Search results for: validation techniques
7410 Enhancing the Dynamic Performance of Grid-Tied Inverters Using Manta Ray Foraging Algorithm
Authors: H. E. Keshta, A. A. Ali
Abstract:
Three phase grid-tied inverters are widely employed in micro-grids (MGs) as interphase between DC and AC systems. These inverters are usually controlled through standard decoupled d–q vector control strategy based on proportional integral (PI) controllers. Recently, advanced meta-heuristic optimization techniques have been used instead of deterministic methods to obtain optimum PI controller parameters. This paper provides a comparative study between the performance of the global Porcellio Scaber algorithm (GPSA) based PI controller and Manta Ray foraging optimization (MRFO) based PI controller.Keywords: micro-grids, optimization techniques, grid-tied inverter control, PI controller
Procedia PDF Downloads 1327409 Validation of the Trait Emotional Intelligence Questionnaire: Adolescent Short Form (TEIQue-ASF) among Adolescents in Vietnam
Authors: Anh Nguyen, Jane Fisher, Thach Tran, Anh T. T. Tran
Abstract:
Trait Emotional Intelligence is the knowledge, beliefs, and attitudes an individual has about their own and other people’s emotions. It is believed that trait emotional intelligence is a component of personality. Petrides’ Trait Emotional Intelligence Questionnaire (TEIQue) is well regarded and well-established, with validation data about its functioning among adults from many countries. However, there is little data yet about its use among Asian populations, including adolescents. The aims were to translate and culturally verify the Trait Emotional Intelligence Adolescent Short Form (TEIQue-ASF) and investigate content validity, construct validity, and reliability among adolescents attending high schools in Vietnam. Content of the TEIQue-ASF was translated (English to Vietnamese) and back-translated (Vietnamese to English) in consultation with bilingual and bicultural health researchers and pilot tested among 51 potential respondents. Phraseology and wording were then adjusted and the final version is named the VN-TEIQue-ASF. The VN-TEIQue-ASF’s properties were investigated in a cross-sectional elf-report survey among high school students in Central Vietnam. In total 1,546 / 1,573 (98.3%) eligible students from nine high schools in rural, urban, and coastline areas completed the survey. Explanatory Factor Analysis yielded a four-factor solution, including some with facets that loaded differently compared to the original version: Well-being, Emotion in Relationships, Emotion Self-management, and Emotion Sensitivity. The Cronbach’s alpha of the global score for the VN-TEIQue-ASF was .77. The VN-TEIQue-ASF is comprehensible and has good content and construct validity and reliability among adolescents in Vietnam. The factor structure is only partly replicated the original version. The VN-TEIQue-ASF is recommended for use in school or community surveys and professional study in education, psychology, and public health to investigate the trait emotional intelligence of adolescents in Vietnam.Keywords: adolescents, construct validity, content validity, factor analysis, questionnaire validity, trait emotional intelligence, Vietnam
Procedia PDF Downloads 2697408 Examining the Role of Farmer-Centered Participatory Action Learning in Building Sustainable Communities in Rural Haiti
Authors: Charles St. Geste, Michael Neumann, Catherine Twohig
Abstract:
Our primary aim is to examine farmer-centered participatory action learning as a tool to improve agricultural production, build resilience to climate shocks and, more broadly, advance community-driven solutions for sustainable development in rural communities across Haiti. For over six years, sixty plus farmers from Deslandes, Haiti, organized in three traditional work groups called konbits, have designed and tested low-input agroecology techniques as part of the Konbit Vanyan Kapab Pwoje Agroekoloji. The project utilizes a participatory action learning approach, emphasizing social inclusion, building on local knowledge, experiential learning, active farmer participation in trial design and evaluation, and cross-community sharing. Mixed methods were used to evaluate changes in knowledge and adoption of agroecology techniques, confidence in advancing agroecology locally, and innovation among Konbit Vanyan Kapab farmers. While skill and knowledge in application of agroecology techniques varied among individual farmers, a majority of farmers successfully adopted techniques outside of the trial farms. The use of agroecology techniques on trial and individual farms has doubled crop production in many cases. Farm income has also increased, and farmers report less damage to crops and property caused by extreme weather events. Furthermore, participatory action strategies have led to greater local self-determination and greater capacity for sustainable community development. With increased self-confidence and the knowledge and skills acquired from participating in the project, farmers prioritized sharing their successful techniques with other farmers and have developed a farmer-to-farmer training program that incorporates participatory action learning. Using adult education methods, farmers, trained as agroecology educators, are currently providing training in sustainable farming practices to farmers from five villages in three departments across Haiti. Konbit Vanyan Kapab farmers have also begun testing production of value-added food products, including a dried soup mix and tea. Key factors for success include: opportunities for farmers to actively participate in all phases of the project, group diversity, resources for application of agroecology techniques, focus on group processes and overcoming local barriers to inclusive decision-making.Keywords: agroecology, participatory action learning, rural Haiti, sustainable community development
Procedia PDF Downloads 1567407 Measuring Firms’ Patent Management: Conceptualization, Validation, and Interpretation
Authors: Mehari Teshome, Lara Agostini, Anna Nosella
Abstract:
The current knowledge-based economy extends intellectual property rights (IPRs) legal research themes into a more strategic and organizational perspectives. From the diverse types of IPRs, patents are the strongest and well-known form of legal protection that influences commercial success and market value. Indeed, from our pilot survey, we understood that firms are less likely to manage their patents and actively used it as a tool for achieving competitive advantage rather they invest resource and efforts for patent application. To this regard, the literature also confirms that insights into how firms manage their patents from a holistic, strategic perspective, and how the portfolio value of patents can be optimized are scarce. Though patent management is an important business tool and there exist few scales to measure some dimensions of patent management, at the best of our knowledge, no systematic attempt has been made to develop a valid and comprehensive measure of it. Considering this theoretical and practical point of view, the aim of this article is twofold: to develop a framework for patent management encompassing all relevant dimensions with their respective constructs and measurement items, and to validate the measurement using survey data from practitioners. Methodology: We used six-step methodological approach (i.e., specify the domain of construct, item generation, scale purification, internal consistency assessment, scale validation, and replication). Accordingly, we carried out a systematic review of 182 articles on patent management, from ISI Web of Science. For each article, we mapped relevant constructs, their definition, and associated features, as well as items used to measure these constructs, when provided. This theoretical analysis was complemented by interviews with experts in patent management to get feedbacks that are more practical on how patent management is carried out in firms. Afterwards, we carried out a questionnaire survey to purify our scales and statistical validation. Findings: The analysis allowed us to design a framework for patent management, identifying its core dimensions (i.e., generation, portfolio-management, exploitation and enforcement, intelligence) and support dimensions (i.e., strategy and organization). Moreover, we identified the relevant activities for each dimension, as well as the most suitable items to measure them. For example, the core dimension generation includes constructs as: state-of-the-art analysis, freedom-to-operate analysis, patent watching, securing freedom-to-operate, patent potential and patent-geographical-scope. Originality and the Study Contribution: This study represents a first step towards the development of sound scales to measure patent management with an overarching approach, thus laying the basis for developing a recognized landmark within the research area of patent management. Practical Implications: The new scale can be used to assess the level of sophistication of the patent management of a company and compare it with other firms in the industry to evaluate their ability to manage the different activities involved in patent management. In addition, the framework resulting from this analysis can be used as a guide that supports managers to improve patent management in firms.Keywords: patent, management, scale, development, intellectual property rights (IPRs)
Procedia PDF Downloads 1487406 Artificial Intelligence Protecting Birds against Collisions with Wind Turbines
Authors: Aleksandra Szurlej-Kielanska, Lucyna Pilacka, Dariusz Górecki
Abstract:
The dynamic development of wind energy requires the simultaneous implementation of effective systems minimizing the risk of collisions between birds and wind turbines. Wind turbines are installed in more and more challenging locations, often close to the natural environment of birds. More and more countries and organizations are defining guidelines for the necessary functionality of such systems. The minimum bird detection distance, trajectory tracking, and shutdown time are key factors in eliminating collisions. Since 2020, we have continued the survey on the validation of the subsequent version of the BPS detection and reaction system. Bird protection system (BPS) is a fully automatic camera system which allows one to estimate the distance of the bird to the turbine, classify its size and autonomously undertake various actions depending on the bird's distance and flight path. The BPS was installed and tested in a real environment at a wind turbine in northern Poland and Central Spain. The performed validation showed that at a distance of up to 300 m, the BPS performs at least as well as a skilled ornithologist, and large bird species are successfully detected from over 600 m. In addition, data collected by BPS systems installed in Spain showed that 60% of the detections of all birds of prey were from individuals approaching the turbine, and these detections meet the turbine shutdown criteria. Less than 40% of the detections of birds of prey took place at wind speeds below 2 m/s while the turbines were not working. As shown by the analysis of the data collected by the system over 12 months, the system classified the improved size of birds with a wingspan of more than 1.1 m in 90% and the size of birds with a wingspan of 0.7 - 1 m in 80% of cases. The collected data also allow the conclusion that some species keep a certain distance from the turbines at a wind speed of over 8 m/s (Aquila sp., Buteo sp., Gyps sp.), but Gyps sp. and Milvus sp. remained active at this wind speed on the tested area. The data collected so far indicate that BPS is effective in detecting and stopping wind turbines in response to the presence of birds of prey with a wingspan of more than 1 m.Keywords: protecting birds, birds monitoring, wind farms, green energy, sustainable development
Procedia PDF Downloads 767405 A Review on Higher-Order Spline Techniques for Solving Burgers Equation Using B-Spline Methods and Variation of B-Spline Techniques
Authors: Maryam Khazaei Pool, Lori Lewis
Abstract:
This is a summary of articles based on higher order B-splines methods and the variation of B-spline methods such as Quadratic B-spline Finite Elements Method, Exponential Cubic B-Spline Method, Septic B-spline Technique, Quintic B-spline Galerkin Method, and B-spline Galerkin Method based on the Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin method (CBGM). In this paper, we study the B-spline methods and variations of B-spline techniques to find a numerical solution to the Burgers’ equation. A set of fundamental definitions, including Burgers equation, spline functions, and B-spline functions, are provided. For each method, the main technique is discussed as well as the discretization and stability analysis. A summary of the numerical results is provided, and the efficiency of each method presented is discussed. A general conclusion is provided where we look at a comparison between the computational results of all the presented schemes. We describe the effectiveness and advantages of these methods.Keywords: Burgers’ equation, Septic B-spline, modified cubic B-spline differential quadrature method, exponential cubic B-spline technique, B-spline Galerkin method, quintic B-spline Galerkin method
Procedia PDF Downloads 1267404 YOLO-Based Object Detection for the Automatic Classification of Intestinal Organoids
Authors: Luana Conte, Giorgio De Nunzio, Giuseppe Raso, Donato Cascio
Abstract:
The intestinal epithelium serves as a pivotal model for studying stem cell biology and diseases such as colorectal cancer. Intestinal epithelial organoids, which replicate many in vivo features of the intestinal epithelium, are increasingly used as research models. However, manual classification of organoids is labor-intensive and prone to subjectivity, limiting scalability. In this study, we developed an automated object-detection algorithm to classify intestinal organoids in transmitted-light microscopy images. Our approach utilizes the YOLOv10 medium model (YOLO10m), a state-of-the-art object-detection algorithm, to predict and classify objects within labeled bounding boxes. The model was fine-tuned on a publicly available dataset containing 840 manually annotated images with 23,066 total annotations, averaging 28.2 annotations per image (median: 21; range: 1–137). It was trained to identify four categories: cysts, early organoids, late organoids, and spheroids, using a 90:10 train-validation split over 150 epochs. Model performance was assessed using mean average precision (mAP), precision, and recall metrics. The mAP, a standard metric ranging from 0 to 1 (with 1 indicating perfect agreement with manual labeling), was calculated at a 50% overlap threshold (mAP=0.5). Optimal performance was achieved at epoch 80, with an mAP of 0.85, precision of 0.78, and recall of 0.80 on the validation dataset. Classspecific mAP values were highest for cysts (0.87), followed by late organoids (0.83), early organoids (0.76), and spheroids (0.68). Additionally, the model demonstrated the ability to measure organoid sizes and classify them with accuracy comparable to expert scientists, while operating significantly faster. This automated pipeline represents a robust tool for large-scale, high-throughput analysis of intestinal organoids, paving the way for more efficient research in organoid biology and related fields.Keywords: intestinal organoids, object detection, YOLOv10, transmitted-light microscopy
Procedia PDF Downloads 07403 Hydroxyapatite from Biowaste for the Reinforcement of Polymer
Authors: John O. Akindoyo, M. D. H. Beg, Suriati Binti Ghazali, Nitthiyah Jeyaratnam
Abstract:
Regeneration of bone due to the many health challenges arising from traumatic effects of bone loss, bone tumours and other bone infections is fast becoming indispensable. Over the period of time, some approaches have been undertaken to mitigate this challenge. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. However, most of these techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are expensive and environmentally unfriendly. Extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment-friendly. In this research, HA was produced from bio-waste: namely bovine bones through a combination of hydrothermal chemical processes and ordinary calcination techniques. Structure and property of the HA was carried out through different characterization techniques (such as TGA, FTIR, DSC, XRD and BET). The synthesized HA was found to possess similar properties to stoichiometric HA with highly desirable thermal, degradation, structural and porous properties. This material is unique for its potential minimal cost, environmental friendliness and property controllability. It is also perceived to be suitable for tissue and bone engineering applications.Keywords: biomaterial, biopolymer, bone, hydroxyapatite
Procedia PDF Downloads 3217402 Application of Neural Network on the Loading of Copper onto Clinoptilolite
Authors: John Kabuba
Abstract:
The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ion-exchange.Keywords: clinoptilolite, loading, modeling, neural network
Procedia PDF Downloads 4167401 Employing Operations Research at Universities to Build Management Systems
Authors: Abdallah A. Hlayel
Abstract:
Operations research science (OR) deals with good success in developing and applying scientific methods for problem solving and decision-making. However, by using OR techniques, we can enhance the use of computer decision support systems to achieve optimal management for institutions. OR applies comprehensive analysis including all factors that affect on it and builds mathematical modeling to solve business or organizational problems. In addition, it improves decision-making and uses available resources efficiently. The adoption of OR by universities would definitely contributes to the development and enhancement of the performance of OR techniques. This paper provides an understanding of the structures, approaches and models of OR in problem solving and decision-making.Keywords: best candidates' method, decision making, decision support system, operations research
Procedia PDF Downloads 4467400 Risk Management in Construction Projects
Authors: Mustafa Dogru, Ruveyda Komurlu
Abstract:
Companies and professionals in the construction sector face various risks in every project depending on the characteristics, size, complexity, the location of the projects and the techniques used. Some risks’ effects may increase as the project progresses whereas new risks may emerge. Because of the ever-changing nature of the risks, risk management is a cyclical process that needs to be repeated throughout the project. Since the risks threaten the success of the project, risk management is an important part of the entire project management process. The aims of this study are to emphasize the importance of risk management in construction projects, summarize the risk identification process, and introduce a number of methods for preventing risks such as alternative design, checklists, prototyping and test-analysis-correction technique etc. Following the literature review conducted to list the techniques for preventing risks, case studies has been performed to compare and evaluate the success of the techniques in a number of completed projects with the same typology, performed domestic and international. Findings of the study suggest that controlling and minimizing the level of the risks in construction projects, taking optimal precautions for different risks, and mitigating or eliminating the effects of risks are important in order to prevent additional costs for the project. Additionally, focusing on the risks that have highest impact is the most rational way to minimize the effects of the risks on projects.Keywords: construction projects, construction management, project management, risk management
Procedia PDF Downloads 3197399 Correlates of Cost Effectiveness Analysis of Rating Scale and Psycho-Productive Multiple Choice Test for Assessing Students' Performance in Rice Production in Secondary Schools in Ebonyi State, Nigeria
Authors: Ogbonnaya Elom, Francis N. Azunku, Ogochukwu Onah
Abstract:
This study was carried out to determine the correlates of cost effectiveness analysis of rating scale and psycho-productive multiple choice test for assessing students’ performance in rice production. Four research questions were developed and answered, while one hypothesis was formulated and tested. Survey and correlation designs were adopted. The population of the study was 20,783 made up of 20,511 senior secondary (SSII) students and 272 teachers of agricultural science from 221 public secondary schools. Two schools with one intact class of 30 students each was purposely selected as sample based on certain criteria. Four sets of instruments were used for data collection. One of the instruments-the rating scale, was subjected to face and content validation while the other three were subjected to face validation only. Cronbach alpha technique was utilized to determine the internal consistency of the rating scale items which yielded a coefficient of 0.82 while the Kudder-Richardson (K-R 20) formula was involved in determining the stability of the psycho-productive multiple choice test items which yielded a coefficient of 0.80. Method of data collection involved a step-by-step approach in collecting data. Data collected were analyzed using percentage, weighted mean and sign test to answer the research questions while the hypothesis was tested using Spearman rank-order of correlation and t-test statistic. Findings of the study revealed among others, that psycho-productive multiple choice test is more effective than rating scale when the former is applied on the two groups of students. It was recommended among others, that the external examination bodies should integrate the use of psycho- productive multiple choice test into their examination policy and direct secondary schools to comply with it.Keywords: correlates, cost-effectiveness, psycho-productive multiple-choice scale, rating scale
Procedia PDF Downloads 1437398 Crafting of Paper Cutting Techniques for Embellishment of Fashion Textiles
Authors: A. Vaidya-Soocheta, K. M. Wong-Hon-Lang
Abstract:
Craft and fashion have always been interlinked. The combination of both often gives stunning results. The present study introduces ‘Paper Cutting Craft Techniques’ like the Japanese –Kirigami, Mexican –PapelPicado, German –Scherenschnitte, Polish –Wycinankito in textiles to develop innovative and novel design structures as embellishments and ornamentation. The project studies various ways of using these paper cutting techniques to obtain interesting features and delicate design patterns on fabrics. While paper has its advantages and related uses, it is fragile rigid and thus not appropriate for clothing. Fabric is sturdy, flexible, dimensionally stable and washable. In the present study, the cut out techniques develop creative design motifs and patterns to give an inventive and unique appeal to the fabrics. The beauty and fascination of lace in garments have always given them a nostalgic charm. Laces with their intricate and delicate complexity in combination with other materials add a feminine touch to a garment and give it a romantic, mysterious appeal. Various textured and decorative effects through fabric manipulation are experimented along with the use of paper cutting craft skills as an innovative substitute for developing lace or “Broderie Anglaise” effects on textiles. A number of assorted fabric types with varied textures were selected for the study. Techniques to avoid fraying and unraveling of the design cut fabrics were introduced. Fabrics were further manipulated by use of interesting prints with embossed effects on cut outs. Fabric layering in combination with assorted techniques such as cutting of folded fabric, printing, appliqué, embroidery, crochet, braiding, weaving added a novel exclusivity to the fabrics. The fabrics developed by these innovative methods were then tailored into garments. The study thus tested the feasibility and practicability of using these fabrics by designing a collection of evening wear garments based on the theme ‘Nostalgia’. The prototypes developed were complemented by designing fashion accessories with the crafted fabrics. Prototypes of accessories add interesting features to the study. The adaptation and application of this novel technique of paper cutting craft on textiles can be an innovative start for a new trend in textile and fashion industry. The study anticipates that this technique will open new avenues in the world of fashion to incorporate its use commercially.Keywords: collection, fabric cutouts, nostalgia, prototypes
Procedia PDF Downloads 3587397 The Art and Science of Trauma-Informed Psychotherapy: Guidelines for Inter-Disciplinary Clinicians
Authors: Daphne Alroy-Thiberge
Abstract:
Trauma-impacted individuals present unique treatment challenges that include high reactivity, hyper-and hypo-arousal, poor adherence to therapy, as well as powerful transference and counter-transference experiences in therapy. This work provides an overview of the clinical tenets most often encountered in trauma-impacted individuals. Further, it provides readily applicable clinical techniques to optimize therapeutic rapport and facilitate accelerated positive mental health outcomes. Finally, integrated neuroscience and clinical evidence-based data are discussed to shed new light on crisis states in trauma-impacted individuals. This knowledge is utilized to provide effective and concrete interventions towards rapid and successful de-escalation of the impacted individual. A highly interactive, adult-learning-principles-based modality is utilized to provide an organic learning experience for participants. The information and techniques learned aim to increase clinical effectiveness, reduce staff injuries and burnout, and significantly enhance positive mental health outcomes and self-determination for the trauma-impacted individuals treated.Keywords: clinical competencies, crisis interventions, psychotherapy techniques, trauma informed care
Procedia PDF Downloads 1107396 A Survey of Semantic Integration Approaches in Bioinformatics
Authors: Chaimaa Messaoudi, Rachida Fissoune, Hassan Badir
Abstract:
Technological advances of computer science and data analysis are helping to provide continuously huge volumes of biological data, which are available on the web. Such advances involve and require powerful techniques for data integration to extract pertinent knowledge and information for a specific question. Biomedical exploration of these big data often requires the use of complex queries across multiple autonomous, heterogeneous and distributed data sources. Semantic integration is an active area of research in several disciplines, such as databases, information-integration, and ontology. We provide a survey of some approaches and techniques for integrating biological data, we focus on those developed in the ontology community.Keywords: biological ontology, linked data, semantic data integration, semantic web
Procedia PDF Downloads 4497395 Virtual 3D Environments for Image-Based Navigation Algorithms
Authors: V. B. Bastos, M. P. Lima, P. R. G. Kurka
Abstract:
This paper applies to the creation of virtual 3D environments for the study and development of mobile robot image based navigation algorithms and techniques, which need to operate robustly and efficiently. The test of these algorithms can be performed in a physical way, from conducting experiments on a prototype, or by numerical simulations. Current simulation platforms for robotic applications do not have flexible and updated models for image rendering, being unable to reproduce complex light effects and materials. Thus, it is necessary to create a test platform that integrates sophisticated simulated applications of real environments for navigation, with data and image processing. This work proposes the development of a high-level platform for building 3D model’s environments and the test of image-based navigation algorithms for mobile robots. Techniques were used for applying texture and lighting effects in order to accurately represent the generation of rendered images regarding the real world version. The application will integrate image processing scripts, trajectory control, dynamic modeling and simulation techniques for physics representation and picture rendering with the open source 3D creation suite - Blender.Keywords: simulation, visual navigation, mobile robot, data visualization
Procedia PDF Downloads 2557394 Synthesis and Characterization of Poly (N-(Pyridin-2-Ylmethylidene)Pyridin-2-Amine: Thermal and Conductivity Properties
Authors: Nuray Yılmaz Baran
Abstract:
The conjugated Schiff base polymers which are also called as polyazomethines are promising materials for various applications due to their good thermal resistance semiconductive, liquid crystal, fiber forming, nonlinear optical outstanding photo- and electroluminescence and antimicrobial properties. In recent years, polyazomethines have attracted intense attention of researchers especially due to optoelectronic properties which have made its usage possible in organic light emitting diodes (OLEDs), solar cells (SCs), organic field effect transistors (OFETs), and photorefractive holographic materials (PRHMs). In this study, N-(pyridin-2-ylmethylidene)pyridin-2-amine Schiff base was synthesized from condensation reaction of 2-aminopyridine with 2-pyridine carbaldehyde. Polymerization of Schiff base was achieved by polycondensation reaction using NaOCl oxidant in methanol medium at various time and temperatures. The synthesized Schiff base monomer and polymer (Poly(N-(pyridin-2-ylmethylidene)pyridin-2-amine)) was characterized by UV-vis, FT-IR, 1H-NMR, XRD techniques. Molecular weight distribution and the surface morphology of the polymer was determined by GPC and SEM-EDAX techniques. Thermal behaviour of the monomer and polymer was investigated by TG/DTG, DTA and DSC techniques.Keywords: polyazomethines, polycondensation reaction, Schiff base polymers, thermal stability
Procedia PDF Downloads 2327393 Parametric Studies of Ethylene Dichloride Purification Process
Authors: Sh. Arzani, H. Kazemi Esfeh, Y. Galeh Zadeh, V. Akbari
Abstract:
Ethylene dichloride is a colorless liquid with a smell like chloroform. EDC is classified in the simple hydrocarbon group which is obtained from chlorinating ethylene gas. Its chemical formula is C2H2Cl2 which is used as the main mediator in VCM production. Therefore, the purification process of EDC is important in the petrochemical process. In this study, the purification unit of EDC was simulated, and then validation was performed. Finally, the impact of process parameter was studied for the degree of EDC purity. The results showed that by increasing the feed flow, the reflux impure combinations increase and result in an EDC purity decrease.Keywords: ethylene dichloride, purification, edc, simulation
Procedia PDF Downloads 3167392 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning
Authors: Ali Kazemi
Abstract:
The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis
Procedia PDF Downloads 597391 Comparison of EMG Normalization Techniques Recommended for Back Muscles Used in Ergonomics Research
Authors: Saif Al-Qaisi, Alif Saba
Abstract:
Normalization of electromyography (EMG) data in ergonomics research is a prerequisite for interpreting the data. Normalizing accounts for variability in the data due to differences in participants’ physical characteristics, electrode placement protocols, time of day, and other nuisance factors. Typically, normalized data is reported as a percentage of the muscle’s isometric maximum voluntary contraction (%MVC). Various MVC techniques have been recommended in the literature for normalizing EMG activity of back muscles. This research tests and compares the recommended MVC techniques in the literature for three back muscles commonly used in ergonomics research, which are the lumbar erector spinae (LES), latissimus dorsi (LD), and thoracic erector spinae (TES). Six healthy males from a university population participated in this research. Five different MVC exercises were compared for each muscle using the Tringo wireless EMG system (Delsys Inc.). Since the LES and TES share similar functions in controlling trunk movements, their MVC exercises were the same, which included trunk extension at -60°, trunk extension at 0°, trunk extension while standing, hip extension, and the arch test. The MVC exercises identified in the literature for the LD were chest-supported shoulder extension, prone shoulder extension, lat-pull down, internal shoulder rotation, and abducted shoulder flexion. The maximum EMG signal was recorded during each MVC trial, and then the averages were computed across participants. A one-way analysis of variance (ANOVA) was utilized to determine the effect of MVC technique on muscle activity. Post-hoc analyses were performed using the Tukey test. The MVC technique effect was statistically significant for each of the muscles (p < 0.05); however, a larger sample of participants was needed to detect significant differences in the Tukey tests. The arch test was associated with the highest EMG average at the LES, and also it resulted in the maximum EMG activity more often than the other techniques (three out of six participants). For the TES, trunk extension at 0° was associated with the largest EMG average, and it resulted in the maximum EMG activity the most often (three out of six participants). For the LD, participants obtained their maximum EMG either from chest-supported shoulder extension (three out of six participants) or prone shoulder extension (three out of six participants). Chest-supported shoulder extension, however, had a larger average than prone shoulder extension (0.263 and 0.240, respectively). Although all the aforementioned techniques were superior in their averages, they did not always result in the maximum EMG activity. If an accurate estimate of the true MVC is desired, more than one technique may have to be performed. This research provides additional MVC techniques for each muscle that may elicit the maximum EMG activity.Keywords: electromyography, maximum voluntary contraction, normalization, physical ergonomics
Procedia PDF Downloads 1947390 An Integreated Intuitionistic Fuzzy ELECTRE Model for Multi-Criteria Decision-Making
Authors: Babek Erdebilli
Abstract:
The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using IFE (Elimination Et Choix Traduisant La Realite (ELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy Numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.Keywords: multi-criteria decision-making, IFE, DM’s, fuzzy electre model
Procedia PDF Downloads 6527389 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage
Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng
Abstract:
Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning
Procedia PDF Downloads 747388 A Review on Parametric Optimization of Casting Processes Using Optimization Techniques
Authors: Bhrugesh Radadiya, Jaydeep Shah
Abstract:
In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques.Keywords: casting defects, genetic algorithm, parametric optimization, Taguchi method, TLBO algorithm
Procedia PDF Downloads 7297387 Impact of Pedagogical Techniques on the Teaching of Sports Sciences
Authors: Muhammad Saleem
Abstract:
Background: The teaching of sports sciences encompasses a broad spectrum of disciplines, including biomechanics, physiology, psychology, and coaching. Effective pedagogical techniques are crucial in imparting both theoretical knowledge and practical skills necessary for students to excel in the field. The impact of these techniques on students’ learning outcomes, engagement, and professional preparedness remains a vital area of study. Objective: This study aims to evaluate the effectiveness of various pedagogical techniques used in the teaching of sports sciences. It seeks to identify which methods most significantly enhance student learning, retention, engagement, and practical application of knowledge. Methods: A mixed-methods approach was employed, including both quantitative and qualitative analyses. The study involved a comparative analysis of traditional lecture-based teaching, experiential learning, problem-based learning (PBL), and technology-enhanced learning (TEL). Data were collected through surveys, interviews, and academic performance assessments from students enrolled in sports sciences programs at multiple universities. Statistical analysis was used to evaluate academic performance, while thematic analysis was applied to qualitative data to capture student experiences and perceptions. Results: The findings indicate that experiential learning and PBL significantly improve students' understanding and retention of complex sports science concepts compared to traditional lectures. TEL was found to enhance engagement and provide students with flexible learning opportunities, but its impact on deep learning varied depending on the quality of the digital resources. Overall, a combination of experiential learning, PBL, and TEL was identified as the most effective pedagogical approach, leading to higher student satisfaction and better preparedness for real-world applications. Conclusion: The study underscores the importance of adopting diverse and student-centered pedagogical techniques in the teaching of sports sciences. While traditional lectures remain useful for foundational knowledge, integrating experiential learning, PBL, and TEL can substantially improve student outcomes. These findings suggest that educators should consider a blended approach to pedagogy to maximize the effectiveness of sports science education.Keywords: sport sciences, pedagogical techniques, health and physical education, problem-based learning, student engagement
Procedia PDF Downloads 287386 A Qualitative Research of Online Fraud Decision-Making Process
Authors: Semire Yekta
Abstract:
Many online retailers set up manual review teams to overcome the limitations of automated online fraud detection systems. This study critically examines the strategies they adapt in their decision-making process to set apart fraudulent individuals from non-fraudulent online shoppers. The study uses a mix method research approach. 32 in-depth interviews have been conducted alongside with participant observation and auto-ethnography. The study found out that all steps of the decision-making process are significantly affected by a level of subjectivity, personal understandings of online fraud, preferences and judgments and not necessarily by objectively identifiable facts. Rather clearly knowing who the fraudulent individuals are, the team members have to predict whether they think the customer might be a fraudster. Common strategies used are relying on the classification and fraud scorings in the automated fraud detection systems, weighing up arguments for and against the customer and making a decision, using cancellation to test customers’ reaction and making use of personal experiences and “the sixth sense”. The interaction in the team also plays a significant role given that some decisions turn into a group discussion. While customer data represent the basis for the decision-making, fraud management teams frequently make use of Google search and Google Maps to find out additional information about the customer and verify whether the customer is the person they claim to be. While this, on the one hand, raises ethical concerns, on the other hand, Google Street View on the address and area of the customer puts customers living in less privileged housing and areas at a higher risk of being classified as fraudsters. Phone validation is used as a final measurement to make decisions for or against the customer when previous strategies and Google Search do not suffice. However, phone validation is also characterized by individuals’ subjectivity, personal views and judgment on customer’s reaction on the phone that results in a final classification as genuine or fraudulent.Keywords: online fraud, data mining, manual review, social construction
Procedia PDF Downloads 3447385 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study
Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui
Abstract:
In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas
Procedia PDF Downloads 3477384 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification
Authors: Ian Omung'a
Abstract:
Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision
Procedia PDF Downloads 937383 Global Optimization Techniques for Optimal Placement of HF Antennas on a Shipboard
Authors: Mustafa Ural, Can Bayseferogulari
Abstract:
In this work, radio frequency (RF) coupling between two HF antennas on a shipboard platform is minimized by determining an optimal antenna placement. Unlike the other works, the coupling is minimized not only at single frequency but over the whole frequency band of operation. Similarly, GAO and PSO, are used in order to determine optimal antenna placement. Throughout this work, outputs of two optimization techniques are compared with each other in terms of antenna placements and coupling results. At the end of the work, far-field radiation pattern performances of the antennas at their optimal places are analyzed in terms of directivity and coverage in order to see that.Keywords: electromagnetic compatibility, antenna placement, optimization, genetic algorithm optimization, particle swarm optimization
Procedia PDF Downloads 2377382 Methodology to Affirm Driver Engagement in Dynamic Driving Task (DDT) for a Level 2 Adas Feature
Authors: Praneeth Puvvula
Abstract:
Autonomy in has become increasingly common in modern automotive cars. There are 5 levels of autonomy as defined by SAE. This paper focuses on a SAE level 2 feature which, by definition, is able to control the vehicle longitudinally and laterally at the same time. The system keeps the vehicle centred with in the lane by detecting the lane boundaries while maintaining the vehicle speed. As with the features from SAE level 1 to level 3, the primary responsibility of dynamic driving task lies with the driver. This will need monitoring techniques to ensure the driver is always engaged even while the feature is active. This paper focuses on the these techniques, which would help the safe usage of the feature and provide appropriate warnings to the driver.Keywords: autonomous driving, safety, adas, automotive technology
Procedia PDF Downloads 897381 A Comparison between Underwater Image Enhancement Techniques
Authors: Ouafa Benaida, Abdelhamid Loukil, Adda Ali Pacha
Abstract:
In recent years, the growing interest of scientists in the field of image processing and analysis of underwater images and videos has been strengthened following the emergence of new underwater exploration techniques, such as the emergence of autonomous underwater vehicles and the use of underwater image sensors facilitating the exploration of underwater mineral resources as well as the search for new species of aquatic life by biologists. Indeed, underwater images and videos have several defects and must be preprocessed before their analysis. Underwater landscapes are usually darkened due to the interaction of light with the marine environment: light is absorbed as it travels through deep waters depending on its wavelength. Additionally, light does not follow a linear direction but is scattered due to its interaction with microparticles in water, resulting in low contrast, low brightness, color distortion, and restricted visibility. The improvement of the underwater image is, therefore, more than necessary in order to facilitate its analysis. The research presented in this paper aims to implement and evaluate a set of classical techniques used in the field of improving the quality of underwater images in several color representation spaces. These methods have the particularity of being simple to implement and do not require prior knowledge of the physical model at the origin of the degradation.Keywords: underwater image enhancement, histogram normalization, histogram equalization, contrast limited adaptive histogram equalization, single-scale retinex
Procedia PDF Downloads 89