Search results for: spatiotemporal series
2203 Identification of Vehicle Dynamic Parameters by Using Optimized Exciting Trajectory on 3- DOF Parallel Manipulator
Authors: Di Yao, Gunther Prokop, Kay Buttner
Abstract:
Dynamic parameters, including the center of gravity, mass and inertia moments of vehicle, play an essential role in vehicle simulation, collision test and real-time control of vehicle active systems. To identify the important vehicle dynamic parameters, a systematic parameter identification procedure is studied in this work. In the first step of the procedure, a conceptual parallel manipulator (virtual test rig), which possesses three rotational degrees-of-freedom, is firstly proposed. To realize kinematic characteristics of the conceptual parallel manipulator, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Based on the Euler's rotation equations for rigid body dynamics, the dynamic model of parallel manipulator and derivation of measurement matrix for parameter identification are presented subsequently. In order to reduce the sensitivity of parameter identification to measurement noise and other unexpected disturbances, a parameter optimization process of searching for optimal exciting trajectory of parallel manipulator is conducted in the following section. For this purpose, the 321-Euler-angles defined by parameterized finite-Fourier-series are primarily used to describe the general exciting trajectory of parallel manipulator. To minimize the condition number of measurement matrix for achieving better parameter identification accuracy, the unknown coefficients of parameterized finite-Fourier-series are estimated by employing an iterative algorithm based on MATLAB®. Meanwhile, the iterative algorithm will ensure the parallel manipulator still keeps in an achievable working status during the execution of optimal exciting trajectory. It is showed that the proposed procedure and methods in this work can effectively identify the vehicle dynamic parameters and could be an important application of parallel manipulator in the fields of parameter identification and test rig development.Keywords: parameter identification, parallel manipulator, singularity architecture, dynamic modelling, exciting trajectory
Procedia PDF Downloads 2662202 Climate Change and Dengue Transmission in Lahore, Pakistan
Authors: Sadia Imran, Zenab Naseem
Abstract:
Dengue fever is one of the most alarming mosquito-borne viral diseases. Dengue virus has been distributed over the years exponentially throughout the world be it tropical or sub-tropical regions of the world, particularly in the last ten years. Changing topography, climate change in terms of erratic seasonal trends, rainfall, untimely monsoon early or late and longer or shorter incidences of either summer or winter. Globalization, frequent travel throughout the world and viral evolution has lead to more severe forms of Dengue. Global incidence of dengue infections per year have ranged between 50 million and 200 million; however, recent estimates using cartographic approaches suggest this number is closer to almost 400 million. In recent years, Pakistan experienced a deadly outbreak of the disease. The reason could be that they have the maximum exposure outdoors. Public organizations have observed that changing climate, especially lower average summer temperature, and increased vegetation have created tropical-like conditions in the city, which are suitable for Dengue virus growth. We will conduct a time-series analysis to study the interrelationship between dengue incidence and diurnal ranges of temperature and humidity in Pakistan, Lahore being the main focus of our study. We have used annual data from 2005 to 2015. We have investigated the relationship between climatic variables and dengue incidence. We used time series analysis to describe temporal trends. The result shows rising trends of Dengue over the past 10 years along with the rise in temperature & rainfall in Lahore. Hence this seconds the popular statement that the world is suffering due to Climate change and Global warming at different levels. Disease outbreak is one of the most alarming indications of mankind heading towards destruction and we need to think of mitigating measures to control epidemic from spreading and enveloping the cities, countries and regions.Keywords: Dengue, epidemic, globalization, climate change
Procedia PDF Downloads 2332201 Microbial Fuel Cells: Performance and Applications
Authors: Andrea Pietrelli, Vincenzo Ferrara, Bruno Allard, Francois Buret, Irene Bavasso, Nicola Lovecchio, Francesca Costantini, Firas Khaled
Abstract:
This paper aims to show some applications of microbial fuel cells (MFCs), an energy harvesting technique, as clean power source to supply low power device for application like wireless sensor network (WSN) for environmental monitoring. Furthermore, MFC can be used directly as biosensor to analyse parameters like pH and temperature or arranged in form of cluster devices in order to use as small power plant. An MFC is a bioreactor that converts energy stored in chemical bonds of organic matter into electrical energy, through a series of reactions catalysed by microorganisms. We have developed a lab-scale terrestrial microbial fuel cell (TMFC), based on soil that acts as source of bacteria and flow of nutrient and a lab-scale waste water microbial fuel cell (WWMFC), where waste water acts as flow of nutrient and bacteria. We performed large series of tests to exploit the capability as biosensor. The pH value has strong influence on the open circuit voltage (OCV) delivered from TMFCs. We analyzed three condition: test A and B were filled with same soil but changing pH from 6 to 6.63, test C was prepared using a different soil with a pH value of 6.3. Experimental results clearly show how with higher pH value a higher OCV was produced; indeed reactors are influenced by different values of pH which increases the voltage in case of a higher pH value until the best pH value of 7 is achieved. The influence of pH on OCV of lab-scales WWMFC was analyzed at pH value of 6.5, 7, 7.2, 7.5 and 8. WWMFCs are influenced from temperature more than TMFCs. We tested the power performance of WWMFCs considering four imposed values of ambient temperature. Results show how power performance increase proportionally with higher temperature values, doubling the output power from 20° to 40°. The best value of power produced from our lab-scale TMFC was equal to 310 μW using peaty soil, at 1KΩ, corresponding to a current of 0.5 mA. A TMFC can supply proper energy to low power devices of a WSN by means of the design of three stages scheme of an energy management system, which adapts voltage level of TMFC to those required by a WSN node, as 3.3V. Using a commercial DC/DC boost converter, that needs an input voltage of 700 mV, the current source of 0.5 mA, charges a capacitor of 6.8 mF until it will have accumulated an amount of charge equal to 700 mV in a time of 10 s. The output stage includes an output switch that close the circuit after a time of 10s + 1.5ms because the converter can boost the voltage from 0.7V to 3.3V in 1.5 ms. Furthermore, we tested in form of clusters connected in series up to 20 WWMFCs, we have obtained a high voltage value as output, around 10V, but low current value. MFC can be considered a suitable clean energy source to be used to supply low power devices as a WSN node or to be used directly as biosensor.Keywords: energy harvesting, low power electronics, microbial fuel cell, terrestrial microbial fuel cell, waste-water microbial fuel cell, wireless sensor network
Procedia PDF Downloads 2072200 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand
Authors: Sudip Kumar Kundu, Charu Singh
Abstract:
As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.Keywords: global warming, rainfall, CMIP5, CORDEX, NWH
Procedia PDF Downloads 1692199 Predicting Returns Volatilities and Correlations of Stock Indices Using Multivariate Conditional Autoregressive Range and Return Models
Authors: Shay Kee Tan, Kok Haur Ng, Jennifer So-Kuen Chan
Abstract:
This paper extends the conditional autoregressive range (CARR) model to multivariate CARR (MCARR) model and further to the two-stage MCARR-return model to model and forecast volatilities, correlations and returns of multiple financial assets. The first stage model fits the scaled realised Parkinson volatility measures using individual series and their pairwise sums of indices to the MCARR model to obtain in-sample estimates and forecasts of volatilities for these individual and pairwise sum series. Then covariances are calculated to construct the fitted variance-covariance matrix of returns which are imputed into the stage-two return model to capture the heteroskedasticity of assets’ returns. We investigate different choices of mean functions to describe the volatility dynamics. Empirical applications are based on the Standard and Poor 500, Dow Jones Industrial Average and Dow Jones United States Financial Service Indices. Results show that the stage-one MCARR models using asymmetric mean functions give better in-sample model fits than those based on symmetric mean functions. They also provide better out-of-sample volatility forecasts than those using CARR models based on two robust loss functions with the scaled realised open-to-close volatility measure as the proxy for the unobserved true volatility. We also find that the stage-two return models with constant means and multivariate Student-t errors give better in-sample fits than the Baba, Engle, Kraft, and Kroner type of generalized autoregressive conditional heteroskedasticity (BEKK-GARCH) models. The estimates and forecasts of value-at-risk (VaR) and conditional VaR based on the best MCARR-return models for each asset are provided and tested using Kupiec test to confirm the accuracy of the VaR forecasts.Keywords: range-based volatility, correlation, multivariate CARR-return model, value-at-risk, conditional value-at-risk
Procedia PDF Downloads 992198 Impacts of Climate Elements on the Annual Periodic Behavior of the Shallow Groundwater Level: Case Study from Central-Eastern Europe
Authors: Tamas Garamhegyi, Jozsef Kovacs, Rita Pongracz, Peter Tanos, Balazs Trasy, Norbert Magyar, Istvan G. Hatvani
Abstract:
Like most environmental processes, shallow groundwater fluctuation under natural circumstances also behaves periodically. With the statistical tools at hand, it can easily be determined if a period exists in the data or not. Thus, the question may be raised: Does the estimated average period time characterize the whole time period, or not? This is especially important in the case of such complex phenomena as shallow groundwater fluctuation, driven by numerous factors. Because of the continuous changes in the oscillating components of shallow groundwater time series, the most appropriate method should be used to investigate its periodicity, this is wavelet spectrum analysis. The aims of the research were to investigate the periodic behavior of the shallow groundwater time series of an agriculturally important and drought sensitive region in Central-Eastern Europe and its relationship to the European pressure action centers. During the research ~216 shallow groundwater observation wells located in the eastern part of the Great Hungarian Plain with a temporal coverage of 50 years were scanned for periodicity. By taking the full-time interval as 100%, the presence of any period could be determined in percentages. With the complex hydrogeological/meteorological model developed in this study, non-periodic time intervals were found in the shallow groundwater levels. On the local scale, this phenomenon linked to drought conditions, and on a regional scale linked to the maxima of the regional air pressures in the Gulf of Genoa. The study documented an important link between shallow groundwater levels and climate variables/indices facilitating the necessary adaptation strategies on national and/or regional scales, which have to take into account the predictions of drought-related climatic conditions.Keywords: climate change, drought, groundwater periodicity, wavelet spectrum and coherence analyses
Procedia PDF Downloads 3852197 Triplex Detection of Pistacia vera, Arachis hypogaea and Pisum sativum in Processed Food Products Using Probe Based PCR
Authors: Ergün Şakalar, Şeyma Özçirak Ergün, Emrah Yalazi̇, Emine Altinkaya, Cengiz Ataşoğlu
Abstract:
In recent years, food allergies which cause serious health problems affect to public health around the world. Foodstuffs which contain allergens are either intentionally used as ingredients or are encased as contaminant in food products. The prevalence of clinical allergy to peanuts and nuts is estimated at about 0.4%-1.1% of the adult population, representing the allergy to pistachio the 7% of the cases of tree nut causing allergic reactions. In order to protect public health and enforce the legislation, methods for sensitive analysis of pistachio and peanut contents in food are required. Pea, pistachio and peanut are used together, to reduce the cost in food production such as baklava, snack foods.DNA technology-based methods in food analysis are well-established and well-roundedtools for species differentiation, allergen detection. Especially, the probe-based TaqMan real-time PCR assay can amplify target DNA with efficiency, specificity, and sensitivity.In this study, pistachio, peanut and pea were finely ground and three separate series of triplet mixtures containing 0.1, 1, 10, 100, 1000, 10,000 and 100,000 mg kg-1 of each sample were prepared for each series, to a final weight of 100 g. DNA from reference samples and industrial products was successfully extracted with the GIDAGEN® Multi-Fast DNA Isolation Kit. TaqMan probes were designed for triplex determination of ITS, Ara h 3 and pea lectin genes which are specific regions for identification pistachio, peanut and pea, respectively.The real-time PCR as quantitative detected pistachio, peanut and pea in these mixtures down to the lowest investigated level of 0.1, 0.1 and 1 mg kg-1, respectively. Also, the methods reported here are capable of detecting of as little as 0.001% level of peanut DNA, 0,000001% level of pistachio DNA and 0.000001% level of pea DNA. We accomplish that the quantitative triplex real-time PCR method developed in this study canbe applied to detect pistachio, peanut and peatraces for three allergens at once in commercial food products.Keywords: allergens, DNA, real-time PCR, TaqMan probe
Procedia PDF Downloads 2562196 Redefining Surgical Innovation in Urology: A Historical Perspective of the Original Publications on Pioneering Techniques in Urology
Authors: Samuel Sii, David Homewood, Brendan Dittmer, Tony Nzembela, Jonathan O’Brien, Niall Corcoran, Dinesh Agarwal
Abstract:
Introduction: Innovation is key to the advancement of medicine and improvement in patient care. This is particularly true in surgery, where pioneering techniques have transformed operative management from a historically highly risky peri-morbid and disfiguring to the contemporary low-risk, sterile and minimally invasive treatment modality. There is a delicate balance between enabling innovation and minimizing patient harm. Publication and discussion of novel surgical techniques allow for independent expert review. Recent journals have increasingly stringent requirements for publications and often require larger case volumes for novel techniques to be published. This potentially impairs the initial publication of novel techniques and slows innovation. The historical perspective provides a better understanding of how requirements for the publication of new techniques have evolved over time. This is essential in overcoming challenges in developing novel techniques. Aims and Objectives: We explore how novel techniques in Urology have been published over the past 200 years. Our objective is to describe the trend and publication requirements of novel urological techniques, both historical and present. Methods: We assessed all major urological operations using multipronged historical analysis. An initial literature search was carried out through PubMed and Google Scholar for original literature descriptions, followed by reference tracing. The first publication of each pioneering urological procedure was recorded. Data collected includes the year of publication, description of the procedure, number of cases and outcomes. Results: 65 papers describing pioneering techniques in Urology were identified. These comprised of 2 experimental studies, 17 case reports and 46 case series. These papers described various pioneering urological techniques in urological oncology, reconstructive urology and endourology. We found that, historically, techniques were published with smaller case numbers. Often, the surgical technique itself was a greater focus of the publication than patient outcome data. These techniques were often adopted prior to larger publications. In contrast, the risks and benefits of recent novel techniques are often well-defined prior to adoption. This historical perspective is important as recent journals have requirements for larger case series and data outcomes. This potentially impairs the initial publication of novel techniques and slows innovation. Conclusion: A better understanding of historical publications and their effect on the adoption of urological techniques into common practice could assist the current generation of Urologists in formulating a safe, efficacious process in promoting surgical innovation and the development of novel surgical techniques. We propose the reassessment of requirements for the publication of novel operative techniques by splitting technical perspectives and data-orientated case series. Existing frameworks such as IDEAL and ASERNIP-S should be integrated into current processes when investigating and developing new surgical techniques to ensure efficacious and safe innovation within surgery is encouraged.Keywords: urology, surgical innovation, novel surgical techniques, publications
Procedia PDF Downloads 492195 Bacterial Causes of Cerebral Abscess and Impact on Long Term Patient Outcomes
Authors: Umar Rehman, Holly Roy, K. T. Tsang, D. S. Jeyaretna, W Singleton, B. Fisher, P. A. Glew, J. Greig, Peter C. Whitfield
Abstract:
Introduction: A brain abscess is a life-threatening condition, carrying significant mortality. It requires rapid identification and treatment. Management involves a combination of antibiotics and surgery. The aim of the current study was to identify common bacteria responsible for cerebral abscesses as well as the long term functional and neurological outcomes of patients following treatment in a retrospective series at a single UK neurosurgical centre. Methodology: We analysed patients that had received a diagnosis of 'cerebral abscess' or 'subdural empyema' between June 2002 and June 2018. This was done in the form of a retrospective review. The search resulted in a total of 180 patients; with 37 patients being excluded (spinal abscess, below 18 or non-abscess related admissions). Data were collected from medical case notes including information about demographics, comorbidities, immunosuppression, presentation, size/location of lesions, pathogens, treatment, and outcomes. Results: In total, we analysed 143 patients between the ages of 18-90. Focal neurological deficit and headaches were seen in 84% and 68% of patients respectively. 108 positive brain cultures were seen; with the largest proportion, 59.2% being gram-positive cocci, with strep intermedius being the most common pathogen identified in 13.9% of patients. Of the patients with positive blood cultures (n=11), 72.7% showed the same organism both in the blood and on the brain cultures. Long term outcomes (n=72) revealed that 48% of patients seizure-free without requiring anti-epileptics, 51.3% of patients had full recovery of their neurological symptoms. There was a mortality rate of 13.9% in the series. Conclusion: In conclusion, the largest bacterial cause of abscess within our population was due to gram-positive cocci. The majority of the patient demonstrated full neurological recovery with close to half of patients not requiring anti-epileptics following discharge.Keywords: bacteria, cerebral abscess, long term outcome, neurological deficit
Procedia PDF Downloads 1192194 Analysis of Kinetin Supramolecular Complex with Glytsirrizinic Acid and Based by Mass-Spectrometry Method
Authors: Bakhtishod Matmuratov, Sakhiba Madraximova, Rakhmat Esanov, Alimjan Matchanov
Abstract:
Studies have been performed to obtain complexes of glycyrrhizic acid and kinetins in a 2:1 ratio. The complex of glycyrrhizic acid and kinetins in a 2:1 ratio was considered evidence of the formation of a molecular complex by determining the molecular masses using chromato-mass spectroscopy and analyzing the IR spectra.Keywords: monoammonium salt of glycyrrhizic acid, glycyrrhizic acid, supramolecular complex, isomolar series, IR spectroscopy
Procedia PDF Downloads 1772193 Endoscopic Pituitary Surgery: Learning Curve and Nasal Quality of Life
Authors: Martin Dupuy, Solange Grunenwald, Pierre-Louis Colombo, Laurence Mahieu, Pomone Richard, Philippe Bartoli
Abstract:
Endonasal endoscopic trans-sphenoidal surgery for pituitary tumours has become a mainstay of treatment over the last two decades. Although it is generally accepted that there is no significant difference between endoscopic versus microscopic approach for surgical outcomes (endocrine and ophthalmologic status), nasal morbidity seems to the benefit of endoscopic procedures. Minimally invasive endoscopic surgery needs an operative learning curve to achieve surgeon’s efficiency. This learning curve is now well known for surgical outcomes and complications rate, however, few data are available for nasal morbidity. The aim of our series is to document operative experience and nasal quality of life after (NQOL) endoscopic trans-sphenoidal surgery. The prospective pituitary surgical cohort consisted of 525 consecutives patients referred to our Skull Base Diseases Department. Endoscopic procedures were performed by a single neurosurgeon using an uninostril approach. NQOL was evaluated using the Sino-Nasal Test (SNOT-22), the Anterior Base Nasal Inventory (ASBNI) and the Skull Base Inventory Score (SBIS). Data were collected before surgery during hospital stay and 3 months after the surgery. The seventy first patients were compared to the latest 70 patients. There was no significant difference between comparison score before versus after surgery for SNOT-22, ASBNI and SBIS during the single surgeon’s learning curve. Our series demonstrates that in our institution there is no statistically significant learning curve for NQOL after uninostril endoscopic pituitary surgery. A careful progression through sinonasal structures with very limited mucosal incision is associated with minimal morbidity and preserves nasal function. Conservative and minimal invasive approach could be achieved early during learning curve.Keywords: pituitary surgery, quality of life, minimal invasive surgery, learning curve, pituitary tumours, skull base surgery, endoscopic surgery
Procedia PDF Downloads 1242192 Nonstationary Modeling of Extreme Precipitation in the Wei River Basin, China
Authors: Yiyuan Tao
Abstract:
Under the impact of global warming together with the intensification of human activities, the hydrological regimes may be altered, and the traditional stationary assumption was no longer satisfied. However, most of the current design standards of water infrastructures were still based on the hypothesis of stationarity, which may inevitably result in severe biases. Many critical impacts of climate on ecosystems, society, and the economy are controlled by extreme events rather than mean values. Therefore, it is of great significance to identify the non-stationarity of precipitation extremes and model the precipitation extremes in a nonstationary framework. The Wei River Basin (WRB), located in a continental monsoon climate zone in China, is selected as a case study in this study. Six extreme precipitation indices were employed to investigate the changing patterns and stationarity of precipitation extremes in the WRB. To identify if precipitation extremes are stationary, the Mann-Kendall trend test and the Pettitt test, which is used to examine the occurrence of abrupt changes are adopted in this study. Extreme precipitation indices series are fitted with non-stationary distributions that selected from six widely used distribution functions: Gumbel, lognormal, Weibull, gamma, generalized gamma and exponential distributions by means of the time-varying moments model generalized additive models for location, scale and shape (GAMLSS), where the distribution parameters are defined as a function of time. The results indicate that: (1) the trends were not significant for the whole WRB, but significant positive/negative trends were still observed in some stations, abrupt changes for consecutive wet days (CWD) mainly occurred in 1985, and the assumption of stationarity is invalid for some stations; (2) for these nonstationary extreme precipitation indices series with significant positive/negative trends, the GAMLSS models are able to capture well the temporal variations of the indices, and perform better than the stationary model. Finally, the differences between the quantiles of nonstationary and stationary models are analyzed, which highlight the importance of nonstationary modeling of precipitation extremes in the WRB.Keywords: extreme precipitation, GAMLSSS, non-stationary, Wei River Basin
Procedia PDF Downloads 1242191 Development and Adaptation of a LGBM Machine Learning Model, with a Suitable Concept Drift Detection and Adaptation Technique, for Barcelona Household Electric Load Forecasting During Covid-19 Pandemic Periods (Pre-Pandemic and Strict Lockdown)
Authors: Eric Pla Erra, Mariana Jimenez Martinez
Abstract:
While aggregated loads at a community level tend to be easier to predict, individual household load forecasting present more challenges with higher volatility and uncertainty. Furthermore, the drastic changes that our behavior patterns have suffered due to the COVID-19 pandemic have modified our daily electrical consumption curves and, therefore, further complicated the forecasting methods used to predict short-term electric load. Load forecasting is vital for the smooth and optimized planning and operation of our electric grids, but it also plays a crucial role for individual domestic consumers that rely on a HEMS (Home Energy Management Systems) to optimize their energy usage through self-generation, storage, or smart appliances management. An accurate forecasting leads to higher energy savings and overall energy efficiency of the household when paired with a proper HEMS. In order to study how COVID-19 has affected the accuracy of forecasting methods, an evaluation of the performance of a state-of-the-art LGBM (Light Gradient Boosting Model) will be conducted during the transition between pre-pandemic and lockdowns periods, considering day-ahead electric load forecasting. LGBM improves the capabilities of standard Decision Tree models in both speed and reduction of memory consumption, but it still offers a high accuracy. Even though LGBM has complex non-linear modelling capabilities, it has proven to be a competitive method under challenging forecasting scenarios such as short series, heterogeneous series, or data patterns with minimal prior knowledge. An adaptation of the LGBM model – called “resilient LGBM” – will be also tested, incorporating a concept drift detection technique for time series analysis, with the purpose to evaluate its capabilities to improve the model’s accuracy during extreme events such as COVID-19 lockdowns. The results for the LGBM and resilient LGBM will be compared using standard RMSE (Root Mean Squared Error) as the main performance metric. The models’ performance will be evaluated over a set of real households’ hourly electricity consumption data measured before and during the COVID-19 pandemic. All households are located in the city of Barcelona, Spain, and present different consumption profiles. This study is carried out under the ComMit-20 project, financed by AGAUR (Agència de Gestiód’AjutsUniversitaris), which aims to determine the short and long-term impacts of the COVID-19 pandemic on building energy consumption, incrementing the resilience of electrical systems through the use of tools such as HEMS and artificial intelligence.Keywords: concept drift, forecasting, home energy management system (HEMS), light gradient boosting model (LGBM)
Procedia PDF Downloads 1052190 Research and Development of Net-Centric Information Sharing Platform
Authors: Wang Xiaoqing, Fang Youyuan, Zheng Yanxing, Gu Tianyang, Zong Jianjian, Tong Jinrong
Abstract:
Compared with traditional distributed environment, the net-centric environment brings on more demanding challenges for information sharing with the characteristics of ultra-large scale and strong distribution, dynamic, autonomy, heterogeneity, redundancy. This paper realizes an information sharing model and a series of core services, through which provides an open, flexible and scalable information sharing platform.Keywords: net-centric environment, information sharing, metadata registry and catalog, cross-domain data access control
Procedia PDF Downloads 5702189 Ultradrawing and Ultimate Pensile Properties of Ultra-High Molecular Weight Polyethylene Nanocomposite Fibers Filled with Cellulose Nanofibers
Authors: Zhong-Dan Tu, Wang-Xi Fan, Yi-Chen Huang, Jen-Taut Yeh
Abstract:
Novel ultrahigh molecular weight polyethylene (UHMWPE)/cellulose nanofiber (CNF) (F100CNFy) and UHMWPE/modified cellulose nanofiber (MCNF) (F100MCNFxy) as-prepared nanocomposite fibers were prepared by spinning F100CNFy and F100MCNFxy gel solutions, respectively. Cellulose nanofibers were successfully prepared by proper acid treatment of cotton fibers using sulfuric acid solutions. The best prepared CNF is with specific surface areas around 120 m2/g and a nanofiber diameter of 20 nm. Modified cellulose nanofiber was prepared by grafting maleic anhydride grafted polyethylene (PE-g-MAH) onto cellulose nanofibers. The achievable draw ratio (Dra) values of each F100MCNFxy as-prepared fiber series specimens approached a maximal value as their MCNF contents reached the optimal value at 0.05 phr. In which, the maximum Dra value obtained for F100MCNFx0.05 as-prepared fiber specimen prepared at the optimal MCNF content reached another maximum value as the weight ratio of PE-g-MAH to CNF approach an optimal value at 6. Similar to those found for the achievable drawing properties of the as-prepared fibers, the orientation factor, tensile strength (σ f) and initial modulus (E) values of drawn F100MCNF6y fiber series specimens with a fixed draw ratio reach a maximal value as their MCNF contents approach the optimal value, wherein the σ f and E values of the drawn F100MCNFxy fiber specimens are significantly higher than those of the drawn F100 fiber specimens and corresponding drawn F100CNFy fiber specimens prepared at the same draw ratios and CNF contents but without modification. To understand the interesting ultradrawing, thermal, orientation and tensile properties of F100CNFy and F100MCNFxy fiber specimens, Fourier transform infra-red, specific surface areas, and transmission electron microcopic analyses of the original and modified CNF nanofillers were performed in this study.Keywords: ultradrawing, cellulose nanofibers, ultrahigh molecular weight polyethylene, nanocomposite fibers
Procedia PDF Downloads 2112188 Psychological Factors Predicting Social Distance during the COVID-19 Pandemic: An Empirical Investigation
Authors: Calogero Lo Destro
Abstract:
Numerous nations around the world are facing exceptional challenges in employing measures to stop the spread of COVID-19. Following the recommendations of the World Health Organization, a series of preventive measures have been adopted. However, individuals must comply with these rules and recommendations in order to make these measures effective. While COVID-19 was climaxing, it seemed of crucial importance to analyze which psychosocial factors contribute to the acceptance of such preventive behavior, thus favoring the management of COVID-19 worldwide health crisis. In particular, the identification of aspects related to obstacles and facilitation of adherence to social distancing has been considered crucial in the containment of the virus spread. Since the virus was firstly detected in China, Asian people could be considered a relevant outgroup targeted for exclusion. We also hypothesized social distance could be influenced by characteristics of the target, such as smiling or coughing. 260 participants participated in this research on a voluntary basis. They filled a survey designed to explore a series of COVID-19 measures (such as exposure to virus and fear of infection). We also assessed participants state and trait anxiety. The dependent variable was social distance, based on a measure of seating distance designed ad hoc for the present work. Our hypothesis that participants could report greater distance in response to Asian people was not confirmed. On the other hand, significantly lower distance in response to smiling compared to coughing targets was reported. Adopting a regression analysis model, we found that participants' social distance, in response to both coughing and smiling targets, was predicted by fear of infection and by the perception COVID-19 could become a pandemic. Social distance in response to the coughing target was also significantly and positively predicted by age and state anxiety. In summary, the present work has sought to identify a set of psychological variables, which may still be predictive of social distancing.Keywords: COVID-19, social distancing, health, preventive behaviors, risk of infection
Procedia PDF Downloads 1242187 Design, Synthesis and in-vitro Antitumor Evaluation of Some Novel Substituted Quinazoline Derivatives
Authors: Adel S. El-Azab, Alaa A. M. Abdel-Aziz, Ibrahim A. Al-Suwaidan, Amer M. Alanazi
Abstract:
A novel series of 2,3,6-trisubstitute quinazolinone were designed, synthesized, and evaluated for their in-vitro antitumor activity. 3 (Benzylideneamino)-6-chloro-2-p-tolylquinazolin-4(3H)-One, 2-[(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-yl)thio]-N-(3,4;5-trimethoxyphenyl) acetamide and 3-(3-benzyl-6-methyl-4-oxo-3, 4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl) propanamide have shown amazing broad spectrum antitumor activity with mean GI50; 15.8, 3.16, and 7.4 μM respectively compared to known Quinazoline Derivatives antitumor drug 5-FU mean GI50=22.6 μM.Keywords: quinazoline derivatives, in vitro antitumor, synthesis, 5-FU, NCI
Procedia PDF Downloads 5442186 The Influence of Training on the Special Aerial Gymnastics Instruments on Selected C-Reactive Proteins in Cadets’ Serum
Authors: Z. Wochyński, K. A. Sobiech, Z. Kobos
Abstract:
To C-Reactive Proteins include ferritin, transferrin, and ceruloplasmin- metalloproteins. The study aimed at assessing an effect of training on the Special Aerial Gymnastics Instruments (SAGI) on changes of serum ferritin, transferrin, and ceruloplasmin and cadets’ physical fitness in comparison with a control group. Fifty-five cadets in the mean age 20 years were included into this study. They were divided into two groups: Group A (N=41) trained on SAGI and Group B (N=14) trained according the standard program of physical education (control group). In both groups, blood was a material for assays. Samples were collected twice before and after training at the start of the program (training I), during (training II), and after education program completion (training III). Commercially available kits were used to assay blood serum ferritin, transferrin, and ceruloplasmin. Cadets’ physical fitness was evaluated with exercise tests before and after education program completion. In Group A, serum post-exercise ferritin decreased statistically insignificantly in training I and II and increased in training III in comparison with pre-exercise values. In Group B, post-exercise serum ferritin decreased statistically insignificantly in training I and III and significantly increased in training II in comparison with the pre-exercise values. In Group A, serum transferrin decreased statistically insignificantly in training I, and significantly increased in training II, whereas in training III it increased insignificantly in comparison with pre-exercise values. In Group B, post-exercise serum transferrin increased statistically significantly in training I, II, and III in comparison with pre-exercise values. I n Group A, serum ceruloplasmin decreased in all three series in comparison with pre-exercise values. In Group B, serum ceruloplasmin increased significantly in training II. It was showed that the training on SAGI significantly decreased serum ceruloplasmin in Group A in all three series of assays and did not produce significant changes in serum ferritin also was showed significant increase in serum transferrin.Keywords: special aerial gymnastics instruments, ferritin, ceruloplasmin, transferrin
Procedia PDF Downloads 4632185 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks
Authors: Wang Yichen, Haruka Yamashita
Abstract:
In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.Keywords: recurrent neural network, players lineup, basketball data, decision making model
Procedia PDF Downloads 1332184 True Detective as a Southern Gothic: A Study of Its Music-Lyrics
Authors: Divya Sharma
Abstract:
Nic Pizzolatto’s True Detective offers profound mythological and philosophical ramblings for audiences with literary sensibilities. An American Sothern Gothic with its bayon landscape of the Gulf Coast of Louisiana, where two detectives Rustin Cohle and Martin Hart begin investigating the isolated murder of Dora Lange, only to discover an entrenched network of perversion and corruption, offers an existential outlook. The proposed research paper shall attempt to investigate the pervasive themes of gothic and existentialism in the music of the first season of the series.Keywords: gothic, music, existentialism, mythology, philosophy
Procedia PDF Downloads 5102183 Quantitative Polymerase Chain Reaction Analysis of Phytoplankton Composition and Abundance to Assess Eutrophication: A Multi-Year Study in Twelve Large Rivers across the United States
Authors: Chiqian Zhang, Kyle D. McIntosh, Nathan Sienkiewicz, Ian Struewing, Erin A. Stelzer, Jennifer L. Graham, Jingrang Lu
Abstract:
Phytoplankton plays an essential role in freshwater aquatic ecosystems and is the primary group synthesizing organic carbon and providing food sources or energy to ecosystems. Therefore, the identification and quantification of phytoplankton are important for estimating and assessing ecosystem productivity (carbon fixation), water quality, and eutrophication. Microscopy is the current gold standard for identifying and quantifying phytoplankton composition and abundance. However, microscopic analysis of phytoplankton is time-consuming, has a low sample throughput, and requires deep knowledge and rich experience in microbial morphology to implement. To improve this situation, quantitative polymerase chain reaction (qPCR) was considered for phytoplankton identification and quantification. Using qPCR to assess phytoplankton composition and abundance, however, has not been comprehensively evaluated. This study focused on: 1) conducting a comprehensive performance comparison of qPCR and microscopy techniques in identifying and quantifying phytoplankton and 2) examining the use of qPCR as a tool for assessing eutrophication. Twelve large rivers located throughout the United States were evaluated using data collected from 2017 to 2019 to understand the relation between qPCR-based phytoplankton abundance and eutrophication. This study revealed that temporal variation of phytoplankton abundance in the twelve rivers was limited within years (from late spring to late fall) and among different years (2017, 2018, and 2019). Midcontinent rivers had moderately greater phytoplankton abundance than eastern and western rivers, presumably because midcontinent rivers were more eutrophic. The study also showed that qPCR- and microscope-determined phytoplankton abundance had a significant positive linear correlation (adjusted R² 0.772, p-value < 0.001). In addition, phytoplankton abundance assessed via qPCR showed promise as an indicator of the eutrophication status of those rivers, with oligotrophic rivers having low phytoplankton abundance and eutrophic rivers having (relatively) high phytoplankton abundance. This study demonstrated that qPCR could serve as an alternative tool to traditional microscopy for phytoplankton quantification and eutrophication assessment in freshwater rivers.Keywords: phytoplankton, eutrophication, river, qPCR, microscopy, spatiotemporal variation
Procedia PDF Downloads 1012182 Thulium Laser Vaporisation and Enucleation of Prostate in Patients on Anticoagulants and Antiplatelet Agents
Authors: Abdul Fatah, Naveenchandra Acharya, Vamshi Krishna, T. Shivaprasad, Ramesh Ramayya
Abstract:
Background: Significant number of patients with bladder outlet obstruction due to BPH are on anti-platelets and anticoagulants. Prostate surgery in this group of patients either in the form of TURP or Open prostatectomy is associated with increased risk of bleeding complications requiring transfusions, packing of the prostatic fossa or ligation or embolization of internal iliac arteries. Withholding of antiplatelets and anticoagulants may be associated with cardiac and other complications. Efficacy of Thulium Laser in the above group of patients was evaluated in terms of peri-operative, postoperative and delayed bleeding complications as well as cardiac events in peri-operative and immediate postoperative period. Methods: 217 patients with a mean age of 68.8 years were enrolled between March 2009 and March 2013 (36 months), and treated for BPH with ThuLEP. Every patient was evaluated at base line according to: Digital Rectal Examination (DRE), prostate volume, Post-Voided volume (PVR), International Prostate Symptoms Score (I-PSS), PSA values, urine analysis and urine culture, uroflowmetry. The post operative complications in the form of drop in hemoglobin level, transfusion rates, post –operative cardiac events within a period of 30 days, delayed hematuria and events like deep vein thrombosis and pulmonary embolism were noted. Results: Our data showed a better post-operative outcome in terms of, postoperative bleeding requiring intervention 7 (3.2%), transfusion rate 4 (1.8%) and cardiac events within a period of 30 days 4(1.8%), delayed hematuria within 6 months 2(0.9 %) compared other series of prostatectomies. Conclusion: The thulium LASER prostatectomy is a safe and effective option for patients with cardiac comorbidties and those patients who are on antiplatelet agents and anticoagulants. The complication rate is less as compared to larger series reported with open and transurethral prostatectomies.Keywords: thulium laser, prostatectomy, antiplatelet agents, bleeding
Procedia PDF Downloads 3932181 Comparison between the Roller-Foam and Neuromuscular Facilitation Stretching on Flexibility of Hamstrings Muscles
Authors: Paolo Ragazzi, Olivier Peillon, Paul Fauris, Mathias Simon, Raul Navarro, Juan Carlos Martin, Oriol Casasayas, Laura Pacheco, Albert Perez-Bellmunt
Abstract:
Introduction: The use of stretching techniques in the sports world is frequent and widely used for its many effects. One of the main benefits is the gain in flexibility, range of motion and facilitation of the sporting performance. Recently the use of Roller-Foam (RF) has spread in sports practice both at elite and recreational level for its benefits being similar to those observed in stretching. The objective of the following study is to compare the results of the Roller-Foam with the proprioceptive neuromuscular facilitation stretching (PNF) (one of the stretchings with more evidence) on the hamstring muscles. Study design: The design of the study is a single-blind, randomized controlled trial and the participants are 40 healthy volunteers. Intervention: The subjects are distributed randomly in one of the following groups; stretching (PNF) intervention group: 4 repetitions of PNF stretching (5seconds of contraction, 5 second of relaxation, 20 second stretch), Roller-Foam intervention group: 2 minutes of Roller-Foam was realized on the hamstring muscles. Main outcome measures: hamstring muscles flexibility was assessed at the beginning, during (30’’ of intervention) and the end of the session by using the Modified Sit and Reach test (MSR). Results: The baseline results data given in both groups are comparable to each other. The PNF group obtained an increase in flexibility of 3,1 cm at 30 seconds (first series) and of 5,1 cm at 2 minutes (the last of all series). The RF group obtained a 0,6 cm difference at 30 seconds and 2,4 cm after 2 minutes of application of roller foam. The results were statistically significant when comparing intragroups but not intergroups. Conclusions: Despite the fact that the use of roller foam is spreading in the sports and rehabilitation field, the results of the present study suggest that the gain of flexibility on the hamstrings is greater if PNF type stretches are used instead of RF. These results may be due to the fact that the use of roller foam intervened more in the fascial tissue, while the stretches intervene more in the myotendinous unit. Future studies are needed, increasing the sample number and diversifying the types of stretching.Keywords: hamstring muscle, stretching, neuromuscular facilitation stretching, roller foam
Procedia PDF Downloads 1872180 Floodnet: Classification for Post Flood Scene with a High-Resolution Aerial Imaginary Dataset
Authors: Molakala Mourya Vardhan Reddy, Kandimala Revanth, Koduru Sumanth, Beena B. M.
Abstract:
Emergency response and recovery operations are severely hampered by natural catastrophes, especially floods. Understanding post-flood scenarios is essential to disaster management because it facilitates quick evaluation and decision-making. To this end, we introduce FloodNet, a brand-new high-resolution aerial picture collection created especially for comprehending post-flood scenes. A varied collection of excellent aerial photos taken during and after flood occurrences make up FloodNet, which offers comprehensive representations of flooded landscapes, damaged infrastructure, and changed topographies. The dataset provides a thorough resource for training and assessing computer vision models designed to handle the complexity of post-flood scenarios, including a variety of environmental conditions and geographic regions. Pixel-level semantic segmentation masks are used to label the pictures in FloodNet, allowing for a more detailed examination of flood-related characteristics, including debris, water bodies, and damaged structures. Furthermore, temporal and positional metadata improve the dataset's usefulness for longitudinal research and spatiotemporal analysis. For activities like flood extent mapping, damage assessment, and infrastructure recovery projection, we provide baseline standards and evaluation metrics to promote research and development in the field of post-flood scene comprehension. By integrating FloodNet into machine learning pipelines, it will be easier to create reliable algorithms that will help politicians, urban planners, and first responders make choices both before and after floods. The goal of the FloodNet dataset is to support advances in computer vision, remote sensing, and disaster response technologies by providing a useful resource for researchers. FloodNet helps to create creative solutions for boosting communities' resilience in the face of natural catastrophes by tackling the particular problems presented by post-flood situations.Keywords: image classification, segmentation, computer vision, nature disaster, unmanned arial vehicle(UAV), machine learning.
Procedia PDF Downloads 782179 The Impact of Developing an Educational Unit in the Light of Twenty-First Century Skills in Developing Language Skills for Non-Arabic Speakers: A Proposed Program for Application to Students of Educational Series in Regular Schools
Authors: Erfan Abdeldaim Mohamed Ahmed Abdalla
Abstract:
The era of the knowledge explosion in which we live requires us to develop educational curricula quantitatively and qualitatively to adapt to the twenty-first-century skills of critical thinking, problem-solving, communication, cooperation, creativity, and innovation. The process of developing the curriculum is as significant as building it; in fact, the development of curricula may be more difficult than building them. And curriculum development includes analyzing needs, setting goals, designing the content and educational materials, creating language programs, developing teachers, applying for programmes in schools, monitoring and feedback, and then evaluating the language programme resulting from these processes. When we look back at the history of language teaching during the twentieth century, we find that developing the delivery method is the most crucial aspect of change in language teaching doctrines. The concept of delivery method in teaching is a systematic set of teaching practices based on a specific theory of language acquisition. This is a key consideration, as the process of development must include all the curriculum elements in its comprehensive sense: linguistically and non-linguistically. The various Arabic curricula provide the student with a set of units, each unit consisting of a set of linguistic elements. These elements are often not logically arranged, and more importantly, they neglect essential points and highlight other less important ones. Moreover, the educational curricula entail a great deal of monotony in the presentation of content, which makes it hard for the teacher to select adequate content; so that the teacher often navigates among diverse references to prepare a lesson and hardly finds the suitable one. Similarly, the student often gets bored when learning the Arabic language and fails to fulfill considerable progress in it. Therefore, the problem is not related to the lack of curricula, but the problem is the development of the curriculum with all its linguistic and non-linguistic elements in accordance with contemporary challenges and standards for teaching foreign languages. The Arabic library suffers from a lack of references for curriculum development. In this paper, the researcher investigates the elements of development, such as the teacher, content, methods, objectives, evaluation, and activities. Hence, a set of general guidelines in the field of educational development were reached. The paper highlights the need to identify weaknesses in educational curricula, decide the twenty-first-century skills that must be employed in Arabic education curricula, and the employment of foreign language teaching standards in current Arabic Curricula. The researcher assumes that the series of teaching Arabic to speakers of other languages in regular schools do not address the skills of the twenty-first century, which is what the researcher tries to apply in the proposed unit. The experimental method is the method of this study. It is based on two groups: experimental and control. The development of an educational unit will help build suitable educational series for students of the Arabic language in regular schools, in which twenty-first-century skills and standards for teaching foreign languages will be addressed and be more useful and attractive to students.Keywords: curriculum, development, Arabic language, non-native, skills
Procedia PDF Downloads 842178 Ultracapacitor State-of-Energy Monitoring System with On-Line Parameter Identification
Authors: N. Reichbach, A. Kuperman
Abstract:
The paper describes a design of a monitoring system for super capacitor packs in propulsion systems, allowing determining the instantaneous energy capacity under power loading. The system contains real-time recursive-least-squares identification mechanism, estimating the values of pack capacitance and equivalent series resistance. These values are required for accurate calculation of the state-of-energy.Keywords: real-time monitoring, RLS identification algorithm, state-of-energy, super capacitor
Procedia PDF Downloads 5352177 Analysis of Standard Tramway Surge Protection Methods Based on Real Cases
Authors: Alain Rousseau, Alfred Aragones, Gilles Rougier
Abstract:
The study is based on lightning and surge standards mainly the EN series 62305 for facility protection, EN series 61643 for Low Voltage Surge Protective Devices, High Voltage surge arrester standard en 60099-4 and the traction arrester standards namely EN 50526-1 and 50526-1 dealing respectively with railway applications fixed installations D.C. surge arresters and voltage limiting devices. The more severe stress for tramways installations is caused by direct lightning on the catenary line. In such case, the surge current propagates towards the various poles and sparkover the insulators leading to a lower stress. If the impact point is near enough, a significant surge current will flow towards the traction surge arrester that is installed on the catenary at the location the substation is connected. Another surge arrester can be installed at the entrance of the substation or even inside the rectifier to avoid insulation damages. In addition, surge arresters can be installed between + and – to avoid damaging sensitive circuits. Based on disturbances encountered in a substation following a lighting event, the engineering department of RATP has decided to investigate the cause of such damage and more generally to question the efficiency of the various possible protection means. Based on the example of a recent tramway line the paper present the result of a lightning study based on direct lightning strikes. As a matter of fact, the induced surges on the catenary are much more frequent but much less damaging. First, a lightning risk assessment is performed for the substations that takes into account direct lightning and induced lightning both on the substation and its connected lines such as the catenary. Then the paper deals with efficiency of the various surge arresters is discussed based on field experience and calculations. The efficiency of the earthing system used at the bottom of the pole is also addressed based on high frequency earthing measurement. As a conclusion, the paper is making recommendations for an enhanced efficiency of existing protection means.Keywords: surge arrester, traction, lightning, risk, surge protective device
Procedia PDF Downloads 2592176 The Application of Video Segmentation Methods for the Purpose of Action Detection in Videos
Authors: Nassima Noufail, Sara Bouhali
Abstract:
In this work, we develop a semi-supervised solution for the purpose of action detection in videos and propose an efficient algorithm for video segmentation. The approach is divided into video segmentation, feature extraction, and classification. In the first part, a video is segmented into clips, and we used the K-means algorithm for this segmentation; our goal is to find groups based on similarity in the video. The application of k-means clustering into all the frames is time-consuming; therefore, we started by the identification of transition frames where the scene in the video changes significantly, and then we applied K-means clustering into these transition frames. We used two image filters, the gaussian filter and the Laplacian of Gaussian. Each filter extracts a set of features from the frames. The Gaussian filter blurs the image and omits the higher frequencies, and the Laplacian of gaussian detects regions of rapid intensity changes; we then used this vector of filter responses as an input to our k-means algorithm. The output is a set of cluster centers. Each video frame pixel is then mapped to the nearest cluster center and painted with a corresponding color to form a visual map. The resulting visual map had similar pixels grouped. We then computed a cluster score indicating how clusters are near each other and plotted a signal representing frame number vs. clustering score. Our hypothesis was that the evolution of the signal would not change if semantically related events were happening in the scene. We marked the breakpoints at which the root mean square level of the signal changes significantly, and each breakpoint is an indication of the beginning of a new video segment. In the second part, for each segment from part 1, we randomly selected a 16-frame clip, then we extracted spatiotemporal features using convolutional 3D network C3D for every 16 frames using a pre-trained model. The C3D final output is a 512-feature vector dimension; hence we used principal component analysis (PCA) for dimensionality reduction. The final part is the classification. The C3D feature vectors are used as input to a multi-class linear support vector machine (SVM) for the training model, and we used a multi-classifier to detect the action. We evaluated our experiment on the UCF101 dataset, which consists of 101 human action categories, and we achieved an accuracy that outperforms the state of art by 1.2%.Keywords: video segmentation, action detection, classification, Kmeans, C3D
Procedia PDF Downloads 772175 Biomimetic Dinitrosyl Iron Complexes: A Synthetic, Structural, and Spectroscopic Study
Authors: Lijuan Li
Abstract:
Nitric oxide (NO) has become a fascinating entity in biological chemistry over the past few years. It is a gaseous lipophilic radical molecule that plays important roles in several physiological and pathophysiological processes in mammals, including activating the immune response, serving as a neurotransmitter, regulating the cardiovascular system, and acting as an endothelium-derived relaxing factor. NO functions in eukaryotes both as a signal molecule at nanomolar concentrations and as a cytotoxic agent at micromolar concentrations. The latter arises from the ability of NO to react readily with a variety of cellular targets leading to thiol S-nitrosation, amino acid N-nitrosation, and nitrosative DNA damage. Nitric oxide can readily bind to metals to give metal-nitrosyl (M-NO) complexes. Some of these species are known to play roles in biological NO storage and transport. These complexes have different biological, photochemical, or spectroscopic properties due to distinctive structural features. These recent discoveries have spawned a great interest in the development of transition metal complexes containing NO, particularly its iron complexes that are central to the role of nitric oxide in the body. Spectroscopic evidence would appear to implicate species of “Fe(NO)2+” type in a variety of processes ranging from polymerization, carcinogenesis, to nitric oxide stores. Our research focuses on isolation and structural studies of non-heme iron nitrosyls that mimic biologically active compounds and can potentially be used for anticancer drug therapy. We have shown that reactions between Fe(NO)2(CO)2 and a series of imidazoles generated new non-heme iron nitrosyls of the form Fe(NO)2(L)2 [L = imidazole, 1-methylimidazole, 4-methylimidazole, benzimidazole, 5,6-dimethylbenzimidazole, and L-histidine] and a tetrameric cluster of [Fe(NO)2(L)]4 (L=Im, 4-MeIm, BzIm, and Me2BzIm), resulted from the interactions of Fe(NO)2 with a series of substituted imidazoles was prepared. Recently, a series of sulfur bridged iron di nitrosyl complexes with the general formula of [Fe(µ-RS)(NO)2]2 (R = n-Pr, t-Bu, 6-methyl-2-pyridyl, and 4,6-dimethyl-2-pyrimidyl), were synthesized by the reaction of Fe(NO)2(CO)2 with thiols or thiolates. Their structures and properties were studied by IR, UV-vis, 1H-NMR, EPR, electrochemistry, X-ray diffraction analysis and DFT calculations. IR spectra of these complexes display one weak and two strong NO stretching frequencies (νNO) in solution, but only two strong νNO in solid. DFT calculations suggest that two spatial isomers of these complexes bear 3 Kcal energy difference in solution. The paramagnetic complexes [Fe2(µ-RS)2(NO)4]-, have also been investigated by EPR spectroscopy. Interestingly, the EPR spectra of complexes exhibit an isotropic signal of g = 1.998 - 2.004 without hyperfine splitting. The observations are consistent with the results of calculations, which reveal that the unpaired electron dominantly delocalize over the two sulfur and two iron atoms. The difference of the g values between the reduced form of iron-sulfur clusters and the typical monomeric di nitrosyl iron complexes is explained, for the first time, by of the difference in unpaired electron distributions between the two types of complexes, which provides the theoretical basis for the use of g value as a spectroscopic tool to differentiate these biologically active complexes.Keywords: di nitrosyl iron complex, metal nitrosyl, non-heme iron, nitric oxide
Procedia PDF Downloads 3042174 Statistical Models and Time Series Forecasting on Crime Data in Nepal
Authors: Dila Ram Bhandari
Abstract:
Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.Keywords: time series analysis, forecasting, ARIMA, machine learning
Procedia PDF Downloads 164