Search results for: riparian trees
46 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance
Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning
Procedia PDF Downloads 3045 Superparamagnetic Core Shell Catalysts for the Environmental Production of Fuels from Renewable Lignin
Authors: Cristina Opris, Bogdan Cojocaru, Madalina Tudorache, Simona M. Coman, Vasile I. Parvulescu, Camelia Bala, Bahir Duraki, Jeroen A. Van Bokhoven
Abstract:
The tremendous achievements in the development of the society concretized by more sophisticated materials and systems are merely based on non-renewable resources. Consequently, after more than two centuries of intensive development, among others, we are faced with the decrease of the fossil fuel reserves, an increased impact of the greenhouse gases on the environment, and economic effects caused by the fluctuations in oil and mineral resource prices. The use of biomass may solve part of these problems, and recent analyses demonstrated that from the perspective of the reduction of the emissions of carbon dioxide, its valorization may bring important advantages conditioned by the usage of genetic modified fast growing trees or wastes, as primary sources. In this context, the abundance and complex structure of lignin may offer various possibilities of exploitation. However, its transformation in fuels or chemicals supposes a complex chemistry involving the cleavage of C-O and C-C bonds and altering of the functional groups. Chemistry offered various solutions in this sense. However, despite the intense work, there are still many drawbacks limiting the industrial application. Thus, the proposed technologies considered mainly homogeneous catalysts meaning expensive noble metals based systems that are hard to be recovered at the end of the reaction. Also, the reactions were carried out in organic solvents that are not acceptable today from the environmental point of view. To avoid these problems, the concept of this work was to investigate the synthesis of superparamagnetic core shell catalysts for the fragmentation of lignin directly in the aqueous phase. The magnetic nanoparticles were covered with a nanoshell of an oxide (niobia) with a double role: to protect the magnetic nanoparticles and to generate a proper (acidic) catalytic function and, on this composite, cobalt nanoparticles were deposed in order to catalyze the C-C bond splitting. With this purpose, we developed a protocol to prepare multifunctional and magnetic separable nano-composite Co@Nb2O5@Fe3O4 catalysts. We have also established an analytic protocol for the identification and quantification of the fragments resulted from lignin depolymerization in both liquid and solid phase. The fragmentation of various lignins occurred on the prepared materials in high yields and with very good selectivity in the desired fragments. The optimization of the catalyst composition indicated a cobalt loading of 4wt% as optimal. Working at 180 oC and 10 atm H2 this catalyst allowed a conversion of lignin up to 60% leading to a mixture containing over 96% in C20-C28 and C29-C37 fragments that were then completely fragmented to C12-C16 in a second stage. The investigated catalysts were completely recyclable, and no leaching of the elements included in the composition was determined by inductively coupled plasma optical emission spectrometry (ICP-OES).Keywords: superparamagnetic core-shell catalysts, environmental production of fuels, renewable lignin, recyclable catalysts
Procedia PDF Downloads 32844 The Influence of a Radio Intervention on Farmers’ Practices in Climate Change Mitigation and Adaptation in Kilifi, Kenya
Authors: Fiona Mwaniki
Abstract:
Climate change is considered a serious threat to sustainable development globally and as one of the greatest ecological, economic and social challenges of our time. The global demand for food is projected to increase by 60% by 2050. Small holder farmers who are vulnerable to the adverse effects of climate change are expected to contribute to this projected demand. Effective climate change education and communication is therefore required for smallholder and subsistence farmers’ in order to build communities that are more climate change aware, prepared and resilient. In Kenya radio is the most important and dominant mass communication tool for agricultural extension. This study investigated the potential role of radio in influencing farmers’ understanding and use of climate change information. The broad aims of this study were three-fold. Firstly, to identify Kenyan farmers’ perceptions and responses to the impacts of climate change. Secondly, to develop radio programs that communicate climate change information to Kenyan farmers and thirdly, to evaluate the impact of information disseminated through radio on farmers’ understanding and responses to climate change mitigation and adaptation. This study was conducted within the farming community of Kilifi County, located along the Kenyan coast. Education and communication about climate change was undertaken using radio to make available information understandable to different social and cultural groups. A mixed methods pre-and post-intervention design that provided the opportunity for triangulating results from both quantitative and qualitative data was used. Quantitative and qualitative data was collected simultaneously, where quantitative data was collected through semi structured surveys with 421 farmers’ and qualitative data was derived from 11 focus group interviews, six interviews with key informants and nine climate change experts. The climate change knowledge gaps identified in the initial quantitative and qualitative data were used in developing radio programs. Final quantitative and qualitative data collection and analysis enabled an assessment of the impact of climate change messages aired through radio on the farming community in Kilifi County. Results of this study indicate that 32% of the farmers’ listened to the radio programs and 26% implemented technologies aired on the programs that would help them adapt to climate change. The most adopted technologies were planting drought tolerant crops including indigenous crop varieties, planting trees, water harvesting and use of manure. The proportion of farmers who indicated they knew “a fair amount” about climate change increased significantly (Z= -5.1977, p < 0.001) from 33% (at the pre intervention phase of this study) to 64% (post intervention). However, 68% of the farmers felt they needed “a lot more” information on agriculture interventions (43%), access to financial resources (21%) and the effects of climate change (15%). The challenges farmers’ faced when adopting the interventions included lack of access to financial resources (18%), high cost of adaptation measures (17%), and poor access to water (10%). This study concludes that radio effectively complements other agricultural extension methods and has the potential to engage farmers’ on climate change issues and motivate them to take action.Keywords: climate change, climate change intervention, farmers, radio
Procedia PDF Downloads 33843 Isolation and Identification of Sarcocystis suihominis in a Slaughtered Domestic Pig (Sus scrofa) in Benue State, Nigeria
Authors: H. I. Obadiah, S. N. Wieser, E. A. Omudu, B. O. Atu, O. Byanet, L. Schnittger, M. Florin-Christensen
Abstract:
Sarcocystis sp. are Apicomplexan protozoan parasites with a life cycle that involves a predator and a prey as final and intermediate hosts, respectively. In tissues of the intermediate hosts, the parasites produce sarcocysts that vary in size and morphology according to the species. When a suitable predator ingests sarcocyst-containing meat, the parasites are released in the intestine and undergo sexual reproduction producing infective sporocysts, which are excreted with the feces into the environment. The cycle is closed when a prey ingests sporocyst-contaminated water or pasture; the parasites gain access to the circulation, and eventually invade tissues and reproduce asexually yielding sarcocysts. Pig farming is a common practice in Nigeria as well as in many countries around the world. In addition to its importance as protein source, pork is also a source of several pathogens relevant to humans. In the case of Sarcocystis, three species have been described both in domestic and wild pigs, namely, S. miescheriana, S. porcifelis and S. suihominis. Humans can act both as final and aberrant intermediate hosts of S. suihominis, after ingesting undercooked sarcocyst-infested pork. Infections are usually asymptomatic but can be associated with inappetence, nausea, vomiting and diarrhea, or with muscle pain, fever, eosinophilia and bronchospasm, in humans acting as final or intermediate hosts, respectively. Moreover, excretion of infective forms with human feces leads to further dissemination of the infection. In this study, macroscopic sarcocysts of white color, oval shape and a size range of approximately 3-5 mm were observed in the skeletal muscle of a slaughtered pig in an abattoir in Makurdi, Benue State, Nigeria, destined to human consumption. Sarcocysts were excised and washed in distilled water, and genomic DNA was extracted using a commercial kit. The near-complete length of the 18S rRNA gene was analyzed after PCR amplification of two overlapping fragments, each of which were submitted to direct sequencing. In addition, the mitochondrial cytochrome oxidase (cox-1) gene was PCR-amplified and directly sequenced. Two phylogenetic trees containing the obtained sequences along with available relevant 18S rRNA and cox-1 sequences were constructed by neighbor joining after alignment, using the corresponding sequences of Toxoplasma gondii as outgroup. The results showed in both cases that the analyzed sequences grouped with S. suihominis with high bootstrap value, confirming the identity of this macroscopic sarcocyst-forming parasite as S. suihominis. To the best of our knowledge, these results represent the first demonstration of this parasite in pigs of Nigeria and the largest sarcocysts described so far for S. suihominis. The close proximity between pigs and humans in pig farms, and the frequent poor sanitary conditions in human dwellings strongly suggest that the parasite undergoes the sexual stages of its life cycle in humans as final hosts. These findings provide an important reference for the examination and control of Sarcocystis species in pigs of Nigeria.Keywords: nigeria, pork, sarcocystis suihominis, zoonotic parasite
Procedia PDF Downloads 8742 The First Complete Mitochondrial Genome of Melon Thrips, Thrips palmi (Thripinae: Thysanoptera): Vector for Tospoviruses
Authors: Kaomud Tyagi, Rajasree Chakraborty, Shantanu Kundu, Devkant Singha, Kailash Chandra, Vikas Kumar
Abstract:
The melon thrips, Thrips palmi is a serious pest of a wide range of agriculture crops and also act as vectors for plant viruses (genus Tospovirus, family Bunyaviridae). More molecular data on this species is required to understand the cryptic speciation and evolutionary affiliations. Mitochondrial genomes have been widely used in phylogenetic and evolutionary studies in insect. So far, mitogenomes of five thrips species (Anaphothrips obscurus, Frankliniella intonsa, Frankliniella occidentalis, Scirtothrips dorsalis and Thrips imaginis) is available in the GenBank database. In this study, we sequenced the first complete mitogenome T. palmi and compared it with available thrips mitogenomes. We assembled the mitogenome from the whole genome sequencing data generated using Illumina Hiseq2500. Annotation was performed using MITOS web-server to estimate the location of protein coding genes (PCGs), transfer RNA (tRNAs), ribosomal RNAs (rRNAs) and their secondary structures. The boundaries of PCGs and rRNAs was confirmed manually in NCBI. Phylogenetic analyses were performed using the 13 PCGs data using maximum likelihood (ML) in PAUP, and Bayesian inference (BI) in MrBayes 3.2. The complete mitogenome of T. palmi was 15,333 base pairs (bp), which was greater than the genomes of A. obscurus (14,890bp), F. intonsa (15,215 bp), F. occidentalis (14,889 bp) and S. dorsalis South Asia strain (SA1) (14,283 bp), but smaller than the genomes of T. imaginis (15,407 bp) and S. dorsalis East Asia strain (EA1) (15,343bp). Like in other thrips species, the mitochondrial genome of T. palmi was represented by 37 genes, including 13 PCGs, large and small ribosomal RNA (rrnL and rrnS) genes, 22 transfer RNA (tRNAs) genes (with one extra gene for trn-Serine) and two A+T-rich control regions (CR1 and CR2). Thirty one genes were observed on heavy (H) strand and six genes on the light (L) strand. The six tRNA genes (trnG,trnK, trnY, trnW, trnF, and trnH) were found to be conserved in all thrips species mitogenomes in their locations relative to a protein-coding or rRNA gene upstream or downstream. The gene arrangements of T. palmi is very close to T. imaginis except the rearrangements in tRNAs genes: trnR (arginine), and trnE (glutamic acid) were found to be located between cox3 and CR2 in T. imaginis which were translocated between atp6 and CR1 in T. palmi; trnL1 (Leucine) and trnS1(Serine) were located between atp6 and CR1 in T. imaginis which were translocated between cox3 and CR2 in T. palmi. The location of CR1 upstream of nad5 gene was suggested to be ancestral condition of the thrips species in subfamily Thripinae, was also observed in T. palmi. Both the Maximum likelihood (ML) and Bayesian Inference (BI) phylogenetic trees generated resulted in similar topologies. The T. palmi was clustered with T. imaginis. We concluded that more molecular data on the diverse thrips species from different hierarchical level is needed, to understand the phylogenetic and evolutionary relationships among them.Keywords: thrips, comparative mitogenomics, gene rearrangements, phylogenetic analysis
Procedia PDF Downloads 16841 Northern Istanbul Urban Infrastructure Projects: A Critical Account on the Environmental, Spatial, Social and Economical Impacts
Authors: Evren Aysev Denec
Abstract:
As an urban settlement dating as early as 8000 years and the capital for Byzantine and Ottoman empires; İstanbul has been a significant global city throughout history. The most drastic changes in the macro form of Istanbul have taken place in the last seven decades; starting from 1950’s with rapid industrialization and population growth; pacing up after the 1980’s with the efforts of integration to the global capitalist system; reaching to a climax in the 2000’s with the adaptation of a neoliberal urban regime. Today, the rate of urbanization together with land speculation and real estate investment has been growing enormously. Every inch of urban land is conceptualized as a commodity to be capitalized. This neoliberal mindset has many controversial implementations, from the privatization of public land to the urban transformation of historic neighbourhoods and consumption of natural resources. The planning decisions concerning the city have been mainly top down initiations; conceptualising historical, cultural and natural heritage as commodities to be capitalised and consumed in favour of creating rent value. One of the most crucial implementations of this neoliberal urban regime is the project of establishing a ‘new city’ around northern Istanbul; together with a number of large-scale infrastructural projects such as the Third Bosporus Bridge; a new highway system, a Third Airport Project and a secondary Bosporus project called the ‘Canal Istanbul’. Urbanizing northern Istanbul is highly controversial as this area consists of major natural resources of the city; being the northern forests, water supplies and wildlife; which are bound to be destroyed to a great extent following the implementations. The construction of the third bridge and the third airport has begun in 2013, despite environmental objections and protests. Over five hundred thousand trees are planned be cut for solely the construction of the bridge and the Northern Marmara Motorway. Yet the real damage will be the urbanization of the forest area; irreversibly corrupting the natural resources and attracting millions of additional population towards Istanbul. Furthermore, these projects lack an integrated planning scope as the plans prepared for Istanbul are constantly subjected to alterations forced by the central government. Urban interventions mentioned above are executed despite the rulings of Istanbul Environmental plan, due to top down planning decisions. Instead of an integrated action plan that prepares for the future of the city, Istanbul is governed by partial plans and projects that are issued by a profit based agenda; supported by legal alterations and laws issued by the central government. This paper aims to discuss the ongoing implementations with regards to northern Istanbul; claiming that they are not merely infrastructural interventions but parts of a greater neoliberal urbanization strategy. In the course of the study, firstly a brief account on the northern forests of Istanbul will be presented. Then, the projects will be discussed in detail, addressing how the current planning schemes deal with the natural heritage of the city. Lastly, concluding remarks on how the implementations could affect the future of Istanbul will be presented.Keywords: Istanbul, urban design, urban planning, natural resources
Procedia PDF Downloads 19840 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text
Authors: Duncan Wallace, M-Tahar Kechadi
Abstract:
In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.Keywords: artificial neural networks, data-mining, machine learning, medical informatics
Procedia PDF Downloads 13139 Identifying Risk Factors for Readmission Using Decision Tree Analysis
Authors: Sıdıka Kaya, Gülay Sain Güven, Seda Karsavuran, Onur Toka
Abstract:
This study is part of an ongoing research project supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 114K404, and participation to this conference was supported by Hacettepe University Scientific Research Coordination Unit under Project Number 10243. Evaluation of hospital readmissions is gaining importance in terms of quality and cost, and is becoming the target of national policies. In Turkey, the topic of hospital readmission is relatively new on agenda and very few studies have been conducted on this topic. The aim of this study was to determine 30-day readmission rates and risk factors for readmission. Whether readmission was planned, related to the prior admission and avoidable or not was also assessed. The study was designed as a ‘prospective cohort study.’ 472 patients hospitalized in internal medicine departments of a university hospital in Turkey between February 1, 2015 and April 30, 2015 were followed up. Analyses were conducted using IBM SPSS Statistics version 22.0 and SPSS Modeler 16.0. Average age of the patients was 56 and 56% of the patients were female. Among these patients 95 were readmitted. Overall readmission rate was calculated as 20% (95/472). However, only 31 readmissions were unplanned. Unplanned readmission rate was 6.5% (31/472). Out of 31 unplanned readmission, 24 was related to the prior admission. Only 6 related readmission was avoidable. To determine risk factors for readmission we constructed Chi-square automatic interaction detector (CHAID) decision tree algorithm. CHAID decision trees are nonparametric procedures that make no assumptions of the underlying data. This algorithm determines how independent variables best combine to predict a binary outcome based on ‘if-then’ logic by portioning each independent variable into mutually exclusive subsets based on homogeneity of the data. Independent variables we included in the analysis were: clinic of the department, occupied beds/total number of beds in the clinic at the time of discharge, age, gender, marital status, educational level, distance to residence (km), number of people living with the patient, any person to help his/her care at home after discharge (yes/no), regular source (physician) of care (yes/no), day of discharge, length of stay, ICU utilization (yes/no), total comorbidity score, means for each 3 dimensions of Readiness for Hospital Discharge Scale (patient’s personal status, patient’s knowledge, and patient’s coping ability) and number of daycare admissions within 30 days of discharge. In the analysis, we included all 95 readmitted patients (46.12%), but only 111 (53.88%) non-readmitted patients, although we had 377 non-readmitted patients, to balance data. The risk factors for readmission were found as total comorbidity score, gender, patient’s coping ability, and patient’s knowledge. The strongest identifying factor for readmission was comorbidity score. If patients’ comorbidity score was higher than 1, the risk for readmission increased. The results of this study needs to be validated by other data–sets with more patients. However, we believe that this study will guide further studies of readmission and CHAID is a useful tool for identifying risk factors for readmission.Keywords: decision tree, hospital, internal medicine, readmission
Procedia PDF Downloads 25638 Strategies for Urban-Architectural Design for the Sustainable Recovery of the Huayla Stuary in Puerto Bolivar, Machala-Ecuador
Authors: Soledad Coronel Poma, Lorena Alvarado Rodriguez
Abstract:
The purpose of this project is to design public space through urban-architectural strategies that help to the sustainable recovery of the Huayla estuary and the revival of tourism in this area. This design considers other sustainable and architectural ideas used in similar cases, along with national and international regulations for saving shorelines in danger. To understand the situation of this location, Puerto Bolivar is the main port of the Province of El Oro and of the south of the country, where 90,000 national and foreign tourists pass through all year round. For that reason, a physical-urban, social, and environmental analysis of the area was carried out through surveys and conversations with the community. This analysis showed that around 70% of people feel unsatisfied and concerned about the estuary and its surroundings. Crime, absence of green areas, bad conservation of shorelines, lack of tourists, poor commercial infrastructure, and the spread of informal commerce are the main issues to be solved. As an intervention project whose main goal is that residents and tourists have contact with native nature and enjoy doing local activities, three main strategies: mobility, ecology, and urban –architectural are proposed to recover the estuary and its surroundings. First of all, the design of this public space is based on turning the estuary location into a linear promenade that could be seen as a tourist corridor, which would help to reduce pollution, increase green spaces and improve tourism. Another strategy aims to improve the economy of the community through some local activities like fishing and sailing and the commerce of fresh seafood, both raw products and in restaurants. Furthermore, in support of the environmental approach, some houses are rebuilt as sustainable houses using local materials and rearranged into blocks closer to the commercial area. Finally, the planning incorporates the use of many plants such as palms, sameness trees, and mangroves around the area to encourage people to get in touch with nature. The results of designing this space showed an increase in the green area per inhabitant index. It went from 1.69 m²/room to 10.48 m²/room, with 12 096 m² of green corridors and the incorporation of 5000 m² of mangroves at the shoreline. Additionally, living zones also increased with the creation of green areas taking advantage of the existing nature and implementing restaurants and recreational spaces. Moreover, the relocation of houses and buildings helped to free estuary's shoreline, so people are now in more comfortable places closer to their workplaces. Finally, dock spaces are increased, reaching the capacity of the boats and canoes, helping to organize the area in the estuary. To sum up, this project searches the improvement of the estuary environment with its shoreline and surroundings that include the vegetation, infrastructure and people with their local activities, achieving a better quality of life, attraction of tourism, reduction of pollution and finally getting a full recovered estuary as a natural ecosystem.Keywords: recover, public space, stuary, sustainable
Procedia PDF Downloads 14737 The Côa Valley Ecosystem (Douro, Portugal) as a Cultural Landscape. Approach to the Management Challenges
Authors: Mariana Durana Pinto, Thierry Aubry, Eduarda Vieira
Abstract:
The Côa River is one of the tributaries of the Douro River, which in turn connects two Portuguese regions: Beira-Alta (Serra das Mesas, Sabugal) and Trás-os-Montes (Douro River, Vila Nova de Foz Côa). The river, which is approximately 140 kilometres in length, is surrounded by characteristic Northern-Estearn Portugal landscape. The dominant flora in the region includes olive and almond trees and vines, which provide habitat for a diverse range of native species. These include mammals such as the lynx and Iberian wolf, as well as birds of prey such as the Egyptian vulture and the griffon vulture. Additionally, herbivorous species such as red deer and roe deer also inhabit the region. However, the Vale Côa is inextricably linked with the rocky outcrops bearing the emblematic open-air Upper Palaeolithic rock art, indeed, it houses the world's largest collection of prehistoric open-air rock art, inscribed on the World Heritage list by UNESCO in 1998. From the initial discovery of the first engravings in 1991 to the present day, approximally 1,500 panels with rock art, mostly engravings and carving, but also some paintings, have been discovered, inventoried and recorded spanning from earlu Upper Paleolithic to the 20th century. The study and interpretation of the engravings and its geoarchaeological context, allow the construction of a chronological timeline of the human occupation and graphical production in this region. The area has been inhabited since the Early Palaeolithic, with human communities exploiting the diversity of the natural resources of the environment and adapting it to their needs. This led to the creation of an archaeological and historical cultural landscape.The region is currently inhabited by rural communities whose primary source of income is derived from agricultural activities, with a particular focus on olive oil and wine production, including the emblematic Vinho do Porto. Additionally, the region is distinguished by activities such as stone exploration and extraction (e.g. schist and granite quarries) and tourism. The latter has progressively assumed a role in the promotion and development of the region, primarily due to the engravings of the Côa Valley itself, as well as the Alto Douro Wine Region. Furthermore, this cultural landscape has been inscribed in the UNESCO World Heritage Site in 2001. The aforementioned factors give rise to a series of challenges and issues pertaining to the management and safeguarding of rock art on a daily basis. These include: I) the management of conflicts between cultural heritage and economic activity (between Rock art and vineyards, both classified as World Heritage Sites); II) the management of land-use planning in areas where the engravings are located (since the areas with engravings are larger than those identified as buffer zones by UNESCO); III) the absence of the legal figure of an 'archaeological park' and the need to solve this issue; IV) the management of tourist pressure and unauthorised visits; and V) the management of vandalism (as a consequence of misinformation and denial).Keywords: Douro and Côa Valleys, archaeological cultural landscapes, rock art, Douro wine, conservation challenges
Procedia PDF Downloads 936 Adaptation to Climate Change: An Anthropological Study on Changing Livelihood Strategies in South-West Coastal Bangladesh
Authors: Ashik Sarder
Abstract:
Bangladesh is a disaster-prone and one of the most vulnerable countries to climate change. The country has a long coastal area which is frequently being affected by several types of natural disasters due to climate change. The disasters have impacts on the life and livelihood of different natural resources depending on communities living in the coastal areas. The Malo is a Hindu religious traditional fishing community living at Sarafpur Union of Dumuria Upazila of Khulna district of south-west coastal Bangladesh. Fishing is the only means of their livelihood and the community has been engaged in fishing practices inherently in rivers, estuaries, and sea for more than 300 years. and they are totally dependent on this traditional occupation. But, in recent year’s climate change has negative impacts on their only livelihood option. The study aims to examine the impacts of climate change on the livelihood of Malo fishing community in south-west coastal Bangladesh, identify the adaptation strategies undertaken and practiced by Malo fishing community to cope with climate change and sustain their livelihood and explore the changing adaptation strategies undertaken by Malo fishing community and others. The study has been conducted from both qualitative and quantitative perspectives. Data has been collected from both primary and secondary sources. The primary data has been collected in the participatory observation approach following both qualitative and quantitative method. The primary source of data includes village census, face-to-face interview and in-depth case studies using structured questionnaire. The secondary source of the literature includes different national and international documents, policy papers, books and articles; related websites and peer-viewed documents on climate change, vulnerability, adaptation, livelihood, and fisheries. The study has identified different practices of adaption to climate change by Malo fishing community and others in the selected area. Three types of adaption practices have been identified. Firstly, the indigenous adaptation practices by Malo fishing community to cope with climate change have been identified. These identified adaptation practices by Malo fishing community include; ensuring drinking water and sanitation facilities, planting trees to tackle impacts of cyclone, excavating dumps to preserve the valuable assets, growing vegetables and rearing domestic livestock to earn surplus money, taking loans for ensuring continuation of present livelihood and migrating to near city or towns for better livelihood options. Secondly, adaptation initiatives undertaken by the government have provided limited facility to this vulnerable fishing community and made them benefited. And thirdly, some adaptation initiatives commenced by few non-government and community-based organizations have also made the Malo fishing community as beneficiaries. The study has suggested recommendations for Malo fishing community to overcome the challenges and impacts of climate change for retaining their traditional fishing livelihood. The accumulated recommendations would be very useful for the researchers, academicians, policy-makers of Government and non-government organizations to conduct more researches and take initiatives for Malo fishing community to make them more capable to sustain their fishing livelihood.Keywords: climate change, livelihood, adaptation, anthropology, vulnerability
Procedia PDF Downloads 11435 Survey for Mango Seed Weevils and Pulp Weevil Sternochetus Species (Coleoptera:Curculionidae) on Mango, Mangifera indica in Shan State-South, Myanmar
Authors: Khin Nyunt Yee, Mu Mu Thein
Abstract:
Detection survey of mango seed and Pulp weevils was undertaken at major mango production areas, Yat Sauk, Taunggyi, Nyaung Shwe and Hopong Townships, in Shan State (South) of Myanmar on two mango cultivars of Sein Ta Lone and Yinkwe from May to August 2016 to coincide with fruiting season to conduct a survey of mango seed and pulp weevils population. The total numbers of 6300 fruits of both mango cultivars were sampled. Among them, 2900 fruits from 5674 fruit bearing plants were collected for Sein Ta Lone cultivar of five well managed, one unmanaged orchards and Urban in Yatsauk Twonship, 400 fruits from only one well managed orchard in Taunggyi Township, 400 fruits from two managed orchards in Nyaung Shwe Township and 400 fruits from one managed orchard in Hopong Township from May to June. 2200 fruits were collected from 4043 fruit bearing plants for Yinkwe Cultivar of four well managed orchards, one unmanaged orchards and one wild tree only in Yat Sauk Township from July to August, 2016. Fruit sample size was 200 fruits /orchard, / wild or /volunteer trees as minimum number. The pulps of all randomly sampling fruits were longitudinal cut open into three slices on each side of fruit and seed were cut longitudinally to inspect the presence of mango weevils. The collected weevils were identified up to species level at Plant Quarantine Laboratory, Plant Protection Division, Department of Agriculture, Ministry of Agriculture, Livestock and Irrigation, Yangon, Myanmar. Mango Pulp and Seed weevils were found on Sein Ta Lone Mango Cultivar in three out of four surveyed Townships except Hopong with the level of infestation ranged from 0.0% to 3.5% of fruits per Township with 0.0% to 39.0% of fruits per orchard. The highest infestation rate per township was 3.5% of fruits (n=400 fruits) in Nyaung Shwe, then, at Yat Suak, the rate was 2.47% (n=2900 fruits). A well-managed orchard at Taung Gyi had 0.75% (n=400 fruits) whereas Hopong was free 0.0% (n=400). The weevils were also recorded on Yinkwe Mango Cultivar in Yatsauk Township where the infestation level was 12.63% of fruits (n=2200) with 0.0% to 67.0% of fruits per orchard. This high level of infestation was obtained by including an absolutely non Integrated Pest Management (non IPM) orchards in both survey with the infestation rates 63.0% of fruits (n=200) and 67.0% of fruits (n=200) respectively on Yinkwe cultivar. Two different species; mango pulp weevil, Sternochetus frigitus, and mango seed weevil Sternochetus olivieri (Faust) of family Curculionidae under the order Coleoptera were recorded. Sternochetus mangiferae was not found during these surveys. Three different developmental stages of mango seed and pulp weevils: larva, pupa and adult were first detected since the first survey in 3rd week of May and mostly were recorded as adult stages in the following surveys in June, July and August The number of Mango pulp weevil was statistically higher than that of mango seed weevils at P < 0.001%. More precise surveys should be carried out national wide to detect the mango weevils.Keywords: mango pulp weevil, Sternochetus frigitus, mango seed weevil Sternochetus olivieri, faust, Sternochetus mangiferae, fabricius, Sein Ta Lone, Yinkwe mango cultivars, Shan State (South) Myanmar
Procedia PDF Downloads 30734 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry
Authors: Dhanuj M. Gandikota
Abstract:
Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry
Procedia PDF Downloads 10233 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube
Authors: Dan Kanmegne
Abstract:
Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification
Procedia PDF Downloads 14532 The Importance of Fruit Trees for Prescribed Burning in a South American Savanna
Authors: Rodrigo M. Falleiro, Joaquim P. L. Parime, Luciano C. Santos, Rodrigo D. Silva
Abstract:
The Cerrado biome is the most biodiverse savanna on the planet. Located in central Brazil, its preservation is seriously threatened by the advance of intensive agriculture and livestock. Conservation Units and Indigenous Lands are increasingly isolated and subject to mega wildfires. Among the characteristics of this savanna, we highlight the high rate of primary biomass production and the reduced occurrence of large grazing animals. In this biome, the predominant fauna is more dependent on the fruits produced by the dicotyledonous species in relation to other tropical savannas. Fire is a key element in the balance between mono and dicotyledons or between the arboreal and herbaceous strata. Therefore, applying fire regimes that maintain the balance between these strata without harming fruit production is essential in the conservation strategies of Cerrado's biodiversity. Recently, Integrated Fire Management has started to be implemented in Brazilian protected areas. As a result, management with prescribed burns has increasingly replaced strategies based on fire exclusion, which in practice have resulted in large wildfires, with highly negative impacts on fruit and fauna production. In the Indigenous Lands, these fires were carried out respecting traditional knowledge. The indigenous people showed great concern about the effects of fire on fruit plants and important animals. They recommended that the burns be carried out between April and May, as it would result in a greater production of edible fruits ("fruiting burning"). In other tropical savannas in the southern hemisphere, the preferential period tends to be later, in the middle of the dry season, when the grasses are dormant (June to August). However, in the Cerrado, this late period coincides with the flowering and sprouting of several important fruit species. To verify the best burning season, the present work evaluated the effects of fire on flowering and fruit production of theByrsonima sp., Mouriri pusa, Caryocar brasiliense, Anacardium occidentale, Pouteria ramiflora, Hancornia speciosa, Byrsonima verbascifolia, Anacardium humille and Talisia subalbens. The evaluations were carried out in the field, covering 31 Indigenous Lands that cover 104,241.18 Km², where 3,386 prescribed burns were carried out between 2015 and 2018. The burning periods were divided into early (carried out during the rainy season), modal or “fruiting” (carried out during the transition between seasons) and late (carried out in the middle of the dry season, when the grasses are dormant). The results corroborate the traditional knowledge, demonstrating that the modal burns result in higher rates of reproduction and fruit production. Late burns showed intermediate results, followed by early burns. We conclude that management strategies based mainly on forage production, which are usually applied in savannas populated by grazing ungulates, may not be the best management strategy for South American savannas. The effects of fire on fruit plants, which have a particular phenologicalsynchronization with the fauna cycle, also need to be observed during the prescription of burns.Keywords: cerrado biome, fire regimes, native fruits, prescribed burns
Procedia PDF Downloads 21731 Co2e Sequestration via High Yield Crops and Methane Capture for ZEV Sustainable Aviation Fuel
Authors: Bill Wason
Abstract:
143 Crude Palm Oil Coop mills on Sumatra Island are participating in a program to transfer land from defaulted estates to small farmers while improving the sustainability of palm production to allow for biofuel & food production. GCarbon will be working with farmers to transfer technology, fertilizer, and trees to double the yield from the current baseline of 3.5 tons to at least 7 tons of oil per ha (25 tons of fruit bunches). This will be measured via evaluation of yield comparisons between participant and non-participant farms. We will also capture methane from Palm Oil Mill Effluent (POME)throughbelt press filtering. Residues will be weighed and a formula used to estimate methane emission reductions based on methodologies developed by other researchers. GCarbon will also cover mill ponds with a non-permeable membrane and collect methane for energy or steam production. A system for accelerating methane production involving ozone and electro-flocculation will be tested to intensifymethane generation and reduce the time for wastewater treatment. A meta-analysis of research on sweet potatoes and sorghum as rotation crops will look at work in the Rio Grande do Sul, Brazil where5 ha. oftest plots of industrial sweet potato have achieved yields of 60 tons and 40 tons per ha. from 2 harvests in one year (100 MT/ha./year). Field trials will be duplicated in Bom Jesus Das Selvas, Maranhaothat will test varieties of sweet potatoes to measure yields and evaluate disease risks in a very different soil and climate of NE Brazil. Hog methane will also be captured. GCarbon Brazil, Coop Sisal, and an Australian research partner will plant several varieties of agave and use agronomic procedures to get yields of 880 MT per ha. over 5 years. They will also plant new varieties expected to get 3500 MT of biomass after 5 years (176-700 MT per ha. per year). The goal is to show that the agave can adapt to Brazil’s climate without disease problems. The study will include a field visit to growing sites in Australia where agave is being grown commercially for biofuels production. Researchers will measure the biomass per hectare at various stages in the growing cycle, sugar content at harvest, and other metrics to confirm the yield of sugar per ha. is up to 10 times greater than sugar cane. The study will look at sequestration rates from measuring soil carbon and root accumulation in various plots in Australia to confirm carbon sequestered from 5 years of production. The agave developer estimates that 60-80 MT of sequestration per ha. per year occurs from agave. The three study efforts in 3 different countries will define a feedstock pathway for jet fuel that involves very high yield crops that can produce 2 to 10 times more biomass than current assumptions. This cost-effective and less land intensive strategy will meet global jet fuel demand and produce huge quantities of food for net zero aviation and feeding 9-10 billion people by 2050Keywords: zero emission SAF, methane capture, food-fuel integrated refining, new crops for SAF
Procedia PDF Downloads 10330 Emerging Identities: A Transformative ‘Green Zone’
Authors: Alessandra Swiny, Yiorgos Hadjichristou
Abstract:
There exists an on-going geographical scar creating a division through the Island of Cyprus and its capital, Nicosia. The currently amputated city center is accessed legally by the United Nations convoys, infiltrated only by Turkish and Greek Cypriot army scouts and illegal traders and scavengers. On Christmas day 1963 in Nicosia, Captain M. Hobden of the British Army took a green chinagraph pencil and on a large scale Joint Army-RAF map ‘marked’ the division. From then on this ‘buffer zone’ was called the ‘green line.' This once dividing form, separating the main communities of Greek and Turkish Cypriots from one another, has now been fully reclaimed by an autonomous intruder. It's currently most captivating inhabitant is nature. She keeps taking over, for the past fifty years indigenous and introduced fauna and flora thrive; trees emerge from rooftops and plants, bushes and flowers grow randomly through the once bustling market streets, allowing this ‘no man’s land’ to teem with wildlife. And where are its limits? The idea of fluidity is ever present; it encroaches into the urban and built environment that surrounds it, and notions of ownership and permanence are questioned. Its qualities have contributed significantly in the search for new ‘identities,' expressed in the emergence of new living conditions, be they real or surreal. Without being physically reachable, it can be glimpsed at through punctured peepholes, military bunker windows that act as enticing portals into an emotional and conceptual level of inhabitation. The zone is mystical and simultaneously suspended in time, it triggers people’s imagination, not just that of the two prevailing communities but also of immigrants, refugees, and visitors; it mesmerizes all who come within its proximity. The paper opens a discussion on the issues and the binary questions raised. What is natural and artificial; what is private and public; what is ephemeral and permanent? The ‘green line’ exists in a central fringe condition and can serve in mixing generations and groups of people; mingling functions of living with work and social interaction; merging nature and the human being in a new-found synergy of human hope and survival, allowing thus for new notions of place to be introduced. Questions seek to be answered, such as, “Is the impossibility of dwelling made possible, by interweaving these ‘in-between conditions’ into eloquently traced spaces?” The methodologies pursued are developed through academic research, professional practice projects, and students’ research/design work. Realized projects, case studies and other examples cited both nationally and internationally hold global and local applications. Both paths of the research deal with the explorative understanding of the impossibility of dwelling, testing the limits of its autonomy. The expected outcome of the experience evokes in the user a sense of a new urban landscape, created from human topographies that echo the voice of an emerging identity.Keywords: urban wildlife, human topographies, buffer zone, no man’s land
Procedia PDF Downloads 19829 A Vision-Based Early Warning System to Prevent Elephant-Train Collisions
Authors: Shanaka Gunasekara, Maleen Jayasuriya, Nalin Harischandra, Lilantha Samaranayake, Gamini Dissanayake
Abstract:
One serious facet of the worsening Human-Elephant conflict (HEC) in nations such as Sri Lanka involves elephant-train collisions. Endangered Asian elephants are maimed or killed during such accidents, which also often result in orphaned or disabled elephants, contributing to the phenomenon of lone elephants. These lone elephants are found to be more likely to attack villages and showcase aggressive behaviour, which further exacerbates the overall HEC. Furthermore, Railway Services incur significant financial losses and disruptions to services annually due to such accidents. Most elephant-train collisions occur due to a lack of adequate reaction time. This is due to the significant stopping distance requirements of trains, as the full braking force needs to be avoided to minimise the risk of derailment. Thus, poor driver visibility at sharp turns, nighttime operation, and poor weather conditions are often contributing factors to this problem. Initial investigations also indicate that most collisions occur in localised “hotspots” where elephant pathways/corridors intersect with railway tracks that border grazing land and watering holes. Taking these factors into consideration, this work proposes the leveraging of recent developments in Convolutional Neural Network (CNN) technology to detect elephants using an RGB/infrared capable camera around known hotspots along the railway track. The CNN was trained using a curated dataset of elephants collected on field visits to elephant sanctuaries and wildlife parks in Sri Lanka. With this vision-based detection system at its core, a prototype unit of an early warning system was designed and tested. This weatherised and waterproofed unit consists of a Reolink security camera which provides a wide field of view and range, an Nvidia Jetson Xavier computing unit, a rechargeable battery, and a solar panel for self-sufficient functioning. The prototype unit was designed to be a low-cost, low-power and small footprint device that can be mounted on infrastructures such as poles or trees. If an elephant is detected, an early warning message is communicated to the train driver using the GSM network. A mobile app for this purpose was also designed to ensure that the warning is clearly communicated. A centralized control station manages and communicates all information through the train station network to ensure coordination among important stakeholders. Initial results indicate that detection accuracy is sufficient under varying lighting situations, provided comprehensive training datasets that represent a wide range of challenging conditions are available. The overall hardware prototype was shown to be robust and reliable. We envision a network of such units may help contribute to reducing the problem of elephant-train collisions and has the potential to act as an important surveillance mechanism in dealing with the broader issue of human-elephant conflicts.Keywords: computer vision, deep learning, human-elephant conflict, wildlife early warning technology
Procedia PDF Downloads 22628 Lessons Learnt from Industry: Achieving Net Gain Outcomes for Biodiversity
Authors: Julia Baker
Abstract:
Development plays a major role in stopping biodiversity loss. But the ‘silo species’ protection of legislation (where certain species are protected while many are not) means that development can be ‘legally compliant’ and result in biodiversity loss. ‘Net Gain’ (NG) policies can help overcome this by making it an absolute requirement that development causes no overall loss of biodiversity and brings a benefit. However, offsetting biodiversity losses in one location with gains elsewhere is controversial because people suspect ‘offsetting’ to be an easy way for developers to buy their way out of conservation requirements. Yet the good practice principles (GPP) of offsetting provide several advantages over existing legislation for protecting biodiversity from development. This presentation describes the learning from implementing NG approaches based on GPP. It regards major upgrades of the UK’s transport networks, which involved removing vegetation in order to construct and safely operate new infrastructure. While low-lying habitats were retained, trees and other habitats disrupting the running or safety of transport networks could not. Consequently, achieving NG within the transport corridor was not possible and offsetting was required. The first ‘lessons learnt’ were on obtaining a commitment from business leaders to go beyond legislative requirements and deliver NG, and on the institutional change necessary to embed GPP within daily operations. These issues can only be addressed when the challenges that biodiversity poses for business are overcome. These challenges included: biodiversity cannot be measured easily unlike other sustainability factors like carbon and water that have metrics for target-setting and measuring progress; and, the mindset that biodiversity costs money and does not generate cash in return, which is the opposite of carbon or waste for example, where people can see how ‘sustainability’ actions save money. The challenges were overcome by presenting the GPP of NG as a cost-efficient solution to specific, critical risks facing the business that also boost industry recognition, and by using government-issued NG metrics to develop business-specific toolkits charting their NG progress whilst ensuring that NG decision-making was based on rich ecological data. An institutional change was best achieved by supporting, mentoring and training sustainability/environmental managers for these ‘frontline’ staff to embed GPP within the business. The second learning was from implementing the GPP where business partnered with local governments, wildlife groups and land owners to support their priorities for nature conservation, and where these partners had a say in decisions about where and how best to achieve NG. From this inclusive approach, offsetting contributed towards conservation priorities when all collaborated to manage trade-offs between: -Delivering ecologically equivalent offsets or compensating for losses of one type of biodiversity by providing another. -Achieving NG locally to the development whilst contributing towards national conservation priorities through landscape-level planning. -Not just protecting the extent and condition of existing biodiversity but ‘doing more’. -The multi-sector collaborations identified practical, workable solutions to ‘in perpetuity’. But key was strengthening linkages between biodiversity measures implemented for development and conservation work undertaken by local organizations so that developers support NG initiatives that really count.Keywords: biodiversity offsetting, development, nature conservation planning, net gain
Procedia PDF Downloads 19527 The Immunology Evolutionary Relationship between Signal Transducer and Activator of Transcription Genes from Three Different Shrimp Species in Response to White Spot Syndrome Virus Infection
Authors: T. C. C. Soo, S. Bhassu
Abstract:
Unlike the common presence of both innate and adaptive immunity in vertebrates, crustaceans, in particular, shrimps, have been discovered to possess only innate immunity. This further emphasizes the importance of innate immunity within shrimps in pathogenic resistance. Under the study of pathogenic immune challenge, different shrimp species actually exhibit varying degrees of immune resistance towards the same pathogen. Furthermore, even within the same shrimp species, different batches of challenged shrimps can have different strengths of immune defence. Several important pathways are activated within shrimps during pathogenic infection. One of them is JAK-STAT pathway that is activated during bacterial, viral and fungal infections by which STAT(Signal Transducer and Activator of Transcription) gene is the core element of the pathway. Based on theory of Central Dogma, the genomic information is transmitted in the order of DNA, RNA and protein. This study is focused in uncovering the important evolutionary patterns present within the DNA (non-coding region) and RNA (coding region). The three shrimp species involved are Macrobrachium rosenbergii, Penaeus monodon and Litopenaeus vannamei which all possess commercial significance. The shrimp species were challenged with a famous penaeid shrimp virus called white spot syndrome virus (WSSV) which can cause serious lethality. Tissue samples were collected during time intervals of 0h, 3h, 6h, 12h, 24h, 36h and 48h. The DNA and RNA samples were then extracted using conventional kits from the hepatopancreas tissue samples. PCR technique together with designed STAT gene conserved primers were utilized for identification of the STAT coding sequences using RNA-converted cDNA samples and subsequent characterization using various bioinformatics approaches including Ramachandran plot, ProtParam and SWISS-MODEL. The varying levels of immune STAT gene activation for the three shrimp species during WSSV infection were confirmed using qRT-PCR technique. For one sample, three biological replicates with three technical replicates each were used for qRT-PCR. On the other hand, DNA samples were important for uncovering the structural variations within the genomic region of STAT gene which would greatly assist in understanding the STAT protein functional variations. The partially-overlapping primers technique was used for the genomic region sequencing. The evolutionary inferences and event predictions were then conducted through the Bayesian Inference method using all the acquired coding and non-coding sequences. This was supplemented by the construction of conventional phylogenetic trees using Maximum likelihood method. The results showed that adaptive evolution caused STAT gene sequence mutations between different shrimp species which led to evolutionary divergence event. Subsequently, the divergent sites were correlated to the differing expressions of STAT gene. Ultimately, this study assists in knowing the shrimp species innate immune variability and selection of disease resistant shrimps for breeding purpose. The deeper understanding of STAT gene evolution from the perspective of both purifying and adaptive approaches not only can provide better immunological insight among shrimp species, but also can be used as a good reference for immunological studies in humans or other model organisms.Keywords: gene evolution, JAK-STAT pathway, immunology, STAT gene
Procedia PDF Downloads 15026 Sustainable Crop Production: Greenhouse Gas Management in Farm Value Chain
Authors: Aswathaman Vijayan, Manish Jha, Ullas Theertha
Abstract:
Climate change and Global warming have become an issue for both developed and developing countries and perhaps the biggest threat to the environment. We at ITC Limited believe that a company’s performance must be measured by its Triple Bottom Line contribution to building economic, social and environmental capital. This Triple Bottom Line strategy focuses on - Embedding sustainability in business practices, Investing in social development and Adopting a low carbon growth path with a cleaner environment approach. The Agri Business Division - ILTD operates in the tobacco crop growing regions of Andhra Pradesh and Karnataka province of India. The Agri value chain of the company comprises of two distinct phases: First phase is Agricultural operations undertaken by ITC trained farmers and the second phase is Industrial operations which include marketing and processing of the agricultural produce. This research work covers the Greenhouse Gas (GHG) management strategy of ITC in the Agricultural operations undertaken by the farmers. The agriculture sector adds considerably to global GHG emissions through the use of carbon-based energies, use of fertilizers and other farming operations such as ploughing. In order to minimize the impact of farming operations on the environment, ITC has a taken a big leap in implementing system and process in reducing the GHG impact in farm value chain by partnering with the farming community. The company has undertaken a unique three-pronged approach for GHG management at the farm value chain: 1) GHG inventory at farm value chain: Different sources of GHG emission in the farm value chain were identified and quantified for the baseline year, as per the IPCC guidelines for greenhouse gas inventories. The major sources of emission identified are - emission due to nitrogenous fertilizer application during seedling production and main-field; emission due to diesel usage for farm machinery; emission due to fuel consumption and due to burning of crop residues. 2) Identification and implementation of technologies to reduce GHG emission: Various methodologies and technologies were identified for each GHG emission source and implemented at farm level. The identified methodologies are – reducing the consumption of chemical fertilizer usage at the farm through site-specific nutrient recommendation; Usage of sharp shovel for land preparation to reduce diesel consumption; implementation of energy conservation technologies to reduce fuel requirement and avoiding burning of crop residue by incorporation in the main field. These identified methodologies were implemented at farm level, and the GHG emission was quantified to understand the reduction in GHG emission. 3) Social and farm forestry for CO2 sequestration: In addition, the company encouraged social and farm forestry in the waste lands to convert it into green cover. The plantations are carried out with fast growing trees viz., Eucalyptus, Casuarina, and Subabul at the rate of 10,000 Ha of land per year. The above approach minimized considerable amount of GHG emission at the farm value chain benefiting farmers, community, and environment at a whole. In addition, the CO₂ stock created by social and farm forestry program has made the farm value chain to become environment-friendly.Keywords: CO₂ sequestration, farm value chain, greenhouse gas, ITC limited
Procedia PDF Downloads 29525 Effect of Land Use and Abandonment on Soil Carbon and Nitrogen Depletion by Runoff in Shallow Soils under Semi-Arid Mediterranean Climate
Authors: Mohamed Emran, Giovanni Pardini, Maria Gispert, Mohamed Rashad
Abstract:
Land use and abandonment in semi-arid degraded ecosystems may cause regressive dynamics in vegetation cover affecting organic matter contents, soil nutrients and structural stability, thus reducing soil resistance to erosion. Mediterranean areas are generally subjected to climatic fluctuations, which modify soil conditions and hydrological processes, such as runoff and water infiltration within the upper soil horizons. Low erosion rates occur in very fragile and shallow soils with minor clay content progressively decrease organic carbon C and nitrogen N pools in the upper soil horizons. Seven soils were selected representing variant context of land use and abandonment at the Cap de Creus Peninsula, Catalonia, NE Spain, from recent cultivated vines and olive groves, mid abandoned forests standing under cork and pine trees, pasture to late abandoned Cistus and Erica scrubs. The aim of this work was to study the effect of changes in land use and abandonment on the depletion of soil organic carbon and nitrogen transported by runoff water in shallow soils after natural rainfall events during two years with different rainfall patterns (1st year with low rainfall and 2nd year with high rainfall) by i) monitoring the most significant soil erosion parameters at recorded rainfall events, ii) studying the most relevant soil physical and chemical characteristics on seasonal basis and iii) analysing the seasonal trends of depleted carbon and nitrogen and their interaction with soil surface compaction parameters. Significant seasonal variability was observed in the relevant soil physical and chemical parameters and soil erosion parameters in all soils to establish their evolution under land use and abandonment during two years of different rainfall patterns (214 and 487 mm per year), giving important indications on soil response to rainfall impacts. Erosion rates decreased significantly with the increasing of soil C and N under low and high rainfall. In cultivated soils, C and N depletion increased by 144% and 115%, respectively by 13% increase in erosion rates during the 1st year with respect to the 2nd year. Depleted C and N were proportionally higher in soils under vines and olive with vulnerable soil structure and low soil resilience leading to degradation, altering nutrients cycles and causing adverse impact on environmental quality. Statistical analysis underlined that, during the 1st year, soil surface was less effective in preserving stocks of organic resources leading to higher susceptibility to erosion with consequent C and N depletion. During the 2nd year, higher organic reserve and water storage occurred despite the increasing of C and N loss with an effective contribution from soil surface compaction parameters. The overall estimation during the two years indicated clear differences among soils under vines, olive, cork and pines, suggesting on the one hand, that current cultivation practices are inappropriate and that reforestation with pines may delay the achievement of better soil conditions. On the other hand, the natural succession of vegetation under Cistus, pasture and Erica suggests the recovery of good soil conditions.Keywords: land abandonment, land use, nutrient's depletion, soil erosion
Procedia PDF Downloads 34624 Restoration of a Forest Catchment in Himachal Pradesh, India: An Institutional Analysis
Authors: Sakshi Gupta, Kavita Sardana
Abstract:
Management of a forest catchment involves diverse dimensions, multiple stakeholders, and conflicting interests, primarily due to the wide variety of valuable ecosystem services offered by it. Often, the coordination among different levels of formal institutions governing the catchment, local communities, as well as societal norms, taboos, customs and practices, happens to be amiss, leading to conflicting policy interventions which prove detrimental for such resources. In the case of Ala Catchment, which is a protected forest located at a distance of 9 km North-East of the town of Dalhousie, within district Chamba of Himachal Pradesh, India, and serves as one of the primary sources of public water supply for the downstream town of Dalhousie and nearby areas, several policy measures have been adopted for the restoration of the forest catchment, as well as for the improvement of public water supply. These catchment forest restoration measures include; the installation of a fence along the perimeter of the catchment, plantation of trees in the empty patches of the forest, construction of check dams, contour trenches, contour bunds, issuance of grazing permits, and installation of check posts to keep track of trespassers. While the measures adopted to address the acute shortage of public water supply in the Dalhousie region include; building and maintenance of large capacity water storage tanks, laying of pipelines, expanding public water distribution infrastructure to include water sources other than Ala Catchment Forest and introducing of five new water supply schemes for drinking water as well as irrigation. However, despite these policy measures, the degradation of the Ala catchment and acute shortage of water supply continue to distress the region. This study attempts to conduct an institutional analysis to assess the impact of policy measures for the restoration of the Ala Catchment in the Chamba district of Himachal Pradesh in India. For this purpose, the theoretical framework of Ostrom’s Institutional Assessment and Development (IAD) Framework was used. Snowball sampling was used to conduct private interviews and focused group discussions. A semi-structured questionnaire was administered to interview a total of 184 respondents across stakeholders from both formal and informal institutions. The central hypothesis of the study is that the interplay of formal and informal institutions facilitates the implementation of policy measures for ameliorating Ala Catchment, in turn improving the livelihood of people depending on this forest catchment for direct and indirect benefits. The findings of the study suggest that leakages in the successful implementation of policy measures occur at several nodes of decision-making, which adversely impact the catchment and the ecosystem services provided by it. Some of the key reasons diagnosed by the immediate analysis include; ad-hoc assignment of property rights, rise in tourist inflow increasing the pressures on water demand, illegal trespassing by local and nomadic pastoral communities for grazing and unlawful extraction of forest products, and rent-seeking by a few influential formal institutions. Consequently, it is indicated that the interplay of formal and informal institutions may be obscuring the consequentiality of the policy measures on the restoration of the catchment.Keywords: catchment forest restoration, institutional analysis and development framework, institutional interplay, protected forest, water supply management
Procedia PDF Downloads 9723 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates
Authors: Jennifer Buz, Alvin Spivey
Abstract:
The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation
Procedia PDF Downloads 12622 Mapping of Urban Micro-Climate in Lyon (France) by Integrating Complementary Predictors at Different Scales into Multiple Linear Regression Models
Authors: Lucille Alonso, Florent Renard
Abstract:
The characterizations of urban heat island (UHI) and their interactions with climate change and urban climates are the main research and public health issue, due to the increasing urbanization of the population. These solutions require a better knowledge of the UHI and micro-climate in urban areas, by combining measurements and modelling. This study is part of this topic by evaluating microclimatic conditions in dense urban areas in the Lyon Metropolitan Area (France) using a combination of data traditionally used such as topography, but also from LiDAR (Light Detection And Ranging) data, Landsat 8 satellite observation and Sentinel and ground measurements by bike. These bicycle-dependent weather data collections are used to build the database of the variable to be modelled, the air temperature, over Lyon’s hyper-center. This study aims to model the air temperature, measured during 6 mobile campaigns in Lyon in clear weather, using multiple linear regressions based on 33 explanatory variables. They are of various categories such as meteorological parameters from remote sensing, topographic variables, vegetation indices, the presence of water, humidity, bare soil, buildings, radiation, urban morphology or proximity and density to various land uses (water surfaces, vegetation, bare soil, etc.). The acquisition sources are multiple and come from the Landsat 8 and Sentinel satellites, LiDAR points, and cartographic products downloaded from an open data platform in Greater Lyon. Regarding the presence of low, medium, and high vegetation, the presence of buildings and ground, several buffers close to these factors were tested (5, 10, 20, 25, 50, 100, 200 and 500m). The buffers with the best linear correlations with air temperature for ground are 5m around the measurement points, for low and medium vegetation, and for building 50m and for high vegetation is 100m. The explanatory model of the dependent variable is obtained by multiple linear regression of the remaining explanatory variables (Pearson correlation matrix with a |r| < 0.7 and VIF with < 5) by integrating a stepwise sorting algorithm. Moreover, holdout cross-validation is performed, due to its ability to detect over-fitting of multiple regression, although multiple regression provides internal validation and randomization (80% training, 20% testing). Multiple linear regression explained, on average, 72% of the variance for the study days, with an average RMSE of only 0.20°C. The impact on the model of surface temperature in the estimation of air temperature is the most important variable. Other variables are recurrent such as distance to subway stations, distance to water areas, NDVI, digital elevation model, sky view factor, average vegetation density, or building density. Changing urban morphology influences the city's thermal patterns. The thermal atmosphere in dense urban areas can only be analysed on a microscale to be able to consider the local impact of trees, streets, and buildings. There is currently no network of fixed weather stations sufficiently deployed in central Lyon and most major urban areas. Therefore, it is necessary to use mobile measurements, followed by modelling to characterize the city's multiple thermal environments.Keywords: air temperature, LIDAR, multiple linear regression, surface temperature, urban heat island
Procedia PDF Downloads 13721 Calpoly Autonomous Transportation Experience: Software for Driverless Vehicle Operating on Campus
Authors: F. Tang, S. Boskovich, A. Raheja, Z. Aliyazicioglu, S. Bhandari, N. Tsuchiya
Abstract:
Calpoly Autonomous Transportation Experience (CATE) is a driverless vehicle that we are developing to provide safe, accessible, and efficient transportation of passengers throughout the Cal Poly Pomona campus for events such as orientation tours. Unlike the other self-driving vehicles that are usually developed to operate with other vehicles and reside only on the road networks, CATE will operate exclusively on walk-paths of the campus (potentially narrow passages) with pedestrians traveling from multiple locations. Safety becomes paramount as CATE operates within the same environment as pedestrians. As driverless vehicles assume greater roles in today’s transportation, this project will contribute to autonomous driving with pedestrian traffic in a highly dynamic environment. The CATE project requires significant interdisciplinary work. Researchers from mechanical engineering, electrical engineering and computer science are working together to attack the problem from different perspectives (hardware, software and system). In this abstract, we describe the software aspects of the project, with a focus on the requirements and the major components. CATE shall provide a GUI interface for the average user to interact with the car and access its available functionalities, such as selecting a destination from any origin on campus. We have developed an interface that provides an aerial view of the campus map, the current car location, routes, and the goal location. Users can interact with CATE through audio or manual inputs. CATE shall plan routes from the origin to the selected destination for the vehicle to travel. We will use an existing aerial map for the campus and convert it to a spatial graph configuration where the vertices represent the landmarks and edges represent paths that the car should follow with some designated behaviors (such as stay on the right side of the lane or follow an edge). Graph search algorithms such as A* will be implemented as the default path planning algorithm. D* Lite will be explored to efficiently recompute the path when there are any changes to the map. CATE shall avoid any static obstacles and walking pedestrians within some safe distance. Unlike traveling along traditional roadways, CATE’s route directly coexists with pedestrians. To ensure the safety of the pedestrians, we will use sensor fusion techniques that combine data from both lidar and stereo vision for obstacle avoidance while also allowing CATE to operate along its intended route. We will also build prediction models for pedestrian traffic patterns. CATE shall improve its location and work under a GPS-denied situation. CATE relies on its GPS to give its current location, which has a precision of a few meters. We have implemented an Unscented Kalman Filter (UKF) that allows the fusion of data from multiple sensors (such as GPS, IMU, odometry) in order to increase the confidence of localization. We also noticed that GPS signals can easily get degraded or blocked on campus due to high-rise buildings or trees. UKF can also help here to generate a better state estimate. In summary, CATE will provide on-campus transportation experience that coexists with dynamic pedestrian traffic. In future work, we will extend it to multi-vehicle scenarios.Keywords: driverless vehicle, path planning, sensor fusion, state estimate
Procedia PDF Downloads 14420 Environmental Planning for Sustainable Utilization of Lake Chamo Biodiversity Resources: Geospatially Supported Approach, Ethiopia
Authors: Alemayehu Hailemicael Mezgebe, A. J. Solomon Raju
Abstract:
Context: Lake Chamo is a significant lake in the Ethiopian Rift Valley, known for its diversity of wildlife and vegetation. However, the lake is facing various threats due to human activities and global effects. The poor management of resources could lead to food insecurity, ecological degradation, and loss of biodiversity. Research Aim: The aim of this study is to analyze the environmental implications of lake level changes using GIS and remote sensing. The research also aims to examine the floristic composition of the lakeside vegetation and propose spatially oriented environmental planning for the sustainable utilization of the biodiversity resources. Methodology: The study utilizes multi-temporal satellite images and aerial photographs to analyze the changes in the lake area over the past 45 years. Geospatial analysis techniques are employed to assess land use and land cover changes and change detection matrix. The composition and role of the lakeside vegetation in the ecological and hydrological functions are also examined. Findings: The analysis reveals that the lake has shrunk by 14.42% over the years, with significant modifications to its upstream segment. The study identifies various threats to the lake-wetland ecosystem, including changes in water chemistry, overfishing, and poor waste management. The study also highlights the impact of human activities on the lake's limnology, with an increase in conductivity, salinity, and alkalinity. Floristic composition analysis of the lake-wetland ecosystem showed definite pattern of the vegetation distribution. The vegetation composition can be generally categorized into three belts namely, the herbaceous belt, the legume belt and the bush-shrub-small trees belt. The vegetation belts collectively act as different-sized sieve screen system and calm down the pace of incoming foreign matter. This stratified vegetation provides vital information to decide the management interventions for the sustainability of lake-wetland ecosystem.Theoretical Importance: The study contributes to the understanding of the environmental changes and threats faced by Lake Chamo. It provides insights into the impact of human activities on the lake-wetland ecosystem and emphasizes the need for sustainable resource management. Data Collection and Analysis Procedures: The study utilizes aerial photographs, satellite imagery, and field observations to collect data. Geospatial analysis techniques are employed to process and analyze the data, including land use/land cover changes and change detection matrices. Floristic composition analysis is conducted to assess the vegetation patterns Question Addressed: The study addresses the question of how lake level changes and human activities impact the environmental health and biodiversity of Lake Chamo. It also explores the potential opportunities and threats related to water utilization and waste management. Conclusion: The study recommends the implementation of spatially oriented environmental planning to ensure the sustainable utilization and maintenance of Lake Chamo's biodiversity resources. It emphasizes the need for proper waste management, improved irrigation facilities, and a buffer zone with specific vegetation patterns to restore and protect the lake outskirt.Keywords: buffer zone, geo-spatial, lake chamo, lake level changes, sustainable utilization
Procedia PDF Downloads 8719 High Purity Lignin for Asphalt Applications: Using the Dawn Technology™ Wood Fractionation Process
Authors: Ed de Jong
Abstract:
Avantium is a leading technology development company and a frontrunner in renewable chemistry. Avantium develops disruptive technologies that enable the production of sustainable high value products from renewable materials and actively seek out collaborations and partnerships with like-minded companies and academic institutions globally, to speed up introductions of chemical innovations in the marketplace. In addition, Avantium helps companies to accelerate their catalysis R&D to improve efficiencies and deliver increased sustainability, growth, and profits, by providing proprietary systems and services to this regard. Many chemical building blocks and materials can be produced from biomass, nowadays mainly from 1st generation based carbohydrates, but potential for competition with the human food chain leads brand-owners to look for strategies to transition from 1st to 2nd generation feedstock. The use of non-edible lignocellulosic feedstock is an equally attractive source to produce chemical intermediates and an important part of the solution addressing these global issues (Paris targets). Avantium’s Dawn Technology™ separates the glucose, mixed sugars, and lignin available in non-food agricultural and forestry residues such as wood chips, wheat straw, bagasse, empty fruit bunches or corn stover. The resulting very pure lignin is dense in energy and can be used for energy generation. However, such a material might preferably be deployed in higher added value applications. Bitumen, which is fossil based, are mostly used for paving applications. Traditional hot mix asphalt emits large quantities of the GHG’s CO₂, CH₄, and N₂O, which is unfavorable for obvious environmental reasons. Another challenge for the bitumen industry is that the petrochemical industry is becoming more and more efficient in breaking down higher chain hydrocarbons to lower chain hydrocarbons with higher added value than bitumen. This has a negative effect on the availability of bitumen. The asphalt market, as well as governments, are looking for alternatives with higher sustainability in terms of GHG emission. The usage of alternative sustainable binders, which can (partly) replace the bitumen, contributes to reduce GHG emissions and at the same time broadens the availability of binders. As lignin is a major component (around 25-30%) of lignocellulosic material, which includes terrestrial plants (e.g., trees, bushes, and grass) and agricultural residues (e.g., empty fruit bunches, corn stover, sugarcane bagasse, straw, etc.), it is globally highly available. The chemical structure shows resemblance with the structure of bitumen and could, therefore, be used as an alternative for bitumen in applications like roofing or asphalt. Applications such as the use of lignin in asphalt need both fundamental research as well as practical proof under relevant use conditions. From a fundamental point of view, rheological aspects, as well as mixing, are key criteria. From a practical point of view, behavior in real road conditions is key (how easy can the asphalt be prepared, how easy can it be applied on the road, what is the durability, etc.). The paper will discuss the fundamentals of the use of lignin as bitumen replacement as well as the status of the different demonstration projects in Europe using lignin as a partial bitumen replacement in asphalts and will especially present the results of using Dawn Technology™ lignin as partial replacement of bitumen.Keywords: biorefinery, wood fractionation, lignin, asphalt, bitumen, sustainability
Procedia PDF Downloads 15418 Accumulation of Trace Metals in Leaf Vegetables Cultivated in High Traffic Areas in Ghent, Belgium
Authors: Veronique Troch, Wouter Van der Borght, Véronique De Bleeker, Bram Marynissen, Nathan Van der Eecken, Gijs Du Laing
Abstract:
Among the challenges associated with increased urban food production are health risks from food contamination, due to the higher pollution loads in urban areas, compared to rural sites. Therefore, the risks posed by industrial or traffic pollution of locally grown food, was defined as one of five high-priority issues of urban agriculture requiring further investigation. The impact of air pollution on urban horticulture is the subject of this study. More particular, this study focuses on the atmospheric deposition of trace metals on leaf vegetables cultivated in the city of Ghent, Belgium. Ghent is a particularly interesting study site as it actively promotes urban agriculture. Plants accumulate heavy metals by absorption from contaminated soils and through deposition on parts exposed to polluted air. Accumulation of trace metals in vegetation grown near roads has been shown to be significantly higher than those grown in rural areas due to traffic-related contaminants in the air. Studies of vegetables demonstrated, that the uptake and accumulation of trace metals differed among crop type, species, and among plant parts. Studies on vegetables and fruit trees in Berlin, Germany, revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and parameters related to barriers between sampling site and neighboring roads. This study aims to supplement this scarce research on heavy metal accumulation in urban horticulture. Samples from leaf vegetables were collected from different sites, including allotment gardens, in Ghent. Trace metal contents on these leaf vegetables were analyzed by ICP-MS (inductively coupled plasma mass spectrometry). In addition, precipitation on each sampling site was collected by NILU-type bulk collectors and similarly analyzed for trace metals. On one sampling site, different parameters which might influence trace metal content in leaf vegetables were analyzed in detail. These parameters are distance of planting site to the nearest road, barriers between planting site and nearest road, and type of leaf vegetable. For comparison, a rural site, located farther from city traffic and industrial pollution, was included in this study. Preliminary results show that there is a high correlation between trace metal content in the atmospheric deposition and trace metal content in leaf vegetables. Moreover, a significant higher Pb, Cu and Fe concentration was found on spinach collected from Ghent, compared to spinach collected from a rural site. The distance of planting site to the nearest road significantly affected the accumulation of Pb, Cu, Mo and Fe on spinach. Concentrations of those elements on spinach increased with decreasing distance between planting site and the nearest road. Preliminary results did not show a significant effect of barriers between planting site and the nearest road on accumulation of trace metals on leaf vegetables. The overall goal of this study is to complete and refine existing guidelines for urban gardening to exclude potential health risks from food contamination. Accordingly, this information can help city governments and civil society in the professionalization and sustainable development of urban agriculture.Keywords: atmospheric deposition, leaf vegetables, trace metals, traffic pollution, urban agriculture
Procedia PDF Downloads 23917 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 18