calculations. This paper presents the results of geotechnical characterization of some industrial wastes disposed at one landfill. The shear strength parameters were calculated based on direct shear test results carried out in a large shear box owned by CEDEX, which has a shear plane of 1 x 1 m. These parameters were also compared with the results obtained in a 30 x 30 cm shear box. The paper includes a sensitive analysis of the global safety factor of the landfill's overall stability as a function of shear strength variation. The stability calculations were assessed for various hydrological scenarios to simulate the design and performance of the leachate drainage system. The characterization was completed with leachate tests to study the potential impact on the environment.Keywords: industrial wastes, landfill, leachate tests, stability
Procedia PDF Downloads 1955557 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks
Authors: Amal Khalifa, Nicolas Vana Santos
Abstract:
Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.Keywords: deep learning, steganography, image, discrete wavelet transform, fusion
Procedia PDF Downloads 905556 The Duty of Application and Connection Providers Regarding the Supply of Internet Protocol by Court Order in Brazil to Determine Authorship of Acts Practiced on the Internet
Authors: João Pedro Albino, Ana Cláudia Pires Ferreira de Lima
Abstract:
Humanity has undergone a transformation from the physical to the virtual world, generating an enormous amount of data on the world wide web, known as big data. Many facts that occur in the physical world or in the digital world are proven through records made on the internet, such as digital photographs, posts on social media, contract acceptances by digital platforms, email, banking, and messaging applications, among others. These data recorded on the internet have been used as evidence in judicial proceedings. The identification of internet users is essential for the security of legal relationships. This research was carried out on scientific articles and materials from courses and lectures, with an analysis of Brazilian legislation and some judicial decisions on the request of static data from logs and Internet Protocols (IPs) from application and connection providers. In this article, we will address the determination of authorship of data processing on the internet by obtaining the IP address and the appropriate judicial procedure for this purpose under Brazilian law.Keywords: IP address, digital forensics, big data, data analytics, information and communication technology
Procedia PDF Downloads 1245555 Comparative Assessment of ISSR and RAPD Markers among Egyptian Jojoba Shrubs
Authors: Abdelsabour G. A. Khaled, Galal A.R. El-Sherbeny, Ahmed M. Hassanein, Gameel M. G. Aly
Abstract:
Classical methods of identification, based on agronomical characterization, are not always the most accurate way due to the instability of these characteristics under the influence of the different environments. In order to estimate the genetic diversity, molecular markers provided excellent tools. In this study, Genetic variation of nine Egyptian jojoba shrubs was tested using ISSR (inter simple sequences repeats), RAPD (random amplified polymorphic DNA) markers and based on the morphological characterization. The average of the percentage of polymorphism (%P) ranged between 58.17% and 74.07% for ISSR and RAPD markers, respectively. The range of genetic similarity percents among shrubs based on ISSR and RAPD markers were from 82.9 to 97.9% and from 85.5 to 97.8%, respectively. The average of PIC (polymorphism information content) values were 0.19 (ISSR) and 0.24 (RAPD). In the present study, RAPD markers were more efficient than the ISSR markers. Where the RAPD technique exhibited higher marker index (MI) average (1.26) compared to ISSR one (1.11). There was an insignificant correlation between the ISSR and RAPD data (0.076, P > 0.05). The dendrogram constructed by the combined RAPD and ISSR data gave a relatively different clustering pattern.Keywords: correlation, molecular markers, polymorphism, marker index
Procedia PDF Downloads 4785554 A Machine Learning-Based Approach to Capture Extreme Rainfall Events
Authors: Willy Mbenza, Sho Kenjiro
Abstract:
Increasing efforts are directed towards a better understanding and foreknowledge of extreme precipitation likelihood, given the adverse effects associated with their occurrence. This knowledge plays a crucial role in long-term planning and the formulation of effective emergency response. However, predicting extreme events reliably presents a challenge to conventional empirical/statistics due to the involvement of numerous variables spanning different time and space scales. In the recent time, Machine Learning has emerged as a promising tool for predicting the dynamics of extreme precipitation. ML techniques enables the consideration of both local and regional physical variables that have a strong influence on the likelihood of extreme precipitation. These variables encompasses factors such as air temperature, soil moisture, specific humidity, aerosol concentration, among others. In this study, we develop an ML model that incorporates both local and regional variables while establishing a robust relationship between physical variables and precipitation during the downscaling process. Furthermore, the model provides valuable information on the frequency and duration of a given intensity of precipitation.Keywords: machine learning (ML), predictions, rainfall events, regional variables
Procedia PDF Downloads 885553 Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation
Authors: Y. T. Tsai, Jin H. Huang
Abstract:
The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design.Keywords: inverse problem, cone effective area, loudspeaker, nonlinear conjugate gradient method
Procedia PDF Downloads 3035552 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers
Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang
Abstract:
In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.Keywords: centrality, patent coupling network, patent influence, social network analysis
Procedia PDF Downloads 545551 Talent Sourcing Practices in Sri Lankan Software Industry
Authors: Malmi Amadoru, Chandana Gamage
Abstract:
Sri Lanka is emerging as a global IT-BPO hub topping up among the 20 global outsourcing destinations. When setting up a new venture in Sri Lanka, talent sourcing plays one of the key functions due to the rapid growth of workforce. Getting competent people with right skills for right positions leads organizations achieving its vision, mission and objectives. It also drives in earning competitive advantage over industry competitors. Thus it is crucial to scan and recruit the best employees to an organization. However there is no published information available on recruitment methods utilized in Sri Lankan software industry, as a study of this nature had not being conducted previously in Sri Lanka. The main objective of this study was to explore various talent sourcing practices exploited in Sri Lankan software industry. Also this study analyses the extent which Sri Lanka has adopted different recruitment strategies utilized in worldwide and its deviations. The research outcome is beneficial for HR professionals to identify the current trends in recruitment practices. Moreover investors who are interested in IT-BPO engagements can gain a thorough knowledge about talent sourcing techniques in Sri Lankan software industry. Finally, this research clues trending areas which can be further investigated in future.Keywords: IT-BPO, recruitment, Sri Lanka, software industry, talent
Procedia PDF Downloads 4875550 Software Quality Assurance in Component Based Software Development – a Survey Analysis
Authors: Abeer Toheed Quadri, Maria Abubakar, Mehreen Sirshar
Abstract:
Component Based Software Development (CBSD) is a new trend in software development. Selection of quality components is not enough to ensure software quality in Component Based Software System (CBSS). A software product is considered to be a quality product if it satisfies its customer’s needs and has minimum defects. Authors’ survey different research papers and analyzes various techniques which ensure software quality in component based software development. This paper includes an investigation about how to improve the quality of a component based software system without effecting quality attributes. The reported information is identified from literature survey. The developments of component based systems are rising as they reduce the development time, effort and cost by means of reuse. After analysis, it has been explored that in order to achieve the quality in a CBSS we need to have the components that are certified through software measure because the predictability of software quality attributes of system depend on the quality attributes of the constituent components, integration process and the framework used.Keywords: CBSD (component based software development), CBSS (component based software system), quality components, SQA (software quality assurance)
Procedia PDF Downloads 4135549 Environmental Effect of Empty Nest Households in Germany: An Empirical Approach
Authors: Dominik Kowitzke
Abstract:
Housing constructions have direct and indirect environmental impacts especially caused by soil sealing and gray energy consumption related to the use of construction materials. Accordingly, the German government introduced regulations limiting additional annual soil sealing. At the same time, in many regions like metropolitan areas the demand for further housing is high and of current concern in the media and politics. It is argued that meeting this demand by making better use of the existing housing supply is more sustainable than the construction of new housing units. In this context, targeting the phenomenon of so-called over the housing of empty nest households seems worthwhile to investigate for its potential to free living space and thus, reduce the need for new housing constructions and related environmental harm. Over housing occurs if no space adjustment takes place in household lifecycle stages when children move out from home and the space formerly created for the offspring is from then on under-utilized. Although in some cases the housing space consumption might actually meet households’ equilibrium preferences, frequently space-wise adjustments to the living situation doesn’t take place due to transaction or information costs, habit formation, or government intervention leading to increasing costs of relocations like real estate transfer taxes or tenant protection laws keeping tenure rents below the market price. Moreover, many detached houses are not long-term designed in a way that freed up space could be rent out. Findings of this research based on socio-economic survey data, indeed, show a significant difference between the living space of empty nest and a comparison group of households which never had children. The approach used to estimate the average difference in living space is a linear regression model regressing the response variable living space on a two-dimensional categorical variable distinguishing the two groups of household types and further controls. This difference is assumed to be the under-utilized space and is extrapolated to the total amount of empty nests in the population. Supporting this result, it is found that households that move, despite market frictions impairing the relocation, after children left their home tend to decrease the living space. In the next step, only for areas with tight housing markets in Germany and high construction activity, the total under-utilized space in empty nests is estimated. Under the assumption of full substitutability of housing space in empty nests and space in new dwellings in these locations, it is argued that in a perfect market with empty nest households consuming their equilibrium demand quantity of housing space, dwelling constructions in the amount of the excess consumption of living space could be saved. This, on the other hand, would prevent environmental harm quantified in carbon dioxide equivalence units related to average constructions of detached or multi-family houses. This study would thus provide information on the amount of under-utilized space inside dwellings which is missing in public data and further estimates the external effect of over housing in environmental terms.Keywords: empty nests, environment, Germany, households, over housing
Procedia PDF Downloads 1715548 Barriers to the Use of Factoring Accounts Receivables: Ghanaian Contractor’s Perception
Authors: E. Kissi, V. K. Acheamfour, J. J. Gyimah, T. Adjei-Kumi
Abstract:
Factoring accounts receivable is widely accepted as an alternative financing source and utilized in almost every industry that sells business-to-business or business-to-government. However, its patronage in the construction industry is very limited as some barriers hinder its application in the construction industry. This study aims at assessing the barriers to the use of factoring accounts receivables in the Ghanaian construction industry. The study adopted the sequential exploratory research method where structured and unstructured questionnaires were conveniently distributed to D1K1 and D2K2 construction firms in Ghana. Using the one-sample t-test and Kendall’s Coefficient of concordance data was analyzed. The most severe challenge concluded is the high cost of factoring patronage. Other critical challenges identified were low knowledge on factoring processes, inadequate access to information on factoring, and high risks involved in factoring. Hence, it is recommended that contractors should be made aware of the prospects of factoring of accounts receivables in the construction industry. This study serves as basis for further rigorous research into factoring of accounts receivables in the industry.Keywords: barriers, contractors, factoring accounts receivables, Ghanaian, perception
Procedia PDF Downloads 1325547 Personalized Intervention through Causal Inference in mHealth
Authors: Anna Guitart Atienza, Ana Fernández del Río, Madhav Nekkar, Jelena Ljubicic, África Periáñez, Eura Shin, Lauren Bellhouse
Abstract:
The use of digital devices in healthcare or mobile health (mHealth) has increased in recent years due to the advances in digital technology, making it possible to nudge healthy behaviors through individual interventions. In addition, mHealth is becoming essential in poor-resource settings due to the widespread use of smartphones in areas where access to professional healthcare is limited. In this work, we evaluate mHealth interventions in low-income countries with a focus on causal inference. Counterfactuals estimation and other causal computations are key to determining intervention success and assisting in empirical decision-making. Our main purpose is to personalize treatment recommendations and triage patients at the individual level in order to maximize the entire intervention's impact on the desired outcome. For this study, collected data includes mHealth individual logs from front-line healthcare workers, electronic health records (EHR), and external variables data such as environmental, demographic, and geolocation information.Keywords: causal inference, mHealth, intervention, personalization
Procedia PDF Downloads 1325546 Towards Integrating Statistical Color Features for Human Skin Detection
Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani
Abstract:
Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.Keywords: color space, neural network, random forest, skin detection, statistical feature
Procedia PDF Downloads 4625545 EEG and DC-Potential Level Сhanges in the Elderly
Authors: Irina Deputat, Anatoly Gribanov, Yuliya Dzhos, Alexandra Nekhoroshkova, Tatyana Yemelianova, Irina Bolshevidtseva, Irina Deryabina, Yana Kereush, Larisa Startseva, Tatyana Bagretsova, Irina Ikonnikova
Abstract:
In the modern world the number of elderly people increases. Preservation of functionality of an organism in the elderly becomes very important now. During aging the higher cortical functions such as feelings, perception, attention, memory, and ideation are gradual decrease. It is expressed in the rate of information processing reduction, volume of random access memory loss, ability to training and storing of new information decrease. Perspective directions in studying of aging neurophysiological parameters are brain imaging: computer electroencephalography, neuroenergy mapping of a brain, and also methods of studying of a neurodynamic brain processes. Research aim – to study features of a brain aging in elderly people by electroencephalogram (EEG) and the DC-potential level. We examined 130 people aged 55 - 74 years that did not have psychiatric disorders and chronic states in a decompensation stage. EEG was recorded with a 128-channel GES-300 system (USA). EEG recordings are collected while the participant sits at rest with their eyes closed for 3 minutes. For a quantitative assessment of EEG we used the spectral analysis. The range was analyzed on delta (0,5–3,5 Hz), a theta - (3,5–7,0 Hz), an alpha 1-(7,0–11,0 Hz) an alpha 2-(11–13,0 Hz), beta1-(13–16,5 Hz) and beta2-(16,5–20 Hz) ranges. In each frequency range spectral power was estimated. The 12-channel hardware-software diagnostic ‘Neuroenergometr-KM’ complex was applied for registration, processing and the analysis of a brain constant potentials level. The DC-potential level registered in monopolar leads. It is revealed that the EEG of elderly people differ in higher rates of spectral power in the range delta (р < 0,01) and a theta - (р < 0,05) rhythms, especially in frontal areas in aging. By results of the comparative analysis it is noted that elderly people 60-64 aged differ in higher values of spectral power alfa-2 range in the left frontal and central areas (р < 0,05) and also higher values beta-1 range in frontal and parieto-occipital areas (р < 0,05). Study of a brain constant potential level distribution revealed increase of total energy consumption on the main areas of a brain. In frontal leads we registered the lowest values of constant potential level. Perhaps it indicates decrease in an energy metabolism in this area and difficulties of executive functions. The comparative analysis of a potential difference on the main assignments testifies to unevenness of a lateralization of a brain functions at elderly people. The results of a potential difference between right and left hemispheres testify to prevalence of the left hemisphere activity. Thus, higher rates of functional activity of a cerebral cortex are peculiar to people of early advanced age (60-64 years) that points to higher reserve opportunities of central nervous system. By 70 years there are age changes of a cerebral power exchange and level of electrogenesis of a brain which reflect deterioration of a condition of homeostatic mechanisms of self-control and the program of processing of the perceptual data current flow.Keywords: brain, DC-potential level, EEG, elderly people
Procedia PDF Downloads 4845544 Enhance the Power of Sentiment Analysis
Authors: Yu Zhang, Pedro Desouza
Abstract:
Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining
Procedia PDF Downloads 3535543 Six Tropical Medicinal Plants Effects in the Treatment of Prostate Diseases in Forty Different Patients
Authors: T. Nalowa, L. Foncha, S. Eposi
Abstract:
Prostate enlargement, prostate cancer are major global health problems affecting many men as they advance in age. It is highly recommended to encourage older men to get Prostate Specific Antigen test screening frequently. Conventional treatments like radiation, chemotherapy are associated with many side effects. And this situation is a call for concern. Traditional medicine is affordable, easily prepared with little or no side effects and it contains many phytochemicals. The study aims to find the cure for prostate cancer and prostate enlargement by extracting products from plant tissues of specific herbs to determine anti-inflammatory, anti-cancer, and anti-hematuria properties. Descriptive statistical analysis was applied to describe the data process. The commonly used method of preparation was extraction. Overall, 40 patients were classified based on their medical conditions on their underlying user report. Rural communities in Fako are rich sources of plants with medicinal properties. The used plants consequently provide basic information and aid to investigate the cure of prostate cancer and prostate enlargement, with great significance.Keywords: cancer, enlargement, metastases, prostate
Procedia PDF Downloads 755542 The Effects of Labeling Cues on Sensory and Affective Responses of Consumers to Categories of Functional Food Carriers: A Mixed Factorial ANOVA Design
Authors: Hedia El Ourabi, Marc Alexandre Tomiuk, Ahmed Khalil Ben Ayed
Abstract:
The aim of this study is to investigate the effects of the labeling cues traceability (T), health claim (HC), and verification of health claim (VHC) on consumer affective response and sensory appeal toward a wide array of functional food carriers (FFC). Predominantly, research in the food area has tended to examine the effects of these information cues independently on cognitive responses to food product offerings. Investigations and findings of potential interaction effects among these factors on effective response and sensory appeal are therefore scant. Moreover, previous studies have typically emphasized single or limited sets of functional food products and categories. In turn, this study considers five food product categories enriched with omega-3 fatty acids, namely: meat products, eggs, cereal products, dairy products and processed fruits and vegetables. It is, therefore, exhaustive in scope rather than exclusive. An investigation of the potential simultaneous effects of these information cues on the affective responses and sensory appeal of consumers should give rise to important insights to both functional food manufacturers and policymakers. A mixed (2 x 3) x (2 x 5) between-within subjects factorial ANOVA design was implemented in this study. T (two levels: completely traceable or non-traceable) and HC (three levels: functional health claim, or disease risk reduction health claim, or disease prevention health claim) were treated as between-subjects factors whereas VHC (two levels: by a government agency and by a non-government agency) and FFC (five food categories) were modeled as within-subjects factors. Subjects were randomly assigned to one of the six between-subjects conditions. A total of 463 questionnaires were obtained from a convenience sample of undergraduate students at various universities in the Montreal and Ottawa areas (in Canada). Consumer affective response and sensory appeal were respectively measured via the following statements assessed on seven-point semantic differential scales: ‘Your evaluation of [food product category] enriched with omega-3 fatty acids is Unlikeable (1) / Likeable (7)’ and ‘Your evaluation of [food product category] enriched with omega-3 fatty acids is Unappetizing (1) / Appetizing (7).’ Results revealed a significant interaction effect between HC and VHC on consumer affective response as well as on sensory appeal toward foods enriched with omega-3 fatty acids. On the other hand, the three-way interaction effect between T, HC, and VHC on either of the two dependent variables was not significant. However, the triple interaction effect among T, VHC, and FFC was significant on consumer effective response and the interaction effect among T, HC, and FFC was significant on consumer sensory appeal. Findings of this study should serve as impetus for functional food manufacturers to closely cooperate with policymakers in order to improve on and legitimize the use of health claims in their marketing efforts through credible verification practices and protocols put in place by trusted government agencies. Finally, both functional food manufacturers and retailers may benefit from the socially-responsible image which is conveyed by product offerings whose ingredients remain traceable from farm to kitchen table.Keywords: functional foods, labeling cues, effective appeal, sensory appeal
Procedia PDF Downloads 1645541 The Role of ChatGPT in Enhancing ENT Surgical Training
Authors: Laura Brennan, Ram Balakumar
Abstract:
ChatGPT has been developed by Open AI (Nov 2022) as a powerful artificial intelligence (AI) language model which has been designed to produce human-like text from user written prompts. To gain the most from the system, user written prompts must give context specific information. This article aims to give guidance on how to optimise the ChatGPT system in the context of education for otolaryngology. Otolaryngology is a specialist field which sees little time dedicated to providing education to both medical students and doctors. Additionally, otolaryngology trainees have seen a reduction in learning opportunities since the COVID-19 pandemic. In this article we look at these various barriers to medical education in Otolaryngology training and suggest ways that ChatGPT can overcome them and assist in simulation-based training. Examples provide how this can be achieved using the Authors’ experience to further highlight the practicalities. What this article has found is that while ChatGPT cannot replace traditional mentorship and practical surgical experience, it can serve as an invaluable supplementary resource to simulation based medical education in Otolaryngology.Keywords: artificial intelligence, otolaryngology, surgical training, medical education
Procedia PDF Downloads 1595540 Digital Reconstruction of Museum's Statue Using 3D Scanner for Cultural Preservation in Indonesia
Authors: Ahmad Zaini, F. Muhammad Reza Hadafi, Surya Sumpeno, Muhtadin, Mochamad Hariadi
Abstract:
The lack of information about museum’s collection reduces the number of visits of museum. Museum’s revitalization is an urgent activity to increase the number of visits. The research's roadmap is building a web-based application that visualizes museum in the virtual form including museum's statue reconstruction in the form of 3D. This paper describes implementation of three-dimensional model reconstruction method based on light-strip pattern on the museum statue using 3D scanner. Noise removal, alignment, meshing and refinement model's processes is implemented to get a better 3D object reconstruction. Model’s texture derives from surface texture mapping between object's images with reconstructed 3D model. Accuracy test of dimension of the model is measured by calculating relative error of virtual model dimension compared against the original object. The result is realistic three-dimensional model textured with relative error around 4.3% to 5.8%.Keywords: 3D reconstruction, light pattern structure, texture mapping, museum
Procedia PDF Downloads 4655539 A Study of Common Carotid Artery Behavior from B-Mode Ultrasound Image for Different Gender and BMI Categories
Authors: Nabilah Ibrahim, Khaliza Musa
Abstract:
The increment thickness of intima-media thickness (IMT) which involves the changes of diameter of the carotid artery is one of the early symptoms of the atherosclerosis lesion. The manual measurement of arterial diameter is time consuming and lack of reproducibility. Thus, this study reports the automatic approach to find the arterial diameter behavior for different gender, and body mass index (BMI) categories, focus on tracked region. BMI category is divided into underweight, normal, and overweight categories. Canny edge detection is employed to the B-mode image to extract the important information to be deal as the carotid wall boundary. The result shows the significant difference of arterial diameter between male and female groups which is 2.5% difference. In addition, the significant result of differences of arterial diameter for BMI category is the decreasing of arterial diameter proportional to the BMI.Keywords: B-mode Ultrasound Image, carotid artery diameter, canny edge detection, body mass index
Procedia PDF Downloads 4445538 Musical Education of Preschool Children: From the Average to the Gifted
Authors: Eudjen Cinc
Abstract:
The contemporary society, which is, whether we like it or not, oriented towards utilitarianism, pragmatics and professional flexibility, lives in a certain paradox. On the one hand, at least declaratively, the accent of modern society is on knowledge; knowledge is even considered to be a commodity, the popularity of education is increased as the only means of survival in the market-oriented world, while on the other hand modern society is moving towards simplification and decreasing the amount of information and areas which are considered necessary in the generally excepted concept of education. We cannot talk about the preschool teacher profession without mentioning work with gifted children. The preschool teacher knowing the characteristics of gifted children is of utmost importance because their early identification and professional guidance are of cardinal importance for the direction in which the children will develop. When we talk about musical ability, in the first phase, the role of preschool teachers in the identification and stimulation of gifted children naturally refers to monitoring children’s musical manifestation. The identification process and work with the gifted presupposes a good relationship with the family, synergy of these two important influences in the child’s education and upbringing.Keywords: music education, gifted children, methodology, kindergarten
Procedia PDF Downloads 273