Search results for: slope instrumentation
159 Analysis of Factors Influencing the Response Time of an Aspirating Gaseous Agent Concentration Detection Method
Authors: Yu Guan, Song Lu, Wei Yuan, Heping Zhang
Abstract:
Gas fire extinguishing system is widely used due to its cleanliness and efficiency, and since its spray will be affected by many factors such as convection and obstacles in jetting region, so in order to evaluate its effectiveness, detecting concentration distribution in the jetting area is indispensable, which is commonly achieved by aspirating concentration detection technique. During the concentration measurement, the response time of detector is a very important parameter, especially for those fire-extinguishing systems with rapid gas dispersion. Long response time will not only underestimate its concentration but also prolong the change of concentration with time. Therefore it is necessary to analyze the factors influencing the response time. In the paper, an aspirating concentration detection method was introduced, which is achieved by using a small critical nozzle and a laminar flowmeter, and because of the response time is mainly related to the gas transport process from sampling site to the sensor, the effects of exhaust pipe size, gas flow rate, and gas concentration on its response time were analyzed. During the research, Bromotrifluoromethane (CBrF₃) was used. The effect of the sampling tube was investigated with different length of 1, 2, 3, 4 and 5 m (5mm in pipe diameter) and different pipe diameter of 3, 4, 5, 6 and 8 mm (3m in length). The effect of gas flow rate was analyzed by changing the throat diameter of the critical nozzle with 0.5, 0.682, 0.75, 0.8, 0.84 and 0.88 mm. The effect of gas concentration on response time was studied with the concentration range of 0-25%. The result showed that the response time increased with the increase of both the length and diameter of the sampling pipe, and the effect of length on response time was linear, but for the effect of diameter, it was exponential. It was also found that as the throat diameter of critical nozzle increased, the response time reduced a lot, in other words, gas flow rate has a great influence on response time. For the effect of gas concentration, the response time increased with the increase of the CBrF₃ concentration, and the slope of the curve was reduced.Keywords: aspirating concentration detection, fire extinguishing, gaseous agent, response time
Procedia PDF Downloads 269158 Evaluating the Terrace Benefits of Erosion in a Terraced-Agricultural Watershed for Sustainable Soil and Water Conservation
Authors: Sitarrine Thongpussawal, Hui Shao, Clark Gantzer
Abstract:
Terracing is a conservation practice to reduce erosion and widely used for soil and water conservation throughout the world but is relatively expensive. A modification of the Soil and Water Assessment Tool (called SWAT-Terrace or SWAT-T) explicitly aims to improve the simulation of the hydrological process of erosion from the terraces. SWAT-T simulates erosion from the terraces by separating terraces into three segments instead of evaluating the entire terrace. The objective of this work is to evaluate the terrace benefits on erosion from the Goodwater Creek Experimental Watershed (GCEW) at watershed and Hydrologic Response Unit (HRU) scales using SWAT-T. The HRU is the smallest spatial unit of the model, which lumps all similar land uses, soils, and slopes within a sub-basin. The SWAT-T model was parameterized for slope length, steepness and the empirical Universal Soil Erosion Equation support practice factor for three terrace segments. Data from 1993-2010 measured at the watershed outlet were used to evaluate the models for calibration and validation. Results of SWAT-T calibration showed good performance between measured and simulated erosion for the monthly time step, but poor performance for SWAT-T validation. This is probably because of large storms in spring 2002 that prevented planting, causing poorly simulated scheduling of actual field operations. To estimate terrace benefits on erosion, models were compared with and without terraces. Results showed that SWAT-T showed significant ~3% reduction in erosion (Pr <0.01) at the watershed scale and ~12% reduction in erosion at the HRU scale. Studies using the SWAT-T model indicated that the terraces have advantages to reduce erosion from terraced-agricultural watersheds. SWAT-T can be used in the evaluation of erosion to sustainably conserve the soil and water.Keywords: Erosion, Modeling, Terraces, SWAT
Procedia PDF Downloads 205157 Fluvial Stage-Discharge Rating of a Selected Reach of Jamuna River
Authors: Makduma Zahan Badhan, M. Abdul Matin
Abstract:
A study has been undertaken to develop a fluvial stage-discharge rating curve for Jamuna River. Past Cross-sectional survey of Jamuna River reach within Sirajgonj and Tangail has been analyzed. The analysis includes the estimation of discharge carrying capacity, possible maximum scour depth and sediment transport capacity of the selected reaches. To predict the discharge and sediment carrying capacity, stream flow data which include cross-sectional area, top width, water surface slope and median diameter of the bed material of selected stations have been collected and some are calculated from reduced level data. A well-known resistance equation has been adopted and modified to a simple form in order to be used in the present analysis. The modified resistance equation has been used to calculate the mean velocity through the channel sections. In addition, a sediment transport equation has been applied for the prediction of transport capacity of the various sections. Results show that the existing drainage sections of Jamuna channel reach under study have adequate carrying capacity under existing bank-full conditions, but these reaches are subject to bed erosion even in low flow situations. Regarding sediment transport rate, it can be estimated that the channel flow has a relatively high range of bed material concentration. Finally, stage discharge curves for various sections have been developed. Based on stage-discharge rating data of various sections, water surface profile and sediment-rating curve of Jamuna River have been developed and also the flooding conditions have been analyzed from predicted water surface profile.Keywords: discharge rating, flow profile, fluvial, sediment rating
Procedia PDF Downloads 183156 Feasibility of Solar Distillation as Household Water Supply in Saline Zones of Bangladesh
Authors: Md. Rezaul Karim, Md. Ashikur Rahman, Dewan Mahmud Mim
Abstract:
Scarcity of potable water as the result of rapid climate change and saltwater intrusion in groundwater has been a major problem in the coastal regions over the world. In equinoctial countries like Bangladesh, where sunlight is available for more than 10 hours a day, Solar Distillation provides a promising sustainable way for safe drinking water supply in coastal poor households with negligible major cost and difficulty of construction and maintenance. In this paper, two passive type solar stills- a Conventional Single Slope Solar still (CSS) and a Pyramid Solar Sill (PSS) is used and relationship is established between distill water output corresponding to four different factors- temperature, solar intensity, relative humidity and wind speed for Gazipur, Bangladesh. Comparison is analyzed between the two different still outputs for nine months period (January- September) and efficiency is calculated. Later a thermal mathematical model is developed and the distilled water output for Khulna, Bangladesh is computed. Again, difference between the output of the two cities- Gazipur and Khulna is demonstrated and finally an economic analysis is prepared. The distillation output has a positive correlation with temperature and solar intensity, inverse relation with relative humidity and wind speed has nugatory consequence. The maximum output of Conventional Solar Still is obtained 3.8 L/m2/day and Pyramid still is 4.3 L/m2/day for Gazipur and almost 15% more efficiency is found for Pyramid still. Productivity in Khulna is found almost 20% more than Gazipur. Based on economic analysis, taking 10 BDT, per liter, the net profit, benefit cost ratio, payback period all indicates that both stills are feasible but pyramid still is more feasible than Conventional Still. Finally, for a 3-4 member family, area of 4 m2 is suggested for Conventional Still and 3m2 for Pyramid Solar Still.Keywords: solar distillation, household water supply, saline zones, Bangladesh
Procedia PDF Downloads 270155 Studies on Climatic and Soil Site Suitability of Major Grapes-Growing Soils of Eastern and Southern Dry Zones of Karnataka
Authors: Harsha B. R., Anil Kumar K. S.
Abstract:
Climate and soils are the two most dynamic entities among the factors affecting growth and grapes productivity. Studying of prevailing climate over the years in a region provides sufficient information related to management practices to be carried out in vineyards. Evaluating the suitability of vineyard soils under different climatic conditions serves as the yardstick to analyse the performance of grapevines. This study was formulated to study the climate and evaluate the site-suitability of soils in vineyards of southern Karnataka, which has registered its superiority in the quality production of wine. Ten soil profiles were excavated for suitability evaluation of soils, and six taluks were studied for climatic analysis. In almost all the regions studied, recharge starts at the end of the May or June months, peaking in either September or October months. Soil Starts drying from mid of December months in the taluks studied. Bangalore North (Rajanukunte) soils were highly suited for grapes cultivation with no or slight limitations. Bangalore North (GKVK Farm) was moderately suited with slight to moderate limitations of slope and available nitrogen content. Moderate suitability was observed in the rest of the profiles studied in Eastern dry zone soils with the slight to moderate limitations of either organic carbon or available nitrogen or both in the Eastern dry zone. Magadi (Southern dry zone) soils were moderately suitable with slight to moderate limitations of graveliness, available nitrogen, organic carbon, and exchangeable sodium percentage. Sustainable performance of vineyards in terms of yield can be achieved in these taluks by managing the constraints existing in soils.Keywords: climatic analysis, dry zone, water recharge, growing period, suitability, sustainability
Procedia PDF Downloads 123154 Design, Development and Analysis of Combined Darrieus and Savonius Wind Turbine
Authors: Ashish Bhattarai, Bishnu Bhatta, Hem Raj Joshi, Nabin Neupane, Pankaj Yadav
Abstract:
This report concerns the design, development, and analysis of the combined Darrieus and Savonius wind turbine. Vertical Axis Wind Turbines (VAWT's) are of two type's viz. Darrieus (lift type) and Savonius (drag type). The problem associated with Darrieus is the lack of self-starting while Savonius has low efficiency. There are 3 straight Darrieus blades having the cross-section of NACA(National Advisory Committee of Aeronautics) 0018 placed circumferentially and a helically twisted Savonius blade to get even torque distribution. This unique design allows the use of Savonius as a method of self-starting the wind turbine, which the Darrieus cannot achieve on its own. All the parts of the wind turbine are designed in CAD software, and simulation data were obtained via CFD(Computational Fluid Dynamics) approach. Also, the design was imported to FlashForge Finder to 3D print the wind turbine profile and finally, testing was carried out. The plastic material used for Savonius was ABS(Acrylonitrile Butadiene Styrene) and that for Darrieus was PLA(Polylactic Acid). From the data obtained experimentally, the hybrid VAWT so fabricated has been found to operate at the low cut-in speed of 3 m/s and maximum power output has been found to be 7.5537 watts at the wind speed of 6 m/s. The maximum rpm of the rotor blade is recorded to be 431 rpm(rotation per minute) at the wind velocity of 6 m/s, signifying its potentiality of wind power production. Besides, the data so obtained from both the process when analyzed through graph plots has shown the similar nature slope wise. Also, the difference between the experimental and theoretical data obtained has shown mechanical losses. The objective is to eliminate the need for external motors for self-starting purposes and study the performance of the model. The testing of the model was carried out for different wind velocities.Keywords: VAWT, Darrieus, Savonius, helical blades, CFD, flash forge finder, ABS, PLA
Procedia PDF Downloads 208153 Design, Construction, Validation And Use Of A Novel Portable Fire Effluent Sampling Analyser
Authors: Gabrielle Peck, Ryan Hayes
Abstract:
Current large scale fire tests focus on flammability and heat release measurements. Smoke toxicity isn’t considered despite it being a leading cause of death and injury in unwanted fires. A key reason could be that the practical difficulties associated with quantifying individual toxic components present in a fire effluent often require specialist equipment and expertise. Fire effluent contains a mixture of unreactive and reactive gases, water, organic vapours and particulate matter, which interact with each other. This interferes with the operation of the analytical instrumentation and must be removed without changing the concentration of the target analyte. To mitigate the need for expensive equipment and time-consuming analysis, a portable gas analysis system was designed, constructed and tested for use in large-scale fire tests as a simpler and more robust alternative to online FTIR measurements. The novel equipment aimed to be easily portable and able to run on battery or mains electricity; be able to be calibrated at the test site; be capable of quantifying CO, CO2, O2, HCN, HBr, HCl, NOx and SO2 accurately and reliably; be capable of independent data logging; be capable of automated switchover of 7 bubblers; be able to withstand fire effluents; be simple to operate; allow individual bubbler times to be pre-set; be capable of being controlled remotely. To test the analysers functionality, it was used alongside the ISO/TS 19700 Steady State Tube Furnace (SSTF). A series of tests were conducted to assess the validity of the box analyser measurements and the data logging abilities of the apparatus. PMMA and PA 6.6 were used to assess the validity of the box analyser measurements. The data obtained from the bench-scale assessments showed excellent agreement. Following this, the portable analyser was used to monitor gas concentrations during large-scale testing using the ISO 9705 room corner test. The analyser was set up, calibrated and set to record smoke toxicity measurements in the doorway of the test room. The analyser was successful in operating without manual interference and successfully recorded data for 12 of the 12 tests conducted in the ISO room tests. At the end of each test, the analyser created a data file (formatted as .csv) containing the measured gas concentrations throughout the test, which do not require specialist knowledge to interpret. This validated the portable analyser’s ability to monitor fire effluent without operator intervention on both a bench and large-scale. The portable analyser is a validated and significantly more practical alternative to FTIR, proven to work for large-scale fire testing for quantification of smoke toxicity. The analyser is a cheaper, more accessible option to assess smoke toxicity, mitigating the need for expensive equipment and specialist operators.Keywords: smoke toxicity, large-scale tests, iso 9705, analyser, novel equipment
Procedia PDF Downloads 76152 Impact of Marine Hydrodynamics and Coastal Morphology on Changes in Mangrove Forests (Case Study: West of Strait of Hormuz, Iran)
Authors: Fatemeh Parhizkar, Mojtaba Yamani, Abdolla Behboodi, Masoomeh Hashemi
Abstract:
The mangrove forests are natural and valuable gifts that exist in some parts of the world, including Iran. Regarding the threats faced by these forests and the declining area of them all over the world, as well as in Iran, it is very necessary to manage and monitor them. The current study aimed to investigate the changes in mangrove forests and the relationship between these changes and the marine hydrodynamics and coastal morphology in the area between qeshm island and the west coast of the Hormozgan province (i.e. the coastline between Mehran river and Bandar-e Pol port) in the 49-year period. After preprocessing and classifying satellite images using the SVM, MLC, and ANN classifiers and evaluating the accuracy of the maps, the SVM approach with the highest accuracy (the Kappa coefficient of 0.97 and overall accuracy of 98) was selected for preparing the classification map of all images. The results indicate that from 1972 to 1987, the area of these forests have had experienced a declining trend, and in the next years, their expansion was initiated. These forests include the mangrove forests of Khurkhuran wetland, Muriz Deraz Estuary, Haft Baram Estuary, the mangrove forest in the south of the Laft Port, and the mangrove forests between the Tabl Pier, Maleki Village, and Gevarzin Village. The marine hydrodynamic and geomorphological characteristics of the region, such as average intertidal zone, sediment data, the freshwater inlet of Mehran river, wave stability and calmness, topography and slope, as well as mangrove conservation projects make the further expansion of mangrove forests in this area possible. By providing significant and up-to-date information on the development and decline of mangrove forests in different parts of the coast, this study can significantly contribute to taking measures for the conservation and restoration of mangrove forests.Keywords: mangrove forests, marine hydrodynamics, coastal morphology, west of strait of Hormuz, Iran
Procedia PDF Downloads 94151 Geological and Geotechnical Approach for Stabilization of Cut-Slopes in Power House Area of Luhri HEP Stage-I (210 MW), India
Authors: S. P. Bansal, Mukesh Kumar Sharma, Ankit Prabhakar
Abstract:
Luhri Hydroelectric Project Stage-I (210 MW) is a run of the river type development with a dam toe surface powerhouse (122m long, 50.50m wide, and 65.50m high) on the right bank of river Satluj in Himachal Pradesh, India. The project is located in the inner lesser Himalaya between Dhauladhar Range in the south and higher Himalaya in the north in the seismically active region. At the project, the location river is confined within narrow V-shaped valleys with little or no flat areas close to the river bed. Nearly 120m high cut slopes behind the powerhouse are proposed from the powerhouse foundation level of 795m to ± 915m to accommodate the surface powerhouse. The stability of 120m high cut slopes is a prime concern for the reason of risk involved. The slopes behind the powerhouse will be excavated in mainly in augen gneiss, fresh to weathered in nature, and biotite rich at places. The foliation joints are favorable and dipping inside the hill. Two valleys dipping steeper joints will be encountered on the slopes, which can cause instability during excavation. Geological exploration plays a vital role in designing and optimization of cut slopes. SWEDGE software has been used to analyze the geometry and stability of surface wedges in cut slopes. The slopes behind powerhouse have been analyzed in three zones for stability analysis by providing a break in the continuity of cut slopes, which shall provide quite substantial relief for slope stabilization measure. Pseudo static analysis has been carried out for the stabilization of wedges. The results indicate that many large wedges are forming, which have a factor of safety less than 1. The stability measures (support system, bench width, slopes) have been planned so that no wedge failure may occur in the future.Keywords: cut slopes, geotechnical investigations, Himalayan geology, surface powerhouse, wedge failure
Procedia PDF Downloads 116150 Site Investigations and Mitigation Measures of Landslides in Sainj and Tirthan Valley of Kullu District, Himachal Pradesh, India
Authors: Laxmi Versain, R. S. Banshtu
Abstract:
Landslides are found to be the most commonly occurring geological hazards in the mountainous regions of the Himalaya. This mountainous zone is facing large number of seismic turbulences, climatic changes, and topography changes due to increasing urbanization. That eventually has lead several researchers working for best suitable methodologies to infer the ultimate results. Landslide Hazard Zonation has widely come as suitable method to know the appropriate factors that trigger the lansdslide phenomenon on higher reaches. Most vulnerable zones or zones of weaknesses are indentified and safe mitigation measures are to be suggested to mitigate and channelize the study of an effected area. Use of Landslide Hazard Zonation methodology in relative zones of weaknesses depend upon the data available for the particular site. The causative factors are identified and data is made available to infer the results. Factors like seismicity in mountainous region have closely associated to make the zones of thrust and faults or lineaments more vulnerable. Data related to soil, terrain, rainfall, geology, slope, nature of terrain, are found to be varied for various landforms and areas. Thus, the relative causes are to be identified and classified by giving specific weightage to each parameter. Factors which cause the instability of slopes are several and can be grouped to infer the potential modes of failure. The triggering factors of the landslides on the mountains are not uniform. The urbanization has crawled like ladder and emergence of concrete jungles are in a very fast pace on hilly region of Himalayas. The local terrains has largely been modified and hence instability of several zones are triggering at very fast pace. More strategic and pronounced methods are required to reduce the effect of landslide.Keywords: zonation, LHZ, susceptible, weightages, methodology
Procedia PDF Downloads 195149 Modeling and Analysis Of Occupant Behavior On Heating And Air Conditioning Systems In A Higher Education And Vocational Training Building In A Mediterranean Climate
Authors: Abderrahmane Soufi
Abstract:
The building sector is the largest consumer of energy in France, accounting for 44% of French consumption. To reduce energy consumption and improve energy efficiency, France implemented an energy transition law targeting 40% energy savings by 2030 in the tertiary building sector. Building simulation tools are used to predict the energy performance of buildings but the reliability of these tools is hampered by discrepancies between the real and simulated energy performance of a building. This performance gap lies in the simplified assumptions of certain factors, such as the behavior of occupants on air conditioning and heating, which is considered deterministic when setting a fixed operating schedule and a fixed interior comfort temperature. However, the behavior of occupants on air conditioning and heating is stochastic, diverse, and complex because it can be affected by many factors. Probabilistic models are an alternative to deterministic models. These models are usually derived from statistical data and express occupant behavior by assuming a probabilistic relationship to one or more variables. In the literature, logistic regression has been used to model the behavior of occupants with regard to heating and air conditioning systems by considering univariate logistic models in residential buildings; however, few studies have developed multivariate models for higher education and vocational training buildings in a Mediterranean climate. Therefore, in this study, occupant behavior on heating and air conditioning systems was modeled using logistic regression. Occupant behavior related to the turn-on heating and air conditioning systems was studied through experimental measurements collected over a period of one year (June 2023–June 2024) in three classrooms occupied by several groups of students in engineering schools and professional training. Instrumentation was provided to collect indoor temperature and indoor relative humidity in 10-min intervals. Furthermore, the state of the heating/air conditioning system (off or on) and the set point were determined. The outdoor air temperature, relative humidity, and wind speed were collected as weather data. The number of occupants, age, and sex were also considered. Logistic regression was used for modeling an occupant turning on the heating and air conditioning systems. The results yielded a proposed model that can be used in building simulation tools to predict the energy performance of teaching buildings. Based on the first months (summer and early autumn) of the investigations, the results illustrate that the occupant behavior of the air conditioning systems is affected by the indoor relative humidity and temperature in June, July, and August and by the indoor relative humidity, temperature, and number of occupants in September and October. Occupant behavior was analyzed monthly, and univariate and multivariate models were developed.Keywords: occupant behavior, logistic regression, behavior model, mediterranean climate, air conditioning, heating
Procedia PDF Downloads 57148 Judging Restoration Success of Kamisaigo River Japan
Authors: Rita Lopa, Yukihiro Shimatani
Abstract:
The focus of this research is 880m extension development along the Kamisaigo River. The river is flowing tributary of grade 2 rivers Fukutsu City, Fukuoka Prefecture. This river is a small-scale urban river and the river was formerly a straight concrete sea wall construction. The river runs through National Highway No. 3 from the confluence of Saigo River. The study covers the river basin about 326 ha with a catchment area of 20.63 ha and 4,700 m3 capacity regulating pond. The river is not wide, shallow, and has a straight alignment with active (un-vegetated) river channel sinuosity (ratio of river length to valley length) ranging between 1 and 1.3. However, the alignment of the low-flow river channel does have meandering or sinuous characteristics. Flooding is likely to occur. It has become difficult to live in the environment for organisms of the river. Hydrophilic is very low (children cannot play). There is little connection with the local community. Overall, the Kamisaigo River watershed is heavily urbanized and from a morphological, biological and habitat perspective, Kamisaigo River functions marginally not well. For river improvement and maintenance of the Kamisaigo River, the workshop was conducted in the form of planning for the proposed model is presented by the Watershed Management Laboratory. This workshop showed the relationship between citizens, City Government, and University of mutual trust has been established, that have been made landscape, environment, usage, etc.: retaining wall maintenance, hydrophilic zone, landscape zone, nature walks zone: adjacent medical facilities and adjacent to large commercial facilities. Propose of Nature walks zone with point of the design: provide slope that the wheelchair can access and walking paths to enjoy the scenery, and summary of the Kamisaigo River workshop: creating a multi-model study and creation of natural rivers.Keywords: river restoration, river improvement, natural rivers, Saigo River
Procedia PDF Downloads 354147 The Effects of Water Fraction and Salinity on Crude Oil-Water Dispersions
Authors: Ramin Dabirian, Yi Zhang, Ilias Gavrielatos, Ram Mohan, Ovadia Shoham
Abstract:
Oil-water emulsions can be found in almost every part of the petroleum industry, namely in reservoir rocks, drilling cuttings circulation, production in wells, transportation pipelines, surface facilities and refining process. However, it is necessary for oil production and refinery engineers to resolve the petroleum emulsion problems as well as to eliminate the contaminants in order to meet environmental standards, achieve the desired product quality and to improve equipment reliability and efficiency. A state-of-art Dispersion Characterization Rig (DCR) has been utilized to investigate crude oil-distilled water dispersion separation. Over 80 experimental tests were ran to investigate the flow behavior and stability of the dispersions. The experimental conditions include the effects of water cuts (25%, 50% and 75%), NaCl concentrations (0, 3.5% and 18%), mixture flow velocities (0.89 and 1.71 ft/s), and also orifice place types on the separation rate. The experimental data demonstrate that the water cut can significantly affects the separation time and efficiency. The dispersion with lower water cut takes longer time to separate and have low separation efficiency. The medium and lower water cuts will result in the formation of Mousse emulsion and the phase inversion happens around the medium water cut. The data also confirm that increasing the NaCl concentration in aqueous phase can increase the crude oil water dispersion separation efficiency especially at higher salinities. The separation profile for dispersions with lower salt concentrations has a lower sedimentation rate slope before the inflection point. Dispersions in all tests with higher salt concentrations have a larger sedimenting rate. The presence of NaCl can influence the interfacial tension gradients along the interface and it plays a role in avoiding the Mousse emulsion formation.Keywords: oil-water dispersion, separation mechanism, phase inversion, emulsion formation
Procedia PDF Downloads 180146 Influence of the Adsorption of Anionic–Nonionic Surfactants/Silica Nanoparticles Mixture on Clay Rock Minerals in Chemical Enhanced Oil Recovery
Authors: C. Mendoza Ramírez, M. Gambús Ordaz, R. Mercado Ojeda.
Abstract:
Chemical solutions flooding with surfactants, based on their property of reducing the interfacial tension between crude oil and water, is a potential application of chemical enhanced oil recovery (CEOR), however, the high-rate retention of surfactants associated with adsorption in the porous medium and the complexity of the mineralogical composition of the reservoir rock generates a limitation in the efficiency of displacement of crude oil. This study evaluates the effect of the concentration of a mixture of anionic-non-ionic surfactants with silica nanoparticles, in a rock sample composed of 25.14% clay minerals of the kaolinite, chlorite, halloysite and montmorillonite type, according to the results of X-Ray Diffraction analysis and Scanning Electron Spectrometry (XRD and SEM, respectively). The amount of the surfactant mixture adsorbed on the clay rock minerals was analyzed from the construction of its calibration curve and the 4-Region Isotherm Model in a UV-Visible spectroscopy. The adsorption rate of the surfactant in the clay rock averages 32% across all concentrations, influenced by the presence of the surface area of the substrate with a value of 1.6 m2/g and by the mineralogical composition of the clay that increases the cation exchange capacity (CEC). In addition, on Region I and II a final concentration measurement is not evident in the UV-VIS, due to its ionic nature, its high affinity with the clay rock and its low concentration. Finally, for potential CEOR applications, the adsorption of these mixed surfactant systems is considered due to their industrial relevance and it is concluded that it is possible to use concentrations in Region III and IV; initially the adsorption has an increasing slope and then reaches zero in the equilibrium where interfacial tension values are reached in the order of x10-1 mN/m.Keywords: anionic–nonionic surfactants, clay rock, adsorption, 4-region isotherm model, cation exchange capacity, critical micelle concentration, enhanced oil recovery
Procedia PDF Downloads 67145 Validity of a Timing System in the Alpine Ski Field: A Magnet-Based Timing System Using the Magnetometer Built into an Inertial Measurement Units
Authors: Carla Pérez-Chirinos Buxadé, Bruno Fernández-Valdés, Mónica Morral-Yepes, Sílvia Tuyà Viñas, Josep Maria Padullés Riu, Gerard Moras Feliu
Abstract:
There is a long way to explore all the possible applications inertial measurement units (IMUs) have in the sports field. The aim of this study was to evaluate the validity of a new application on the use of these wearable sensors, specifically it was to evaluate a magnet-based timing system (M-BTS) for timing gate-to-gate in an alpine ski slalom using the magnetometer embedded in an IMU. This was a validation study. The criterion validity of time measured by the M-BTS was assessed using the 95% error range against actual time obtained from photocells. The experiment was carried out with first-and second-year junior skiers performing a ski slalom on a ski training slope. Eight alpine skiers (17.4 ± 0.8 years, 176.4 ± 4.9 cm, 67.7 ± 2.0 kg, 128.8 ± 26.6 slalom FIS-Points) participated in the study. An IMU device was attached to the skier’s lower back. Skiers performed a 40-gate slalom from which four gates were assessed. The M-BTS consisted of placing four bar magnets buried into the snow surface on the inner side of each gate’s turning pole; the magnetometer built into the IMU detected the peak-shaped magnetic field when passing near the magnets at a certain speed. Four magnetic peaks were detected. The time compressed between peaks was calculated. Three inter-gate times were obtained for each system: photocells and M-BTS. The total time was defined as the time sum of the inter-gate times. The 95% error interval for the total time was 0.050 s for the ski slalom. The M-BTS is valid for timing gate-to-gate in an alpine ski slalom. Inter-gate times can provide additional data for analyzing a skier’s performance, such as asymmetries between left and right foot.Keywords: gate crossing time, inertial measurement unit, timing system, wearable sensor
Procedia PDF Downloads 182144 Land Suitability Assessment for Vineyards in Afghanistan Based on Physical and Socio-Economic Criteria
Authors: Sara Tokhi Arab, Tariq Salari, Ryozo Noguchi, Tofael Ahamed
Abstract:
Land suitability analysis is essential for table grape cultivation in order to increase its production and productivity under the dry condition of Afghanistan. In this context, the main aim of this paper was to determine the suitable locations for vineyards based on satellite remote sensing and GIS (geographical information system) in Kabul Province of Afghanistan. The Landsat8 OLI (operational land imager) and thermal infrared sensor (TIRS) and shuttle radar topography mission digital elevation model (SRTM DEM) images were processed to obtain the normalized difference vegetation index (NDVI), normalized difference moisture index (NDMI), land surface temperature (LST), and topographic criteria (elevation, aspect, and slope). Moreover, Jaxa rainfall (mm per hour), soil properties information are also used for the physical suitability of vineyards. Besides, socio-economic criteria were collected through field surveys from Kabul Province in order to develop the socio-economic suitability map. Finally, the suitable classes were determined using weighted overly based on a reclassification of each criterion based on AHP (Analytical Hierarchy Process) weights. The results indicated that only 11.1% of areas were highly suitable, 24.8% were moderately suitable, 35.7% were marginally suitable and 28.4% were not physically suitable for grapes production. However, 15.7% were highly suitable, 17.6% were moderately suitable, 28.4% were marginally suitable and 38.3% were not socio-economically suitable for table grapes production in Kabul Province. This research could help decision-makers, growers, and other stakeholders with conducting precise land assessments by identifying the main limiting factors for the production of table grapes management and able to increase land productivity more precisely.Keywords: vineyards, land physical suitability, socio-economic suitability, AHP
Procedia PDF Downloads 170143 Determination of Vinpocetine in Tablets with the Vinpocetine-Selective Electrode and Possibilities of Application in Pharmaceutical Analysis
Authors: Faisal A. Salih
Abstract:
Vinpocetine (Vin) is an ethyl ester of apovincamic acid and is a semisynthetic derivative of vincamine, an alkaloid from plants of the genus Periwinkle (plant) vinca minor. It was found that this compound stimulates cerebral metabolism: it increases the uptake of glucose and oxygen, as well as the consumption of these substances by the brain tissue. Vinpocetine enhances the flow of blood in the brain and has a vasodilating, antihypertensive, and antiplatelet effect. Vinpocetine seems to improve the human ability to acquire new memories and restore memories that have been lost. This drug has been clinically used for the treatment of cerebrovascular disorders such as stroke and dementia memory disorders, as well as in ophthalmology and otorhinolaryngology. It has no side effects, and no toxicity has been reported when using vinpocetine for a long time. For the quantitative determination of Vin in dosage forms, the HPLC methods are generally used. A promising alternative is potentiometry with Vin- selective electrode, which does not require expensive equipment and materials. Another advantage of the potentiometric method is that the pills and solutions for injections can be used directly without separation from matrix components, which reduces both analysis time and cost. In this study, it was found that the choice of a good plasticizer an electrode with the following membrane composition: PVC (32.8 wt.%), ortho-nitrophenyl octyl ether (66.6 wt.%), tetrakis-4-chlorophenyl borate (0.6 wt.%) exhibits excellent analytical performance: lower detection limit (LDL) 1.2•10⁻⁷ M, linear response range (LRR) 1∙10⁻³–3.9∙10⁻⁶ M, the slope of the electrode function 56.2±0.2 mV/decade). Vin masses per average tablet weight determined by direct potentiometry (DP) and potentiometric titration (PT) methods for the two different sets of 10 tablets were (100.35±0.2–100.36±0.1) mg for two sets of blister packs. The mass fraction of Vin in individual tablets, determined using DP, was (9.87 ± 0.02–10.16 ±0.02) mg, while the RSD was (0.13–0.35%). The procedure has very good reproducibility, and excellent compliance with the declared amounts was observed.Keywords: vinpocetine, potentiometry, ion selective electrode, pharmaceutical analysis
Procedia PDF Downloads 70142 Diagnosis of Intermittent High Vibration Peaks in Industrial Gas Turbine Using Advanced Vibrations Analysis
Authors: Abubakar Rashid, Muhammad Saad, Faheem Ahmed
Abstract:
This paper provides a comprehensive study pertaining to diagnosis of intermittent high vibrations on an industrial gas turbine using detailed vibrations analysis, followed by its rectification. Engro Polymer & Chemicals Limited, a Chlor-Vinyl complex located in Pakistan has a captive combined cycle power plant having two 28 MW gas turbines (make Hitachi) & one 15 MW steam turbine. In 2018, the organization faced an issue of high vibrations on one of the gas turbines. These high vibration peaks appeared intermittently on both compressor’s drive end (DE) & turbine’s non-drive end (NDE) bearing. The amplitude of high vibration peaks was between 150-170% on the DE bearing & 200-300% on the NDE bearing from baseline values. In one of these episodes, the gas turbine got tripped on “High Vibrations Trip” logic actuated at 155µm. Limited instrumentation is available on the machine, which is monitored with GE Bently Nevada 3300 system having two proximity probes installed at Turbine NDE, Compressor DE &at Generator DE & NDE bearings. Machine’s transient ramp-up & steady state data was collected using ADRE SXP & DSPI 408. Since only 01 key phasor is installed at Turbine high speed shaft, a derived drive key phasor was configured in ADRE to obtain low speed shaft rpm required for data analysis. By analyzing the Bode plots, Shaft center line plot, Polar plot & orbit plots; rubbing was evident on Turbine’s NDE along with increased bearing clearance of Turbine’s NDE radial bearing. The subject bearing was then inspected & heavy deposition of carbonized coke was found on the labyrinth seals of bearing housing with clear rubbing marks on shaft & housing covering at 20-25 degrees on the inner radius of labyrinth seals. The collected coke sample was tested in laboratory & found to be the residue of lube oil in the bearing housing. After detailed inspection & cleaning of shaft journal area & bearing housing, new radial bearing was installed. Before assembling the bearing housing, cleaning of bearing cooling & sealing air lines was also carried out as inadequate flow of cooling & sealing air can accelerate coke formation in bearing housing. The machine was then taken back online & data was collected again using ADRE SXP & DSPI 408 for health analysis. The vibrations were found in acceptable zone as per ISO standard 7919-3 while all other parameters were also within vendor defined range. As a learning from subject case, revised operating & maintenance regime has also been proposed to enhance machine’s reliability.Keywords: ADRE, bearing, gas turbine, GE Bently Nevada, Hitachi, vibration
Procedia PDF Downloads 145141 Characterization of the MOSkin Dosimeter for Accumulated Dose Assessment in Computed Tomography
Authors: Lenon M. Pereira, Helen J. Khoury, Marcos E. A. Andrade, Dean L. Cutajar, Vinicius S. M. Barros, Anatoly B. Rozenfeld
Abstract:
With the increase of beam widths and the advent of multiple-slice and helical scanners, concerns related to the current dose measurement protocols and instrumentation in computed tomography (CT) have arisen. The current methodology of dose evaluation, which is based on the measurement of the integral of a single slice dose profile using a 100 mm long cylinder ionization chamber (Ca,100 and CPPMA, 100), has been shown to be inadequate for wide beams as it does not collect enough of the scatter-tails to make an accurate measurement. In addition, a long ionization chamber does not offer a good representation of the dose profile when tube current modulation is used. An alternative approach has been suggested by translating smaller detectors through the beam plane and assessing the accumulated dose trough the integral of the dose profile, which can be done for any arbitrary length in phantoms or in the air. For this purpose, a MOSFET dosimeter of small dosimetric volume was used. One of its recently designed versions is known as the MOSkin, which is developed by the Centre for Medical Radiation Physics at the University of Wollongong, and measures the radiation dose at a water equivalent depth of 0.07 mm, allowing the evaluation of skin dose when placed at the surface, or internal point doses when placed within a phantom. Thus, the aim of this research was to characterize the response of the MOSkin dosimeter for X-ray CT beams and to evaluate its application for the accumulated dose assessment. Initially, tests using an industrial x-ray unit were carried out at the Laboratory of Ionization Radiation Metrology (LMRI) of Federal University of Pernambuco, in order to investigate the sensitivity, energy dependence, angular dependence, and reproducibility of the dose response for the device for the standard radiation qualities RQT 8, RQT 9 and RQT 10. Finally, the MOSkin was used for the accumulated dose evaluation of scans using a Philips Brilliance 6 CT unit, with comparisons made between the CPPMA,100 value assessed with a pencil ionization chamber (PTW Freiburg TW 30009). Both dosimeters were placed in the center of a PMMA head phantom (diameter of 16 cm) and exposed in the axial mode with collimation of 9 mm, 250 mAs and 120 kV. The results have shown that the MOSkin response was linear with doses in the CT range and reproducible (98.52%). The sensitivity for a single MOSkin in mV/cGy was as follows: 9.208, 7.691 and 6.723 for the RQT 8, RQT 9 and RQT 10 beams qualities respectively. The energy dependence varied up to a factor of ±1.19 among those energies and angular dependence was not greater than 7.78% within the angle range from 0 to 90 degrees. The accumulated dose and the CPMMA, 100 value were 3,97 and 3,79 cGy respectively, which were statistically equivalent within the 95% confidence level. The MOSkin was shown to be a good alternative for CT dose profile measurements and more than adequate to provide accumulated dose assessments for CT procedures.Keywords: computed tomography dosimetry, MOSFET, MOSkin, semiconductor dosimetry
Procedia PDF Downloads 309140 Determining the Extent and Direction of Relief Transformations Caused by Ski Run Construction Using LIDAR Data
Authors: Joanna Fidelus-Orzechowska, Dominika Wronska-Walach, Jaroslaw Cebulski
Abstract:
Mountain areas are very often exposed to numerous transformations connected with the development of tourist infrastructure. In mountain areas in Poland ski tourism is very popular, so agricultural areas are often transformed into tourist areas. The construction of new ski runs can change the direction and rate of slope development. The main aim of this research was to determine geomorphological and hydrological changes within slopes caused by ski run constructions. The study was conducted in the Remiaszów catchment in the Inner Polish Carpathians (southern Poland). The mean elevation of the catchment is 859 m a.s.l. and the maximum is 946 m a.s.l. The surface area of the catchment is 1.16 km2, of which 16.8% is the area of the two studied ski runs. The studied ski runs were constructed in 2014 and 2015. In order to determine the relief transformations connected with new ski run construction high resolution LIDAR data was analyzed. The general relief changes in the studied catchment were determined on the basis of ALS (Airborne Laser Scanning ) data obtained before (2013) and after (2016) ski run construction. Based on the two sets of ALS data a digital elevation models of differences (DoDs) was created, which made it possible to determine the quantitative relief changes in the entire studied catchment. Additionally, cross and longitudinal profiles were calculated within slopes where new ski runs were built. Detailed data on relief changes within selected test surfaces was obtained based on TLS (Terrestrial Laser Scanning). Hydrological changes within the analyzed catchment were determined based on the convergence and divergence index. The study shows that the construction of the new ski runs caused significant geomorphological and hydrological changes in the entire studied catchment. However, the most important changes were identified within the ski slopes. After the construction of ski runs the entire catchment area lowered about 0.02 m. Hydrological changes in the studied catchment mainly led to the interruption of surface runoff pathways and changes in runoff direction and geometry.Keywords: hydrological changes, mountain areas, relief transformations, ski run construction
Procedia PDF Downloads 142139 Treatment with RRx-001, a Minimally Toxic NLRP3 Inhibitor in Phase 3 Clinical Trials, Improves Exercise and Skeletal Muscle Oxidative Capacity in Untrained Mice
Authors: Pedro Cabrales, Scott Caroen, Tony R. Reid, Bryan Oronsky
Abstract:
Introduction and Purpose RRx-001 is an NLRP3 inhibitor and Nrf2 agonist in Phase 3 trials for the treatment of cancer. The purpose of this study was to examine whether treatment with RRx-001, given itsanti-inflammatory and antioxidant properties, improvedexercise and skeletal muscle oxidative capacity in mice on the generalpremiss that better health outcomes correlatewith more activity. Material and Methods Male and female adult mice (n=6 per group) were subjected to an endurance exercise capacity (EEC)test until exhaustion on a motorized treadmill after 3 once weekly doses of either RRx-001 5 mg/kg, RRx-001 2 mg/kg, or vehicle. The EEC protocol consisted of a treadmill velocity of 30meters per min at an uphill inclination (slope of 10%) until the mice reached fatigue, which was defined as the inability of the mice to maintain the appropriate pace despitecontinuous hand stimulation for 1 min. The concentration of malondialdehyde (MDA), an indicator of lipid peroxidation, and creatine kinase (CK), an indicator of muscle damage, in the blood samples collected immediately after the acute exercise was determined with a commercial ELISA assay kit. ResultsThe exhaustive exercise times of the RRx-001 groups were significantly longer than that of the vehicle group (p<0.05) by weeks 2 and 3. In addition, MDA levels in the gastrocnemius, soleus, and extensor digitorum longus muscles were significantly lower than those of the vehicle group were (p<0.05), as were the serum CK levels(p<0.05). ConclusionsIn conclusion, this study found that RRx-001 has anti-fatigue properties, as evidenced by an increase in exercise capacity with RRx-001 treatment, and protects against strenuous exercise-induced muscle damage and lipid peroxidation. This data potentially supports the use of RRx-001 in the clinic to improve exercise performance and reduce physical fatigue.Keywords: RRx-001, anti-fatigue, muscle protection, increased exercise tolerance, lipid peroxidation
Procedia PDF Downloads 97138 Geometry of the Right Ventricular Outflow Tract - Clinical Significance in Electrocardiological Procedures
Authors: Marcin Jakiel, Maria Kurek, Karolina Gutkowska, Sylwia Sanakiewicz, Dominika Stolarczyk, Jakub Batko, Rafał Jakiel, Mateusz K. Hołda
Abstract:
The geometry of RVOT is extremely complicated. It is an irregular block with an ellipsoidal cross-section, whose dimensions decrease toward the pulmonary valve and measure 33.82 (IQR 30,51-39,36), 28.82 (IQR 26,11-32,22), 27.95 ± 4,11 for width [mm] and 33.41 ± 6,14, 26.99 ± 4,41, 26.91 ± 4,00 [mm] for depth, in the basal, middle and subpulmonary parts, respectively. In a sagittal section view, the RVOT heads upward and slightly backward. Its anterior perimeter has an average length of 41.96 mm and inclines to the transverse plane at an angle of 50.77° (IQR 46,53°-58,70°). In the posterior region, the RVOT is shorter (18.17mm) and flexes anteriorly. Therefore, the slope of the upper part of the rear wall to the transverse plane is an acute angle (open toward the rear) of 44,58° (IQR 37,30°-51,25°), while in the lower part it is an angle close to a right angle of 94,30°±15,44°. In addition, the thickness of the RVOT wall in the diastolic phase, at the posterior perimeter at the base, in the middle of the length and subpulmonary measure 3,80 mm ± 0,88 mm, 3,56 mm ± 0,73 mm, 3,56 mm ± 0,65 mm, respectively. In frontal cross-section, the RVOT rises on the interventricular septum, which makes it possible to distinguish the septal and supraseptal parts on its left periphery. The angles (facing the vertices to the right) of the inclination of these parts to the transverse plane are 75.5° (IQR 66,44°-81,11°) and 107.01° (IQR 99,09 – 115,23°), respectively, which allows us to conclude that the direction of the RVOT long axis changes from left to right. The above analysis shows that there is no single RVOT axis. Two axes can be distinguished, the one for the upper RVOT being more backward and leftward. The aforementioned forward deflection of the posterior wall and the RVOT's elevation over the interventricular septum, suggest that access to the subpulmonary region may be difficult. It should be emphasized that this area is often the target for ablation of ventricular arrhythmias. The small thickness of the RVOT posterior wall, with its difficult geometry, may favor its perforation into the pericardium or ascending aorta.Keywords: angle, geometry, operation access, position, RVOT, shape
Procedia PDF Downloads 108137 Landslide and Liquefaction Vulnerability Analysis Using Risk Assessment Analysis and Analytic Hierarchy Process Implication: Suitability of the New Capital of the Republic of Indonesia on Borneo Island
Authors: Rifaldy, Misbahudin, Khalid Rizky, Ricky Aryanto, M. Alfiyan Bagus, Fahri Septianto, Firman Najib Wibisana, Excobar Arman
Abstract:
Indonesia is a country that has a high level of disaster because it is on the ring of fire, and there are several regions with three major plates meeting in the world. So that disaster analysis must always be done to see the potential disasters that might always occur, especially in this research are landslides and liquefaction. This research was conducted to analyze areas that are vulnerable to landslides and liquefaction hazards and their relationship with the assessment of the issue of moving the new capital of the Republic of Indonesia to the island of Kalimantan with a total area of 612,267.22 km². The method in this analysis uses the Analytical Hierarchy Process and consistency ratio testing as a complex and unstructured problem-solving process into several parameters by providing values. The parameters used in this analysis are the slope, land cover, lithology distribution, wetness index, earthquake data, peak ground acceleration. Weighted overlay was carried out from all these parameters using the percentage value obtained from the Analytical Hierarchy Process and confirmed its accuracy with a consistency ratio so that a percentage of the area obtained with different vulnerability classification values was obtained. Based on the analysis results obtained vulnerability classification from very high to low vulnerability. There are (0.15%) 918.40083 km² of highly vulnerable, medium (20.75%) 127,045,44815 km², low (56.54%) 346,175.886188 km², very low (22.56%) 138,127.484832 km². This research is expected to be able to map landslides and liquefaction disasters on the island of Kalimantan and provide consideration of the suitability of regional development of the new capital of the Republic of Indonesia. Also, this research is expected to provide input or can be applied to all regions that are analyzing the vulnerability of landslides and liquefaction or the suitability of the development of certain regions.Keywords: analytic hierarchy process, Borneo Island, landslide and liquefaction, vulnerability analysis
Procedia PDF Downloads 174136 Detailed Degradation-Based Model for Solid Oxide Fuel Cells Long-Term Performance
Authors: Mina Naeini, Thomas A. Adams II
Abstract:
Solid Oxide Fuel Cells (SOFCs) feature high electrical efficiency and generate substantial amounts of waste heat that make them suitable for integrated community energy systems (ICEs). By harvesting and distributing the waste heat through hot water pipelines, SOFCs can meet thermal demand of the communities. Therefore, they can replace traditional gas boilers and reduce greenhouse gas (GHG) emissions. Despite these advantages of SOFCs over competing power generation units, this technology has not been successfully commercialized in large-scale to replace traditional generators in ICEs. One reason is that SOFC performance deteriorates over long-term operation, which makes it difficult to find the proper sizing of the cells for a particular ICE system. In order to find the optimal sizing and operating conditions of SOFCs in a community, a proper knowledge of degradation mechanisms and effects of operating conditions on SOFCs long-time performance is required. The simplified SOFC models that exist in the current literature usually do not provide realistic results since they usually underestimate rate of performance drop by making too many assumptions or generalizations. In addition, some of these models have been obtained from experimental data by curve-fitting methods. Although these models are valid for the range of operating conditions in which experiments were conducted, they cannot be generalized to other conditions and so have limited use for most ICEs. In the present study, a general, detailed degradation-based model is proposed that predicts the performance of conventional SOFCs over a long period of time at different operating conditions. Conventional SOFCs are composed of Yttria Stabilized Zirconia (YSZ) as electrolyte, Ni-cermet anodes, and LaSr₁₋ₓMnₓO₃ (LSM) cathodes. The following degradation processes are considered in this model: oxidation and coarsening of nickel particles in the Ni-cermet anodes, changes in the pore radius in anode, electrolyte, and anode electrical conductivity degradation, and sulfur poisoning of the anode compartment. This model helps decision makers discover the optimal sizing and operation of the cells for a stable, efficient performance with the fewest assumptions. It is suitable for a wide variety of applications. Sulfur contamination of the anode compartment is an important cause of performance drop in cells supplied with hydrocarbon-based fuel sources. H₂S, which is often added to hydrocarbon fuels as an odorant, can diminish catalytic behavior of Ni-based anodes by lowering their electrochemical activity and hydrocarbon conversion properties. Therefore, the existing models in the literature for H₂-supplied SOFCs cannot be applied to hydrocarbon-fueled SOFCs as they only account for the electrochemical activity reduction. A regression model is developed in the current work for sulfur contamination of the SOFCs fed with hydrocarbon fuel sources. The model is developed as a function of current density and H₂S concentration in the fuel. To the best of authors' knowledge, it is the first model that accounts for impact of current density on sulfur poisoning of cells supplied with hydrocarbon-based fuels. Proposed model has wide validity over a range of parameters and is consistent across multiple studies by different independent groups. Simulations using the degradation-based model illustrated that SOFCs voltage drops significantly in the first 1500 hours of operation. After that, cells exhibit a slower degradation rate. The present analysis allowed us to discover the reason for various degradation rate values reported in literature for conventional SOFCs. In fact, the reason why literature reports very different degradation rates, is that literature is inconsistent in definition of how degradation rate is calculated. In the literature, the degradation rate has been calculated as the slope of voltage versus time plot with the unit of voltage drop percentage per 1000 hours operation. Due to the nonlinear profile of voltage over time, degradation rate magnitude depends on the magnitude of time steps selected to calculate the curve's slope. To avoid this issue, instantaneous rate of performance drop is used in the present work. According to a sensitivity analysis, the current density has the highest impact on degradation rate compared to other operating factors, while temperature and hydrogen partial pressure affect SOFCs performance less. The findings demonstrated that a cell running at lower current density performs better in long-term in terms of total average energy delivered per year, even though initially it generates less power than if it had a higher current density. This is because of the dominant and devastating impact of large current densities on the long-term performance of SOFCs, as explained by the model.Keywords: degradation rate, long-term performance, optimal operation, solid oxide fuel cells, SOFCs
Procedia PDF Downloads 128135 Quantification of Global Cerebrovascular Reactivity in the Principal Feeding Arteries of the Human Brain
Authors: Ravinder Kaur
Abstract:
Introduction Global cerebrovascular reactivity (CVR) mapping is a promising clinical assessment for stress-testing the brain using physiological challenges, such as CO₂, to elicit changes in perfusion. It enables real-time assessment of cerebrovascular integrity and health. Conventional imaging approaches solely use steady-state parameters, like cerebral blood flow (CBF), to evaluate the integrity of the resting parenchyma and can erroneously show a healthy brain at rest, despite the underlying pathogenesis in the presence of cerebrovascular disease. Conversely, coupling CO₂ inhalation with phase-contrast MRI neuroimaging interrogates the capacity of the vasculature to respond to changes under stress. It shows promise in providing prognostic value as a novel health marker to measure neurovascular function in disease and to detect early brain vasculature dysfunction. Objective This exploratory study was established to:(a) quantify the CBF response to CO₂ in hypocapnia and hypercapnia,(b) evaluate disparities in CVR between internal carotid (ICA) and vertebral artery (VA), and (c) assess sex-specific variation in CVR. Methodology Phase-contrast MRI was employed to measure the cerebrovascular reactivity to CO₂ (±10 mmHg). The respiratory interventions were presented using the prospectively end-tidal targeting RespirActTM Gen3 system. Post-processing and statistical analysis were conducted. Results In 9 young, healthy subjects, the CBF increased from hypocapnia to hypercapnia in all vessels (4.21±0.76 to 7.20±1.83 mL/sec in ICA, 1.36±0.55 to 2.33±1.31 mL/sec in VA, p < 0.05). The CVR was quantitatively higher in ICA than VA (slope of linear regression: 0.23 vs. 0.07 mL/sec/mmHg, p < 0.05). No statistically significant effect was observed in CVR between male and female (0.25 vs 0.20 mL/sec/mmHg in ICA, 0.09 vs 0.11 mL/sec/mmHg in VA, p > 0.05). Conclusions The principal finding in this investigation validated the modulation of CBF by CO₂. Moreover, it has indicated that regional heterogeneity in hemodynamic response exists in the brain. This study provides scope to standardize the quantification of CVR prior to its clinical translation.Keywords: cerebrovascular disease, neuroimaging, phase contrast MRI, cerebrovascular reactivity, carbon dioxide
Procedia PDF Downloads 145134 Hygro-Thermal Modelling of Timber Decks
Authors: Stefania Fortino, Petr Hradil, Timo Avikainen
Abstract:
Timber bridges have an excellent environmental performance, are economical, relatively easy to build and can have a long service life. However, the durability of these bridges is the main problem because of their exposure to outdoor climate conditions. The moisture content accumulated in wood for long periods, in combination with certain temperatures, may cause conditions suitable for timber decay. In addition, moisture content variations affect the structural integrity, serviceability and loading capacity of timber bridges. Therefore, the monitoring of the moisture content in wood is important for the durability of the material but also for the whole superstructure. The measurements obtained by the usual sensor-based techniques provide hygro-thermal data only in specific locations of the wood components. In this context, the monitoring can be assisted by numerical modelling to get more information on the hygro-thermal response of the bridges. This work presents a hygro-thermal model based on a multi-phase moisture transport theory to predict the distribution of moisture content, relative humidity and temperature in wood. Below the fibre saturation point, the multi-phase theory simulates three phenomena in cellular wood during moisture transfer, i.e., the diffusion of water vapour in the pores, the sorption of bound water and the diffusion of bound water in the cell walls. In the multi-phase model, the two water phases are separated, and the coupling between them is defined through a sorption rate. Furthermore, an average between the temperature-dependent adsorption and desorption isotherms is used. In previous works by some of the authors, this approach was found very suitable to study the moisture transport in uncoated and coated stress-laminated timber decks. Compared to previous works, the hygro-thermal fluxes on the external surfaces include the influence of the absorbed solar radiation during the time and consequently, the temperatures on the surfaces exposed to the sun are higher. This affects the whole hygro-thermal response of the timber component. The multi-phase model, implemented in a user subroutine of Abaqus FEM code, provides the distribution of the moisture content, the temperature and the relative humidity in a volume of the timber deck. As a case study, the hygro-thermal data in wood are collected from the ongoing monitoring of the stress-laminated timber deck of Tapiola Bridge in Finland, based on integrated humidity-temperature sensors and the numerical results are found in good agreement with the measurements. The proposed model, used to assist the monitoring, can contribute to reducing the maintenance costs of bridges, as well as the cost of instrumentation, and increase safety.Keywords: moisture content, multi-phase models, solar radiation, timber decks, FEM
Procedia PDF Downloads 174133 Characteristics of Himalayan Glaciers with Lakes, Kosi Sub-Basin, Ganga Basin: Based on Remote Sensing and GIS Techniques
Authors: Ram Moorat Singh, Arun Kumar Sharma, Ravi Chaurey
Abstract:
Assessment of characteristics of Himalayan glaciers with or without glacier lakes was carried out for 1937glaciers of Kosi sub-basin, Ganga basin by using remote sensing and GIS techniques. Analysis of IRS-P6 AWiFS Data of 2004-07 periods, SRTM DEM and MODIS Land Surface Temperature (LST) data (15year mean) using image processing and GIS tools has provided significant information on various glacier parameters. The glacier area, length, width, ice exposed area, debris cover area, glacier slope, orientation, elevation and temperature data was analysed. The 119 supra glacier lakes and 62 moraine dam/peri-glacier lakes (area > 0.02 km2) in the study were studied to discern the suitable glacier conditions for glacier lake formation. On analysis it is observed that the glacial lakes are preferably formed in association with large dimension glaciers (area, length and width), glaciers with higher percent ice exposed area, lower percent debris cover area and in general mean elevation value greater than 5300 m amsl. On analysis of lake type shows that the moraine dam lakes are formed associated with glaciers located at relatively higher altitude as compared to altitude of glaciers with supra glacier lakes. Analysis of frequency of occurrence of lakes vis a vis glacier orientation shows that more number of glacier lakes are formed associated with glaciers having orientation south, south east, south west, east and west directions. The supra glacial lakes are formed in association with glaciers having higher mean temperature as compared to moraine dam lakes as verified using LST data of 15 years (2000-2014).Keywords: remote sensing, supra glacial lake, Himalaya, Kosi sub-basin, glaciers, moraine-dammed lake
Procedia PDF Downloads 375132 NiSe-Ni₃Se₂/Multiwalled Carbon Nanotubes as Efficient Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Media
Authors: Oluwaseun A. Oyetade, Roelof J. Kriek
Abstract:
The development of effective catalysts for the oxygen evolution reaction (OER) is of great importance to combat energy-related concerns in the environment. Herein, we report a one-step solvothermal method employed for the fabrication of nickel selenide hybrids (NiSe-Ni₃Se₂) and a series of nickel selenide hybrid/multiwalled carbon nanotube composites (NiSe-Ni₃Se₂/MWCNT) as electrocatalysts for OER in alkaline media. The catalytic activities of these catalysts were investigated via several electrochemical characterization techniques, such as linear sweep voltammetry, chronoamperometric studies at constant potential, electrochemical surface area determination, and Tafel slope calculation, under alkaline conditions. Morphological observations demonstrated the agglomeration of non-uniform NiSe-Ni₃Se₂ microspheres around carbon nanotubes (CNTs), demonstrating the successful synthesis of NiSe-Ni₃Se₂/MWCNT nanocomposites. Among the tested electrocatalysts, the 20% NiSe-Ni₃Se₂/MWCNT nanocomposite demonstrated the highest activity, exhibiting an overpotential of 325 mV to achieve a current density of 10 mA.cm⁻² in 0.1 mol.dm⁻³ KOH solution. The NiSe-Ni₃Se₂/MWCNT nanocomposites showed improved activity toward OER compared to bare NiSe-Ni₃Se₂ hybrids and MWCNTs, exhibiting an overpotential of 528, 392 and 434 mV for 10%, 30% and 50% NiSe-Ni₃Se₂/MWCNT nanocomposites, respectively. These results compare favourably to the overpotential of noble catalysts, such as RuO₂ and IrO₂. Our results imply that the addition of MWCNTs increased the activity of NiSe-Ni₃Se₂ hybrids due to an increased number of catalytic sites, dispersion of NiSe-Ni₃Se₂ hybrid nanoparticles, and electronic conductivity of the nanocomposites. These nanocomposites also demonstrated better long-term stability compared to NiSe-Ni₃Se₂ hybrids and MWCNTs. Hence, NiSe-Ni₃Se₂/MWCNT nanocomposites possess the potential as effective electrocatalysts for OER in alkaline media.Keywords: carbon nanotubes, electrocatalysts, nanocomposites, nickel selenide hybrids, oxygen evolution reaction
Procedia PDF Downloads 127131 High Efficiency Double-Band Printed Rectenna Model for Energy Harvesting
Authors: Rakelane A. Mendes, Sandro T. M. Goncalves, Raphaella L. R. Silva
Abstract:
The concepts of energy harvesting and wireless energy transfer have been widely discussed in recent times. There are some ways to create autonomous systems for collecting ambient energy, such as solar, vibratory, thermal, electromagnetic, radiofrequency (RF), among others. In the case of the RF it is possible to collect up to 100 μW / cm². To collect and/or transfer energy in RF systems, a device called rectenna is used, which is defined by the junction of an antenna and a rectifier circuit. The rectenna presented in this work is resonant at the frequencies of 1.8 GHz and 2.45 GHz. Frequencies at 1.8 GHz band are e part of the GSM / LTE band. The GSM (Global System for Mobile Communication) is a frequency band of mobile telephony, it is also called second generation mobile networks (2G), it came to standardize mobile telephony in the world and was originally developed for voice traffic. LTE (Long Term Evolution) or fourth generation (4G) has emerged to meet the demand for wireless access to services such as Internet access, online games, VoIP and video conferencing. The 2.45 GHz frequency is part of the ISM (Instrumentation, Scientific and Medical) frequency band, this band is internationally reserved for industrial, scientific and medical development with no need for licensing, and its only restrictions are related to maximum power transfer and bandwidth, which must be kept within certain limits (in Brazil the bandwidth is 2.4 - 2.4835 GHz). The rectenna presented in this work was designed to present efficiency above 50% for an input power of -15 dBm. It is known that for wireless energy capture systems the signal power is very low and varies greatly, for this reason this ultra-low input power was chosen. The Rectenna was built using the low cost FR4 (Flame Resistant) substrate, the antenna selected is a microfita antenna, consisting of a Meandered dipole, and this one was optimized using the software CST Studio. This antenna has high efficiency, high gain and high directivity. Gain is the quality of an antenna in capturing more or less efficiently the signals transmitted by another antenna and/or station. Directivity is the quality that an antenna has to better capture energy in a certain direction. The rectifier circuit used has series topology and was optimized using Keysight's ADS software. The rectifier circuit is the most complex part of the rectenna, since it includes the diode, which is a non-linear component. The chosen diode is the Schottky diode SMS 7630, this presents low barrier voltage (between 135-240 mV) and a wider band compared to other types of diodes, and these attributes make it perfect for this type of application. In the rectifier circuit are also used inductor and capacitor, these are part of the input and output filters of the rectifier circuit. The inductor has the function of decreasing the dispersion effect on the efficiency of the rectifier circuit. The capacitor has the function of eliminating the AC component of the rectifier circuit and making the signal undulating.Keywords: dipole antenna, double-band, high efficiency, rectenna
Procedia PDF Downloads 123130 Modeling and Mapping of Soil Erosion Risk Using Geographic Information Systems, Remote Sensing, and Deep Learning Algorithms: Case of the Oued Mikkes Watershed, Morocco
Authors: My Hachem Aouragh, Hind Ragragui, Abdellah El-Hmaidi, Ali Essahlaoui, Abdelhadi El Ouali
Abstract:
This study investigates soil erosion susceptibility in the Oued Mikkes watershed, located in the Meknes-Fez region of northern Morocco, utilizing advanced techniques such as deep learning algorithms and remote sensing integrated within Geographic Information Systems (GIS). Spanning approximately 1,920 km², the watershed is characterized by a semi-arid Mediterranean climate with irregular rainfall and limited water resources. The waterways within the watershed, especially the Oued Mikkes, are vital for agricultural irrigation and potable water supply. The research assesses the extent of erosion risk upstream of the Sidi Chahed dam while developing a spatial model of soil loss. Several important factors, including topography, land use/land cover, and climate, were analyzed, with data on slope, NDVI, and rainfall erosivity processed using deep learning models (DLNN, CNN, RNN). The results demonstrated excellent predictive performance, with AUC values of 0.92, 0.90, and 0.88 for DLNN, CNN, and RNN, respectively. The resulting susceptibility maps provide critical insights for soil management and conservation strategies, identifying regions at high risk for erosion across 24% of the study area. The most high-risk areas are concentrated on steep slopes, particularly near the Ifrane district and the surrounding mountains, while low-risk areas are located in flatter regions with less rugged topography. The combined use of remote sensing and deep learning offers a powerful tool for accurate erosion risk assessment and resource management in the Mikkes watershed, highlighting the implications of soil erosion on dam siltation and operational efficiency.Keywords: soil erosion, GIS, remote sensing, deep learning, Mikkes Watershed, Morocco
Procedia PDF Downloads 15