Search results for: vector information
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11711

Search results for: vector information

11141 Application of Blockchain on Manufacturing Process Control and Pricing Policy

Authors: Chieh Lee

Abstract:

Today, supply chain managers face extensive disruptions in raw material pricing, transportation block, and quality issue due to product complexity. While digitalization might help managers to mitigate the disruption risk and increase supply chain resilience by sharing information between sellers and buyers through the supply chain, entities are reluctant to build such a system. The main reason is it is not clear what information should be shared and who has access to the stored information. In this research, we propose a smart contract built by blockchain technology. This contract helps both buyer and seller to identify the type of information, the access to the information, and how to trace the information. This contract helps managers control their orders through the supply chain and address any disruption they see fit. Furthermore, with the same smart contract, the supplier can track the production process of an order and increase production efficiency by eliminating waste.

Keywords: blockchain, production process, smart contract, supply chain resilience

Procedia PDF Downloads 80
11140 Information Literacy Skills of Legal Practitioners in Khyber Pakhtunkhwa-Pakistan: An Empirical Study

Authors: Saeed Ullah Jan, Shaukat Ullah

Abstract:

Purpose of the study: The main theme of this study is to explore the information literacy skills of the law practitioners in Khyber Pakhtunkhwa-Pakistan under the heading "Information Literacy Skills of Legal Practitioners in Khyber Pakhtunkhwa-Pakistan: An Empirical Study." Research Method and Procedure: To conduct this quantitative study, the simple random sample approach is used. An adapted questionnaire is distributed among 254 lawyers of Dera Ismail Khan through personal visits and electronic means. The data collected is analyzed through SPSS (Statistical Package for Social Sciences) software. Delimitations of the study: The study is delimited to the southern district of Khyber Pakhtunkhwa: Dera Ismael Khan. Key Findings: Most of the lawyers of District Dera Ismail Khan of Khyber Pakhtunkhwa can recognize and understand the needed information. A large number of lawyers are capable of presenting information in both written and electronic forms. They are not comfortable with different legal databases and using various searching and keyword techniques. They have less knowledge of Boolean operators for locating online information. Conclusion and Recommendations: Efforts should be made to arrange refresher courses and training workshops on the utilization of different legal databases and different search techniques for retrieval of information sources. This practice will enhance the information literacy skills of lawyers, which will ultimately result in a better legal system in Pakistan. Practical implication(s): The findings of the study will motivate the policymakers and authorities of legal forums to restructure the information literacy programs to fulfill the lawyers' information needs. Contribution to the knowledge: No significant work has been done on the lawyers' information literacy skills in Khyber Pakhtunkhwa-Pakistan. It will bring a clear picture of the information literacy skills of law practitioners and address the problems faced by them during the seeking process.

Keywords: information literacy-Pakistan, infromation literacy-lawyers, information literacy-lawyers-KP, law practitioners-Pakistan

Procedia PDF Downloads 152
11139 Rd-PLS Regression: From the Analysis of Two Blocks of Variables to Path Modeling

Authors: E. Tchandao Mangamana, V. Cariou, E. Vigneau, R. Glele Kakai, E. M. Qannari

Abstract:

A new definition of a latent variable associated with a dataset makes it possible to propose variants of the PLS2 regression and the multi-block PLS (MB-PLS). We shall refer to these variants as Rd-PLS regression and Rd-MB-PLS respectively because they are inspired by both Redundancy analysis and PLS regression. Usually, a latent variable t associated with a dataset Z is defined as a linear combination of the variables of Z with the constraint that the length of the loading weights vector equals 1. Formally, t=Zw with ‖w‖=1. Denoting by Z' the transpose of Z, we define herein, a latent variable by t=ZZ’q with the constraint that the auxiliary variable q has a norm equal to 1. This new definition of a latent variable entails that, as previously, t is a linear combination of the variables in Z and, in addition, the loading vector w=Z’q is constrained to be a linear combination of the rows of Z. More importantly, t could be interpreted as a kind of projection of the auxiliary variable q onto the space generated by the variables in Z, since it is collinear to the first PLS1 component of q onto Z. Consider the situation in which we aim to predict a dataset Y from another dataset X. These two datasets relate to the same individuals and are assumed to be centered. Let us consider a latent variable u=YY’q to which we associate the variable t= XX’YY’q. Rd-PLS consists in seeking q (and therefore u and t) so that the covariance between t and u is maximum. The solution to this problem is straightforward and consists in setting q to the eigenvector of YY’XX’YY’ associated with the largest eigenvalue. For the determination of higher order components, we deflate X and Y with respect to the latent variable t. Extending Rd-PLS to the context of multi-block data is relatively easy. Starting from a latent variable u=YY’q, we consider its ‘projection’ on the space generated by the variables of each block Xk (k=1, ..., K) namely, tk= XkXk'YY’q. Thereafter, Rd-MB-PLS seeks q in order to maximize the average of the covariances of u with tk (k=1, ..., K). The solution to this problem is given by q, eigenvector of YY’XX’YY’, where X is the dataset obtained by horizontally merging datasets Xk (k=1, ..., K). For the determination of latent variables of order higher than 1, we use a deflation of Y and Xk with respect to the variable t= XX’YY’q. In the same vein, extending Rd-MB-PLS to the path modeling setting is straightforward. Methods are illustrated on the basis of case studies and performance of Rd-PLS and Rd-MB-PLS in terms of prediction is compared to that of PLS2 and MB-PLS.

Keywords: multiblock data analysis, partial least squares regression, path modeling, redundancy analysis

Procedia PDF Downloads 147
11138 Aligning Cultural Practices through Information Exchange: A Taxonomy in Global Manufacturing Industry

Authors: Hung Nguyen

Abstract:

With the rise of global supply chain network, the choice of supply chain orientation is critical. The alignment between cultural similarity and supply chain information exchange could help identify appropriate supply chain orientations, which would differentiate the stronger competitors and performers from the weaker ones. Through developing a taxonomy, this study examined whether the choices of action programs and manufacturing performance differ depending on the levels of attainment cultural similarity and information exchange. This study employed statistical tests on a large-scale dataset consisting of 680 manufacturing plants from various cultures and industries. Firms need to align cultural practices with the level of information exchange in order to achieve good overall business performance. There appeared to be consistent three major orientations: the Proactive, the Initiative and the Reactive. Firms are experiencing higher payoffs from various improvements are the ones successful alignment in both information exchange and cultural similarity The findings provide step-by-step decision making for supply chain information exchange and offer guidance especially for global supply chain managers. In including both cultural similarity and information exchange, this paper adds greater comprehensiveness and richness to the supply chain literature.

Keywords: culture, information exchange, supply chain orientation, similarity

Procedia PDF Downloads 360
11137 Realization of Autonomous Guidance Service by Integrating Information from NFC and MEMS

Authors: Dawei Cai

Abstract:

In this paper, we present an autonomous guidance service by combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children.

Keywords: NFC, ubiquitous computing, guide sysem, MEMS

Procedia PDF Downloads 410
11136 Biomedical Definition Extraction Using Machine Learning with Synonymous Feature

Authors: Jian Qu, Akira Shimazu

Abstract:

OOV (Out Of Vocabulary) terms are terms that cannot be found in many dictionaries. Although it is possible to translate such OOV terms, the translations do not provide any real information for a user. We present an OOV term definition extraction method by using information available from the Internet. We use features such as occurrence of the synonyms and location distances. We apply machine learning method to find the correct definitions for OOV terms. We tested our method on both biomedical type and name type OOV terms, our work outperforms existing work with an accuracy of 86.5%.

Keywords: information retrieval, definition retrieval, OOV (out of vocabulary), biomedical information retrieval

Procedia PDF Downloads 496
11135 Using Geographic Information Systems in the Desertification Risk’s Cartography: Case South of the Aurès Region, Algeria

Authors: Benmessaoud Hassen

Abstract:

The sensitivity to the desertification map of the south of Aurès region has been elaborated by the crossing of four thematic layers capable to have an impact on the process of desertification. The following step is inspired of MEDALUS (Mediterranean desertification and land Use), which use qualitative index to define the environment zones sensitive to the desertification. The cartographical information of vegetation, the climate, the soil and the socioeconomic state descended from cartographic data transformed to numerical data then seized on, structured and managed by an algorithm dedicated to a geographical information system. In step with information, each layer makes object of 3 or 4 classes, the geometrical median of the four layers used are leaded to sensitivity classes (ISD) of different mapped environment.

Keywords: information systems, thematic layers, the sensitivity to the desertification map, concept MEDALUS, South of Aurès

Procedia PDF Downloads 423
11134 Determining the Information Technologies Usage and Learning Preferences of Construction

Authors: Naci Büyükkaracığan, Yıldırım Akyol

Abstract:

Information technology is called the technology which provides transmission of information elsewhere regardless of time, location, distance. Today, information technology is providing the occurrence of ground breaking changes in all areas of our daily lives. Information can be reached quickly to millions of people with help of information technology. In this Study, effects of information technology on students for educations and their learning preferences were demonstrated with using data obtained from questionnaires administered to students of 2015-2016 academic year at Selcuk University Kadınhanı Faik İçil Vocational School Construction Department. The data was obtained by questionnaire consisting of 30 questions that was prepared by the researchers. SPSS 21.00 package programme was used for statistical analysis of data. Chi-square tests, Mann-Whitney U test, Kruskal-Wallis and Kolmogorov-Smirnov tests were used in the data analysis for Descriptiving statistics. In a study conducted with the participation of 61 students, 93.4% of students' reputation of their own information communication device (computer, smart phone, etc.) That have been shown to be at the same rate and to the internet. These are just a computer of itself, then 45.90% of the students. The main reasons for the students' use of the Internet, social networking sites are 85.24%, 13.11% following the news of the site, as seen. All student assignments in information technology, have stated that they use in the preparation of the project. When students acquire scientific knowledge in the profession regarding their preferred sources evaluated were seen exactly when their preferred internet. Male students showed that daily use of information technology while compared to female students was statistically significantly less. Construction Package program where students are eager to learn about the reputation of 72.13% and 91.80% identified in the well which they agreed that an indispensable element in the professional advancement of information technology.

Keywords: information technologies, computer, construction, internet, learning systems

Procedia PDF Downloads 298
11133 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning

Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic

Abstract:

Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.

Keywords: district heating, heat cost allocator, energy efficiency, machine learning, decision tree model, regression analysis, logistic regression, support vector machines, decision trees and random forest method

Procedia PDF Downloads 252
11132 Historical Geography of Lykaonia Region

Authors: Asuman Baldiran, Erdener Pehlivan

Abstract:

In this study, the root of the name Lykaonia and the geographical area defined as Lykaonia Region are mentioned. In this context, information concerning the settlements of Paleolithic Age, Neolithic Age and Chalcolithic Age are given place. Particularly the settlements belonging to Classical Age are localized and brief information about the history of these settlements is provided. In the light of this information, roads of Antique period in the region are evaluated.

Keywords: ancient cities, central anatolia, historical geography, Lykaonia region

Procedia PDF Downloads 379
11131 Sound Analysis of Young Broilers Reared under Different Stocking Densities in Intensive Poultry Farming

Authors: Xiaoyang Zhao, Kaiying Wang

Abstract:

The choice of stocking density in poultry farming is a potential way for determining welfare level of poultry. However, it is difficult to measure stocking densities in poultry farming because of a lot of variables such as species, age and weight, feeding way, house structure and geographical location in different broiler houses. A method was proposed in this paper to measure the differences of young broilers reared under different stocking densities by sound analysis. Vocalisations of broilers were recorded and analysed under different stocking densities to identify the relationship between sounds and stocking densities. Recordings were made continuously for three-week-old chickens in order to evaluate the variation of sounds emitted by the animals at the beginning. The experimental trial was carried out in an indoor reared broiler farm; the audio recording procedures lasted for 5 days. Broilers were divided into 5 groups, stocking density treatments were 8/m², 10/m², 12/m² (96birds/pen), 14/m² and 16/m², all conditions including ventilation and feed conditions were kept same except from stocking densities in every group. The recordings and analysis of sounds of chickens were made noninvasively. Sound recordings were manually analysed and labelled using sound analysis software: GoldWave Digital Audio Editor. After sound acquisition process, the Mel Frequency Cepstrum Coefficients (MFCC) was extracted from sound data, and the Support Vector Machine (SVM) was used as an early detector and classifier. This preliminary study, conducted in an indoor reared broiler farm shows that this method can be used to classify sounds of chickens under different densities economically (only a cheap microphone and recorder can be used), the classification accuracy is 85.7%. This method can predict the optimum stocking density of broilers with the complement of animal welfare indicators, animal productive indicators and so on.

Keywords: broiler, stocking density, poultry farming, sound monitoring, Mel Frequency Cepstrum Coefficients (MFCC), Support Vector Machine (SVM)

Procedia PDF Downloads 162
11130 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface

Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto

Abstract:

Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.

Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns

Procedia PDF Downloads 129
11129 Evaluating Value of Users' Personal Information Based on Cost-Benefit Analysis

Authors: Jae Hyun Park, Sangmi Chai, Minkyun Kim

Abstract:

As users spend more time on the Internet, the probability of their personal information being exposed has been growing. This research has a main purpose of investigating factors and examining relationships when Internet users recognize their value of private information with a perspective of an economic asset. The study is targeted on Internet users, and the value of their private information will be converted into economic figures. Moreover, how economic value changes in relation with individual attributes, dealer’s traits, circumstantial properties will be studied. In this research, the changes in factors on private information value responding to different situations will be analyzed in an economic perspective. Additionally, this study examines the associations between users’ perceived risk and value of their personal information. By using the cost-benefit analysis framework, the hypothesis that the user’s sense in private information value can be influenced by individual attributes and situational properties will be tested. Therefore, this research will attempt to provide answers for three research objectives. First, this research will identify factors that affect value recognition of users’ personal information. Second, it provides evidences that there are differences on information system users’ economic value of information responding to personal, trade opponent, and situational attributes. Third, it investigates the impact of those attributes on individuals’ perceived risk. Based on the assumption that personal, trade opponent and situation attributes make an impact on the users’ value recognition on private information, this research will present the understandings on the different impacts of those attributes in recognizing the value of information with the economic perspective and prove the associative relationships between perceived risk and decision on the value of users’ personal information. In order to validate our research model, this research used the regression methodology. Our research results support that information breach experience and information security systems is associated with users’ perceived risk. Information control and uncertainty are also related to users’ perceived risk. Therefore, users’ perceived risk is considered as a significant factor on evaluating the value of personal information. It can be differentiated by trade opponent and situational attributes. This research presents new perspective on evaluating the value of users’ personal information in the context of perceived risk, personal, trade opponent and situational attributes. It fills the gap in the literature by providing how users’ perceived risk are associated with personal, trade opponent and situation attitudes in conducting business transactions with providing personal information. It adds to previous literature that the relationship exists between perceived risk and the value of users’ private information in the economic perspective. It also provides meaningful insights to the managers that in order to minimize the cost of information breach, managers need to recognize the value of individuals’ personal information and decide the proper amount of investments on protecting users’ online information privacy.

Keywords: private information, value, users, perceived risk, online information privacy, attributes

Procedia PDF Downloads 239
11128 A Survey on Countermeasures of Cache-Timing Attack on AES Systems

Authors: Settana M. Abdulh, Naila A. Sadalla, Yaseen H. Taha, Howaida Elshoush

Abstract:

Side channel attacks are based on side channel information, which is information that is leaked from encryption systems. This includes timing information, power consumption as well as electromagnetic or even sound leaking which can exploited by an attacker. Implementing side channel attacks are possible if and only if an attacker has access to a cryptosystem. In this case, the attacker can exploit bad implementation in software or hardware which is not controlled by encryption implementer. Thus, he/she will represent a real threat to the security system. Several countermeasures have been proposed to eliminate side channel information vulnerability.Cache timing attack is a special type of side channel attack. Here, timing information is collected and analyzed by an attacker to guess sensitive information such as encryption key or plaintext. This paper reviews the technique applied in this attack and surveys the countermeasures against it, evaluating the feasibility and usability of each. Based on this evaluation, finally we pose several recommendations about using these countermeasures.

Keywords: AES algorithm, side channel attack, cache timing attack, cache timing countermeasure

Procedia PDF Downloads 300
11127 Remote Radiation Mapping Based on UAV Formation

Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov

Abstract:

High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.

Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation

Procedia PDF Downloads 101
11126 Application of Rapid Eye Imagery in Crop Type Classification Using Vegetation Indices

Authors: Sunita Singh, Rajani Srivastava

Abstract:

For natural resource management and in other applications about earth observation revolutionary remote sensing technology plays a significant role. One of such application in monitoring and classification of crop types at spatial and temporal scale, as it provides latest, most precise and cost-effective information. Present study emphasizes the use of three different vegetation indices of Rapid Eye imagery on crop type classification. It also analyzed the effect of each indices on classification accuracy. Rapid Eye imagery is highly demanded and preferred for agricultural and forestry sectors as it has red-edge and NIR bands. The three indices used in this study were: the Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) and all of these incorporated the Red Edge band. The study area is Varanasi district of Uttar Pradesh, India and Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Classification was performed with these three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 85% was obtained using three vegetation indices. The study concluded that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the Rapid Eye imagery can get satisfactory results of classification accuracy without original bands.

Keywords: GNDVI, NDRE, NDVI, rapid eye, vegetation indices

Procedia PDF Downloads 362
11125 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 149
11124 The Potential Benefits of Multimedia Information Representation in Enhancing Students’ Critical Thinking and History Reasoning

Authors: Ang Ling Weay, Mona Masood

Abstract:

This paper discusses the potential benefits of an interactive multimedia information representation in enhancing students’ critical thinking aligned with history reasoning in learning history between Secondary School students in Malaysia. Two modes of multimedia information representation implemented which are chronological and thematic information representation. A qualitative study of an unstructured interview was conducted among two history teachers, one history education lecturer, two i-think expert and program trainers and five form 4 secondary school students. The interview was to elicit their opinions on the implementation of thinking maps and interactive multimedia information representation in history learning. The key elements of interactive multimedia (e.g. multiple media, user control, interactivity, and use of timelines and concept maps) were then considered to improve the learning process. Findings of the preliminary investigation reveal that the interactive multimedia information representations have the potential benefits to be implemented as instructional resource in enhancing students’ higher order thinking skills (HOTs). This paper concludes by giving suggestions for future work.

Keywords: multimedia information representation, critical thinking, history reasoning, chronological and thematic information representation

Procedia PDF Downloads 350
11123 Information Retrieval from Internet Using Hand Gestures

Authors: Aniket S. Joshi, Aditya R. Mane, Arjun Tukaram

Abstract:

In the 21st century, in the era of e-world, people are continuously getting updated by daily information such as weather conditions, news, stock exchange market updates, new projects, cricket updates, sports and other such applications. In the busy situation, they want this information on the little use of keyboard, time. Today in order to get such information user have to repeat same mouse and keyboard actions which includes time and inconvenience. In India due to rural background many people are not much familiar about the use of computer and internet also. Also in small clinics, small offices, and hotels and in the airport there should be a system which retrieves daily information with the minimum use of keyboard and mouse actions. We plan to design application based project that can easily retrieve information with minimum use of keyboard and mouse actions and make our task more convenient and easier. This can be possible with an image processing application which takes real time hand gestures which will get matched by system and retrieve information. Once selected the functions with hand gestures, the system will report action information to user. In this project we use real time hand gesture movements to select required option which is stored on the screen in the form of RSS Feeds. Gesture will select the required option and the information will be popped and we got the information. A real time hand gesture makes the application handier and easier to use.

Keywords: hand detection, hand tracking, hand gesture recognition, HSV color model, Blob detection

Procedia PDF Downloads 292
11122 Information on Financial Statements for Loan Decision-Making of Commercial Banks in Vietnam

Authors: Mai Hoang Minh

Abstract:

Financial statements (FS) are tools which provide information to users for making business decisions. This article is going to present the survey which clarifies the role of financial statement to Commercial Banks’ loan decisions in Vietnam. Moreover, this also discusses about financial statement’s quality currently, thereby making suggestions for enterprises to enhance the usefulness of accounting information in borrowing activities.

Keywords: usefulness of financial statement, accounting information quality, loan decisions

Procedia PDF Downloads 279
11121 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm

Authors: Lydia Novozhilova, Vladimir Urazhdin

Abstract:

An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.

Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier

Procedia PDF Downloads 328
11120 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification

Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran

Abstract:

The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.

Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM

Procedia PDF Downloads 252
11119 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 55
11118 Predictive Analysis of Personnel Relationship in Graph Database

Authors: Kay Thi Yar, Khin Mar Lar Tun

Abstract:

Nowadays, social networks are so popular and widely used in all over the world. In addition, searching personal information of each person and searching connection between them (peoples’ relation in real world) becomes interesting issue in our society. In this paper, we propose a framework with three portions for exploring peoples’ relations from their connected information. The first portion focuses on the Graph database structure to store the connected data of peoples’ information. The second one proposes the graph database searching algorithm, the Modified-SoS-ACO (Sense of Smell-Ant Colony Optimization). The last portion proposes the Deductive Reasoning Algorithm to define two persons’ relationship. This study reveals the proper storage structure for connected information, graph searching algorithm and deductive reasoning algorithm to predict and analyze the personnel relationship from peoples’ relation in their connected information.

Keywords: personnel information, graph storage structure, graph searching algorithm, deductive reasoning algorithm

Procedia PDF Downloads 452
11117 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter

Authors: Amartya Hatua, Trung Nguyen, Andrew Sung

Abstract:

In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.

Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter

Procedia PDF Downloads 392
11116 The Relevance of Corporate Governance Disclosure in Spanish Public Universities

Authors: Yolanda Ramirez, Angel Tejada, Agustin Baidez

Abstract:

There is currently a growing interest in the improvement of university governance and the disclosure of information on corporate governance processes as an essential part of the transparency and accountability of universities. This paper aims to know the importance given by Spanish university stakeholders to the disclosure of information about structure and mechanism of corporate governance. So as to meet this objective we propose a model for disclosing information on the main aspects of university governance in Spanish universities. This model will be validated using a questionnaire sent to members of the Social Councils of public universities in Spain. Our results show that Spanish university stakeholders attach great importance to the disclosure of specific information on aspects of corporate governance, which would result in improved transparency and accountability. According to the results of this study it may be concluded that the university stakeholders feel that it is relevant to publish information on corporate governance in the university accounting information model.

Keywords: corporate governance, transparency, accountability, universities, Spain

Procedia PDF Downloads 313
11115 Determination of Complexity Level in Okike's Merged Irregular Transposition Cipher

Authors: Okike Benjami, Garba Ejd

Abstract:

Today, it has been observed security of information along the superhighway is often compromised by those who are not authorized to have access to such information. In other to ensure the security of information along the superhighway, such information should be encrypted by some means to conceal the real meaning of the information. There are many encryption techniques out there in the market. However, some of these encryption techniques are often decrypted by adversaries with ease. The researcher has decided to develop an encryption technique that may be more difficult to decrypt. This may be achieved by splitting the message to be encrypted into parts and encrypting each part separately and swapping the positions before transmitting the message along the superhighway. The method is termed Okike’s Merged Irregular Transposition Cipher. Also, the research would determine the complexity level in respect to the number of splits of the message.

Keywords: transposition cipher, merged irregular cipher, encryption, complexity level

Procedia PDF Downloads 290
11114 Evalution of the Impact on Improvement of Bank Manager Decision Making

Authors: Farzane Sadatnia, Bahram Fathi

Abstract:

Today, all public and private organizations have found that the management of the world for key information related to the activities of a staff and its main essence and philosophy, though they constitute the management information systems are very helpful in this respect the right to apply systems can save a lot in terms of economic organizations including reducing the time decision - making, improve the quality of decision making, and cost savings to bring information systems is a backup system that can never be instead of logic and human reasoning, which can be used in the series is spreading, providing resources, and provide the necessary facilities, provide better services for users, balanced budget allocation, determine strengths and weaknesses and previous plans to review the current decisions and especially the decision . Hence; in this study attempts to the effect of an information system on a review of the organization.

Keywords: information system, planning, organization, coordination, control

Procedia PDF Downloads 476
11113 Spanish University Governance Reporting

Authors: Agustin Baidez, Yolanda Ramirez

Abstract:

There is currently a growing interest in the improvement of university governance and the disclosure of information on governance processes as an essential part of the transparency and accountability of universities. This paper aims to examine the extent and quality of voluntary corporate governance disclosure by public Spanish universities on their websites in relation to information need of stakeholders. The results of this study show that Spanish university stakeholders attach great importance to the disclosure of specific information on aspects of corporate governance. However, the quality of disclosed information on university governance in public Spanish universities websites is in the middle level. In order to satisfy the information needs of university stakeholders, Spanish universities can be recommended to focus on reporting higher quality information on university autonomy in financing, autonomy in management, autonomy regarding student selection and assessment, degree of consanguinity of executive directors, report on assigned public funding based on results, and management reports.

Keywords: university, governance, transparency, stakeholders

Procedia PDF Downloads 58
11112 Big Data’s Mechanistic View of Human Behavior May Displace Traditional Library Missions That Empower Users

Authors: Gabriel Gomez

Abstract:

The very concept of information seeking behavior, and the means by which librarians teach users to gain information, that is information literacy, are at the heart of how libraries deliver information, but big data will forever change human interaction with information and the way such behavior is both studied and taught. Just as importantly, big data will orient the study of behavior towards commercial ends because of a tendency towards instrumentalist views of human behavior, something one might also call a trend towards behaviorism. This oral presentation seeks to explore how the impact of big data on understandings of human behavior might impact a library information science (LIS) view of human behavior and information literacy, and what this might mean for social justice aims and concomitant community action normally at the center of librarianship. The methodology employed here is a non-empirical examination of current understandings of LIS in regards to social justice alongside an examination of the benefits and dangers foreseen with the growth of big data analysis. The rise of big data within the ever-changing information environment encapsulates a shift to a more mechanistic view of human behavior, one that can easily encompass information seeking behavior and information use. As commercial aims displace the important political and ethical aims that are often central to the missions espoused by libraries and the social sciences, the very altruism and power relations found in LIS are at risk. In this oral presentation, an examination of the social justice impulses of librarians regarding power and information demonstrates how such impulses can be challenged by big data, particularly as librarians understand user behavior and promote information literacy. The creeping behaviorist impulse inherent in the emphasis big data places on specific solutions, that is answers to question that ask how, as opposed to larger questions that hint at an understanding of why people learn or use information threaten library information science ideals. Together with the commercial nature of most big data, this existential threat can harm the social justice nature of librarianship.

Keywords: big data, library information science, behaviorism, librarianship

Procedia PDF Downloads 383