Search results for: poisson noise
792 Modeling and System Identification of a Variable Excited Linear Direct Drive
Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke
Abstract:
Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux
Procedia PDF Downloads 370791 Repair Workshop Queue System Modification Using Priority Scheme
Authors: C. Okonkwo Ugochukwu, E. Sinebe Jude, N. Odoh Blessing, E. Okafor Christian
Abstract:
In this paper, a modification on repair workshop queuing system using multi priority scheme was carried out. Chi square goodness of fit test was used to determine the random distribution of the inter arrival time and service time of crankshafts that come for maintenance in the workshop. The chi square values obtained for all the prioritized classes show that the distribution conforms to Poisson distribution. The mean waiting time in queue results of non-preemptive priority for 1st, 2nd and 3rd classes show 0.066, 0.09, and 0.224 day respectively, while preemptive priority show 0.007, 0.036 and 0.258 day. However, when non priority is used, which obviously has no class distinction it amounts to 0.17 days. From the results, one can observe that the preemptive priority system provides a very dramatic improvement over the non preemptive priority as it concerns arrivals that are of higher priority. However, the improvement has a detrimental effect on the low priority class. The trend of the results is similar to the mean waiting time in the system as a result of addition of the actual service time. Even though the mean waiting time for the queue and that of the system for no priority takes the least time when compared with the least priority, urgent and semi-urgent jobs will terribly suffer which will most likely result in reneging or balking of many urgent jobs. Hence, the adoption of priority scheme in this type of scenario will result in huge profit to the Company and more customer satisfaction.Keywords: queue, priority class, preemptive, non-preemptive, mean waiting time
Procedia PDF Downloads 396790 Effect of pH-Dependent Surface Charge on the Electroosmotic Flow through Nanochannel
Authors: Partha P. Gopmandal, Somnath Bhattacharyya, Naren Bag
Abstract:
In this article, we have studied the effect of pH-regulated surface charge on the electroosmotic flow (EOF) through nanochannel filled with binary symmetric electrolyte solution. The channel wall possesses either an acidic or a basic functional group. Going beyond the widely employed Debye-Huckel linearization, we develop a mathematical model based on Nernst-Planck equation for the charged species, Poisson equation for the induced potential, Stokes equation for fluid flow. A finite volume based numerical algorithm is adopted to study the effect of key parameters on the EOF. We have computed the coupled governing equations through the finite volume method and our results found to be in good agreement with the analytical solution obtained from the corresponding linear model based on low surface charge condition or strong electrolyte solution. The influence of the surface charge density, reaction constant of the functional groups, bulk pH, and concentration of the electrolyte solution on the overall flow rate is studied extensively. We find the effect of surface charge diminishes with the increase in electrolyte concentration. In addition for strong electrolyte, the surface charge becomes independent of pH due to complete dissociation of the functional groups.Keywords: electroosmosis, finite volume method, functional group, surface charge
Procedia PDF Downloads 419789 Toward Indoor and Outdoor Surveillance using an Improved Fast Background Subtraction Algorithm
Authors: El Harraj Abdeslam, Raissouni Naoufal
Abstract:
The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes in variance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes.Keywords: video surveillance, background subtraction, contrast limited histogram equalization, illumination invariance, object tracking, object detection, behavior understanding, dynamic scenes
Procedia PDF Downloads 256788 Effective Planning of Public Transportation Systems: A Decision Support Application
Authors: Ferdi Sönmez, Nihal Yorulmaz
Abstract:
Decision making on the true planning of the public transportation systems to serve potential users is a must for metropolitan areas. To take attraction of travelers to projected modes of transport, adequately fair overall travel times should be provided. In this fashion, other benefits such as lower traffic congestion, road safety and lower noise and atmospheric pollution may be earned. The congestion which comes with increasing demand of public transportation is becoming a part of our lives and making residents’ life difficult. Hence, regulations should be done to reduce this congestion. To provide a constructive and balanced regulation in public transportation systems, right stations should be located in right places. In this study, it is aimed to design and implement a Decision Support System (DSS) Application to determine the optimal bus stop places for public transport in Istanbul which is one of the biggest and oldest cities in the world. Required information is gathered from IETT (Istanbul Electricity, Tram and Tunnel) Enterprises which manages all public transportation services in Istanbul Metropolitan Area. By using the most real-like values, cost assignments are made. The cost is calculated with the help of equations produced by bi-level optimization model. For this study, 300 buses, 300 drivers, 10 lines and 110 stops are used. The user cost of each station and the operator cost taken place in lines are calculated. Some components like cost, security and noise pollution are considered as significant factors affecting the solution of set covering problem which is mentioned for identifying and locating the minimum number of possible bus stops. Preliminary research and model development for this study refers to previously published article of the corresponding author. Model results are represented with the intent of decision support to the specialists on locating stops effectively.Keywords: operator cost, bi-level optimization model, user cost, urban transportation
Procedia PDF Downloads 246787 Experimental Characterization of Composite Material with Non Contacting Methods
Authors: Nikolaos Papadakis, Constantinos Condaxakis, Konstantinos Savvakis
Abstract:
The aim of this paper is to determine the elastic properties (elastic modulus and Poisson ratio) of a composite material based on noncontacting imaging methods. More specifically, the significantly reduced cost of digital cameras has given the opportunity of the high reliability of low-cost strain measurement. The open source platform Ncorr is used in this paper which utilizes the method of digital image correlation (DIC). The use of digital image correlation in measuring strain uses random speckle preparation on the surface of the gauge area, image acquisition, and postprocessing the image correlation to obtain displacement and strain field on surface under study. This study discusses technical issues relating to the quality of results to be obtained are discussed. [0]8 fabric glass/epoxy composites specimens were prepared and tested at different orientations 0[o], 30[o], 45[o], 60[o], 90[o]. Each test was recorded with the camera at a constant frame rate and constant lighting conditions. The recorded images were processed through the use of the image processing software. The parameters of the test are reported. The strain map output which is obtained through strain measurement using Ncorr is validated by a) comparing the elastic properties with expected values from Classical laminate theory, b) through finite element analysis.Keywords: composites, Ncorr, strain map, videoextensometry
Procedia PDF Downloads 144786 The Effect of Region of Residence on Fertility in Nigeria
Authors: Motlatso Rampedi
Abstract:
Nigeria has the fifth highest Total Fertility Rate in Sub-Saharan Africa at 5.5 children born to a woman. Some demographic research has found that there is an association between region of residence and fertility in Nigeria, with the Northern regions pertaining to high fertility and the Southern regions pertaining to low fertility levels. Even so, little attention has been given to understanding the effect of region of residence on fertility. Instead, a significant amount of research has been conducted on exploring the proximate determinants of fertility in Nigeria. The objective of this study was to test whether there is an association between region of residence and fertility in Nigeria. Using a sample size of 38 948 women aged 15-49 derived from the 2013 NDHS and the Poisson regression model for analysis, the study has found that region of residence has a significant effect on fertility. Moreover, the ANOVA test has shown that there is a socioeconomic disparity by region of residence in Nigeria. The Northern regions of Nigeria have shown to have higher levels of fertility as compared to the Southern regions. Therefore, while proximate determinants of fertility and socio-demographic characteristics of women are important, region of residence remains one of the fundamental determinants of fertility. Given these findings, it is recommended that government should not exhaust its resources or focus its fertility reduction policies and programmes at entire populations but target specific regions where fertility is most prevalent.Keywords: high fertility, region, socioeconomic disparity, socio-demographic characteristics
Procedia PDF Downloads 308785 Atomic Decomposition Audio Data Compression and Denoising Using Sparse Dictionary Feature Learning
Authors: T. Bryan , V. Kepuska, I. Kostnaic
Abstract:
A method of data compression and denoising is introduced that is based on atomic decomposition of audio data using “basis vectors” that are learned from the audio data itself. The basis vectors are shown to have higher data compression and better signal-to-noise enhancement than the Gabor and gammatone “seed atoms” that were used to generate them. The basis vectors are the input weights of a Sparse AutoEncoder (SAE) that is trained using “envelope samples” of windowed segments of the audio data. The envelope samples are extracted from the audio data by performing atomic decomposition with Gabor or gammatone seed atoms. This process identifies segments of audio data that are locally coherent with the seed atoms. Envelope samples are extracted by identifying locally coherent audio data segments with Gabor or gammatone seed atoms, found by matching pursuit. The envelope samples are formed by taking the kronecker products of the atomic envelopes with the locally coherent data segments. Oracle signal-to-noise ratio (SNR) verses data compression curves are generated for the seed atoms as well as the basis vectors learned from Gabor and gammatone seed atoms. SNR data compression curves are generated for speech signals as well as early American music recordings. The basis vectors are shown to have higher denoising capability for data compression rates ranging from 90% to 99.84% for speech as well as music. Envelope samples are displayed as images by folding the time series into column vectors. This display method is used to compare of the output of the SAE with the envelope samples that produced them. The basis vectors are also displayed as images. Sparsity is shown to play an important role in producing the highest denoising basis vectors.Keywords: sparse dictionary learning, autoencoder, sparse autoencoder, basis vectors, atomic decomposition, envelope sampling, envelope samples, Gabor, gammatone, matching pursuit
Procedia PDF Downloads 252784 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer
Authors: Partha Sarathi Majee, S. Bhattacharyya
Abstract:
Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.Keywords: debye length, double layer polarization, electrophoresis, mobility reversal, soft particle
Procedia PDF Downloads 345783 Sorting Fish by Hu Moments
Authors: J. M. Hernández-Ontiveros, E. E. García-Guerrero, E. Inzunza-González, O. R. López-Bonilla
Abstract:
This paper presents the implementation of an algorithm that identifies and accounts different fish species: Catfish, Sea bream, Sawfish, Tilapia, and Totoaba. The main contribution of the method is the fusion of the characteristics of invariance to the position, rotation and scale of the Hu moments, with the proper counting of fish. The identification and counting is performed, from an image under different noise conditions. From the experimental results obtained, it is inferred the potentiality of the proposed algorithm to be applied in different scenarios of aquaculture production.Keywords: counting fish, digital image processing, invariant moments, pattern recognition
Procedia PDF Downloads 408782 Relation of Optimal Pilot Offsets in the Shifted Constellation-Based Method for the Detection of Pilot Contamination Attacks
Authors: Dimitriya A. Mihaylova, Zlatka V. Valkova-Jarvis, Georgi L. Iliev
Abstract:
One possible approach for maintaining the security of communication systems relies on Physical Layer Security mechanisms. However, in wireless time division duplex systems, where uplink and downlink channels are reciprocal, the channel estimate procedure is exposed to attacks known as pilot contamination, with the aim of having an enhanced data signal sent to the malicious user. The Shifted 2-N-PSK method involves two random legitimate pilots in the training phase, each of which belongs to a constellation, shifted from the original N-PSK symbols by certain degrees. In this paper, legitimate pilots’ offset values and their influence on the detection capabilities of the Shifted 2-N-PSK method are investigated. As the implementation of the technique depends on the relation between the shift angles rather than their specific values, the optimal interconnection between the two legitimate constellations is investigated. The results show that no regularity exists in the relation between the pilot contamination attacks (PCA) detection probability and the choice of offset values. Therefore, an adversary who aims to obtain the exact offset values can only employ a brute-force attack but the large number of possible combinations for the shifted constellations makes such a type of attack difficult to successfully mount. For this reason, the number of optimal shift value pairs is also studied for both 100% and 98% probabilities of detecting pilot contamination attacks. Although the Shifted 2-N-PSK method has been broadly studied in different signal-to-noise ratio scenarios, in multi-cell systems the interference from the signals in other cells should be also taken into account. Therefore, the inter-cell interference impact on the performance of the method is investigated by means of a large number of simulations. The results show that the detection probability of the Shifted 2-N-PSK decreases inversely to the signal-to-interference-plus-noise ratio.Keywords: channel estimation, inter-cell interference, pilot contamination attacks, wireless communications
Procedia PDF Downloads 217781 Brain-Computer Interfaces That Use Electroencephalography
Authors: Arda Ozkurt, Ozlem Bozkurt
Abstract:
Brain-computer interfaces (BCIs) are devices that output commands by interpreting the data collected from the brain. Electroencephalography (EEG) is a non-invasive method to measure the brain's electrical activity. Since it was invented by Hans Berger in 1929, it has led to many neurological discoveries and has become one of the essential components of non-invasive measuring methods. Despite the fact that it has a low spatial resolution -meaning it is able to detect when a group of neurons fires at the same time-, it is a non-invasive method, making it easy to use without possessing any risks. In EEG, electrodes are placed on the scalp, and the voltage difference between a minimum of two electrodes is recorded, which is then used to accomplish the intended task. The recordings of EEGs include, but are not limited to, the currents along dendrites from synapses to the soma, the action potentials along the axons connecting neurons, and the currents through the synaptic clefts connecting axons with dendrites. However, there are some sources of noise that may affect the reliability of the EEG signals as it is a non-invasive method. For instance, the noise from the EEG equipment, the leads, and the signals coming from the subject -such as the activity of the heart or muscle movements- affect the signals detected by the electrodes of the EEG. However, new techniques have been developed to differentiate between those signals and the intended ones. Furthermore, an EEG device is not enough to analyze the data from the brain to be used by the BCI implication. Because the EEG signal is very complex, to analyze it, artificial intelligence algorithms are required. These algorithms convert complex data into meaningful and useful information for neuroscientists to use the data to design BCI devices. Even though for neurological diseases which require highly precise data, invasive BCIs are needed; non-invasive BCIs - such as EEGs - are used in many cases to help disabled people's lives or even to ease people's lives by helping them with basic tasks. For example, EEG is used to detect before a seizure occurs in epilepsy patients, which can then prevent the seizure with the help of a BCI device. Overall, EEG is a commonly used non-invasive BCI technique that has helped develop BCIs and will continue to be used to detect data to ease people's lives as more BCI techniques will be developed in the future.Keywords: BCI, EEG, non-invasive, spatial resolution
Procedia PDF Downloads 71780 3D Simulation and Modeling of Magnetic-Sensitive on n-type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (DGMOSFET)
Authors: M. Kessi
Abstract:
We investigated the effect of the magnetic field on carrier transport phenomena in the transistor channel region of Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). This explores the Lorentz force and basic physical properties of solids exposed to a constant external magnetic field. The magnetic field modulates the electrons and potential distribution in the case of silicon Tunnel FETs. This modulation shows up in the device's external electrical characteristics such as ON current (ION), subthreshold leakage current (IOF), the threshold voltage (VTH), the magneto-transconductance (gm) and the output magneto-conductance (gDS) of Tunnel FET. Moreover, the channel doping concentration and potential distribution are obtained using the numerical method by solving Poisson’s transport equation in 3D modules semiconductor magnetic sensors available in Silvaco TCAD tools. The numerical simulations of the magnetic nano-sensors are relatively new. In this work, we present the results of numerical simulations based on 3D magnetic sensors. The results show excellent accuracy comportment and good agreement compared with that obtained in the experimental study of MOSFETs technology.Keywords: single-gate MOSFET, magnetic field, hall field, Lorentz force
Procedia PDF Downloads 181779 Application of the Extended Kantorovich Method to Size-Dependent Vibrational Analysis of Fully Clamped Rectangular Micro-Plates
Authors: Amir R. Askari, Masoud Tahani
Abstract:
The objective of the present paper is to investigate the effect of size on the vibrational behavior of fully clamped rectangular micro-plates based on the modified couple stress theory (MCST). To this end, a size-dependent Kirchhoff plate model is considered and the equation of motion which accounts for the effect of residual and couple stress components is derived using the Hamilton's principle. The eigenvalue problem associated with the free vibrations of fully clamped micro-plates is extracted and solved analytically using the extended Kantorovich method (EKM). The present findings are compared and validated by available results in the literature and an excellent agreement between them is observed. A parametric study is also conducted to show the significant effects of couple stress components on natural frequencies of fully clamped micro-plates. It is found that the ratio of MCST natural frequencies to those obtained by the classical theory (CT) only depends on the Poisson's ratio of the plate and is totally independent of plate's aspect ratio for cases with no residual stresses.Keywords: vibrational analysis, modified couple stress theory, fully clamped rectangular micro-plates, extended Kantorovich method.
Procedia PDF Downloads 387778 Synthesis of Filtering in Stochastic Systems on Continuous-Time Memory Observations in the Presence of Anomalous Noises
Authors: S. Rozhkova, O. Rozhkova, A. Harlova, V. Lasukov
Abstract:
We have conducted the optimal synthesis of root-mean-squared objective filter to estimate the state vector in the case if within the observation channel with memory the anomalous noises with unknown mathematical expectation are complement in the function of the regular noises. The synthesis has been carried out for linear stochastic systems of continuous-time.Keywords: mathematical expectation, filtration, anomalous noise, memory
Procedia PDF Downloads 247777 Clustering and Modelling Electricity Conductors from 3D Point Clouds in Complex Real-World Environments
Authors: Rahul Paul, Peter Mctaggart, Luke Skinner
Abstract:
Maintaining public safety and network reliability are the core objectives of all electricity distributors globally. For many electricity distributors, managing vegetation clearances from their above ground assets (poles and conductors) is the most important and costly risk mitigation control employed to meet these objectives. Light Detection And Ranging (LiDAR) is widely used by utilities as a cost-effective method to inspect their spatially-distributed assets at scale, often captured using high powered LiDAR scanners attached to fixed wing or rotary aircraft. The resulting 3D point cloud model is used by these utilities to perform engineering grade measurements that guide the prioritisation of vegetation cutting programs. Advances in computer vision and machine-learning approaches are increasingly applied to increase automation and reduce inspection costs and time; however, real-world LiDAR capture variables (e.g., aircraft speed and height) create complexity, noise, and missing data, reducing the effectiveness of these approaches. This paper proposes a method for identifying each conductor from LiDAR data via clustering methods that can precisely reconstruct conductors in complex real-world configurations in the presence of high levels of noise. It proposes 3D catenary models for individual clusters fitted to the captured LiDAR data points using a least square method. An iterative learning process is used to identify potential conductor models between pole pairs. The proposed method identifies the optimum parameters of the catenary function and then fits the LiDAR points to reconstruct the conductors.Keywords: point cloud, LİDAR data, machine learning, computer vision, catenary curve, vegetation management, utility industry
Procedia PDF Downloads 99776 Numerical Modelling and Soil-structure Interaction Analysis of Rigid Ballast-less and Flexible Ballast-based High-speed Rail Track-embankments Using Software
Authors: Tokirhusen Iqbalbhai Shaikh, M. V. Shah
Abstract:
With an increase in travel demand and a reduction in travel time, high-speed rail (HSR) has been introduced in India. Simplified 3-D finite element modelling is necessary to predict the stability and deformation characteristics of railway embankments and soil structure interaction behaviour under high-speed design requirements for Indian soil conditions. The objective of this study is to analyse the rigid ballast-less and flexible ballast-based high speed rail track embankments for various critical conditions subjected to them, viz. static condition, moving train condition, sudden brake application, and derailment case, using software. The input parameters for the analysis are soil type, thickness of the relevant strata, unit weight, Young’s modulus, Poisson’s ratio, undrained cohesion, friction angle, dilatancy angle, modulus of subgrade reaction, design speed, and other anticipated, relevant data. Eurocode 1, IRS-004(D), IS 1343, IRS specifications, California high-speed rail technical specifications, and the NHSRCL feasibility report will be followed in this study.Keywords: soil structure interaction, high speed rail, numerical modelling, PLAXIS3D
Procedia PDF Downloads 110775 Robustness of the Deep Chroma Extractor and Locally-Normalized Quarter Tone Filters in Automatic Chord Estimation under Reverberant Conditions
Authors: Luis Alvarado, Victor Poblete, Isaac Gonzalez, Yetzabeth Gonzalez
Abstract:
In MIREX 2016 (http://www.music-ir.org/mirex), the deep neural network (DNN)-Deep Chroma Extractor, proposed by Korzeniowski and Wiedmer, reached the highest score in an audio chord recognition task. In the present paper, this tool is assessed under acoustic reverberant environments and distinct source-microphone distances. The evaluation dataset comprises The Beatles and Queen datasets. These datasets are sequentially re-recorded with a single microphone in a real reverberant chamber at four reverberation times (0 -anechoic-, 1, 2, and 3 s, approximately), as well as four source-microphone distances (32, 64, 128, and 256 cm). It is expected that the performance of the trained DNN will dramatically decrease under these acoustic conditions with signals degraded by room reverberation and distance to the source. Recently, the effect of the bio-inspired Locally-Normalized Cepstral Coefficients (LNCC), has been assessed in a text independent speaker verification task using speech signals degraded by additive noise at different signal-to-noise ratios with variations of recording distance, and it has also been assessed under reverberant conditions with variations of recording distance. LNCC showed a performance so high as the state-of-the-art Mel Frequency Cepstral Coefficient filters. Based on these results, this paper proposes a variation of locally-normalized triangular filters called Locally-Normalized Quarter Tone (LNQT) filters. By using the LNQT spectrogram, robustness improvements of the trained Deep Chroma Extractor are expected, compared with classical triangular filters, and thus compensating the music signal degradation improving the accuracy of the chord recognition system.Keywords: chord recognition, deep neural networks, feature extraction, music information retrieval
Procedia PDF Downloads 232774 Improving Cell Type Identification of Single Cell Data by Iterative Graph-Based Noise Filtering
Authors: Annika Stechemesser, Rachel Pounds, Emma Lucas, Chris Dawson, Julia Lipecki, Pavle Vrljicak, Jan Brosens, Sean Kehoe, Jason Yap, Lawrence Young, Sascha Ott
Abstract:
Advances in technology make it now possible to retrieve the genetic information of thousands of single cancerous cells. One of the key challenges in single cell analysis of cancerous tissue is to determine the number of different cell types and their characteristic genes within the sample to better understand the tumors and their reaction to different treatments. For this analysis to be possible, it is crucial to filter out background noise as it can severely blur the downstream analysis and give misleading results. In-depth analysis of the state-of-the-art filtering methods for single cell data showed that they do, in some cases, not separate noisy and normal cells sufficiently. We introduced an algorithm that filters and clusters single cell data simultaneously without relying on certain genes or thresholds chosen by eye. It detects communities in a Shared Nearest Neighbor similarity network, which captures the similarities and dissimilarities of the cells by optimizing the modularity and then identifies and removes vertices with a weak clustering belonging. This strategy is based on the fact that noisy data instances are very likely to be similar to true cell types but do not match any of these wells. Once the clustering is complete, we apply a set of evaluation metrics on the cluster level and accept or reject clusters based on the outcome. The performance of our algorithm was tested on three datasets and led to convincing results. We were able to replicate the results on a Peripheral Blood Mononuclear Cells dataset. Furthermore, we applied the algorithm to two samples of ovarian cancer from the same patient before and after chemotherapy. Comparing the standard approach to our algorithm, we found a hidden cell type in the ovarian postchemotherapy data with interesting marker genes that are potentially relevant for medical research.Keywords: cancer research, graph theory, machine learning, single cell analysis
Procedia PDF Downloads 112773 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images
Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir
Abstract:
The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement; On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.Keywords: altitude estimation, drone, image processing, trajectory planning
Procedia PDF Downloads 113772 Evaluation of Natural Frequency of Single and Grouped Helical Piles
Authors: Maryam Shahbazi, Amy B. Cerato
Abstract:
The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces.Keywords: helical pile, natural frequency, pile group, shake table, stiffness
Procedia PDF Downloads 133771 Performance Comparison of Non-Binary RA and QC-LDPC Codes
Abstract:
Repeat–Accumulate (RA) codes are subclass of LDPC codes with fast encoder structures. In this paper, we consider a nonbinary extension of binary LDPC codes over GF(q) and construct a non-binary RA code and a non-binary QC-LDPC code over GF(2^4), we construct non-binary RA codes with linear encoding method and non-binary QC-LDPC codes with algebraic constructions method. And the BER performance of RA and QC-LDPC codes over GF(q) are compared with BP decoding and by simulation over the Additive White Gaussian Noise (AWGN) channels.Keywords: non-binary RA codes, QC-LDPC codes, performance comparison, BP algorithm
Procedia PDF Downloads 376770 Regular or Irregular: An Investigation of Medicine Consumption Pattern with Poisson Mixture Model
Authors: Lichung Jen, Yi Chun Liu, Kuan-Wei Lee
Abstract:
Fruitful data has been accumulated in database nowadays and is commonly used as support for decision-making. In the healthcare industry, hospital, for instance, ordering pharmacy inventory is one of the key decision. With large drug inventory, the current cost increases and its expiration dates might lead to future issue, such as drug disposal and recycle. In contrast, underestimating demand of the pharmacy inventory, particularly standing drugs, affects the medical treatment and possibly hospital reputation. Prescription behaviour of hospital physicians is one of the critical factor influencing this decision, particularly irregular prescription behaviour. If a drug’s usage amount in the month is irregular and less than the regular usage, it may cause the trend of subsequent stockpiling. On the contrary, if a drug has been prescribed often than expected, it may result in insufficient inventory. We proposed a hierarchical Bayesian mixture model with two components to identify physicians’ regular/irregular prescription patterns with probabilities. Heterogeneity of hospital is considered in our proposed hierarchical Bayes model. The result suggested that modeling the prescription patterns of physician is beneficial for estimating the order quantity of medication and pharmacy inventory management of the hospital. Managerial implication and future research are discussed.Keywords: hierarchical Bayesian model, poission mixture model, medicines prescription behavior, irregular behavior
Procedia PDF Downloads 127769 Analyzing Competition in Public Construction Projects
Authors: Khaled Hesham Hyari, Amjad Almani
Abstract:
Construction projects in the public sector are commonly awarded through competitive bidding. In the last decade, the Construction projects environment in the Middle East went through many changes. These changes have been caused by different factors including the economic crisis, delays in monthly payments, international competition and reduced number of projects. These factors had a great impact on the bidding behaviors of contractors and their pricing strategies. This paper examines the competition characteristics in public construction projects through an analysis of bidding results of contractors in public construction projects over a period of 6 years (2006-2011) in Jordan. The analyzed projects include all categories of projects such as infrastructure, buildings, transportation and engineering services (design and supervision contracts). Data for the projects were obtained from the General Tender’s Directorate in Jordan and includes 462 projects. The analysis performed in this projects includes, studying the bid spread in all projects as it is an indication of the level of competition in the analyzed bids. The analysis studied the factors that affect bid spread such as number of bidders, Value of the project, Project category and years. It also studying the “Signal to Noise Ratio” in all projects as it is an indication of the accuracy of cost estimating performed by competing bidders and bidder´s evaluation of project risks. The analysis performed includes the relationship between signal to noise ratio and different parameters such as project category, number of bidders and changes over years. Moreover, the analysis includes determining the bidder´s aggressiveness in bidding as it is an indication of competition level in such projects. This was performed by determining the pack price which can be considered as the true value of the project and comparing it with the lowest bid submitted for each project to determine the level of aggressiveness in submitted bids. The analysis performed in this project should prove to be useful to owners in understanding bidding behaviors of contractors and pointing out areas that needs improvement in preparing bidding documents. Also the project should be useful to contractors in understanding the competitive bidding environment and should help them to improve their bidding strategies to maximize the success rate in obtaining contracts.Keywords: construction projects, competitive bidding, public construction, competition
Procedia PDF Downloads 333768 On the End-of-Life Inventory Problem
Authors: Hans Frenk, Sonya Javadi, Semih Onur Sezer
Abstract:
We consider the so-called end of life inventory problem for the supplier of a product in its final phase of the service life cycle. This phase starts when the production of the items stops and continues until the warranty of the last sold item expires. At the beginning of this phase, the supplier places a final order for spare parts to serve customers coming with defective items. At any time during the final phase, the supplier may also decide to switch to an alternative and more cost-effective policy. This alternative policy may be in the form of replacing a defective item with a substitutable product or offering discounts / rebates on new generation products. In this setup, the objective is to find a final order quantity and also a switching time which will minimize the total expected discounted cost. We study this problem under a general cost structure in a continuous-time framework where arrivals of defective items are given by a non-homogeneous Poisson process. We consider four formulations which differ by the nature of the switching time. These formulations are studied in detail and properties of the objective function are derived in each case. Using these properties, we provide exact algorithms for efficient numerical implementations. Numerical examples are provided illustrating the application of these algorithms. In these examples, we also compare the costs associated with these different formulations.Keywords: End-of-life inventory control, martingales, optimization, service parts
Procedia PDF Downloads 334767 Assessment of Analytical Equations for the Derivation of Young’s Modulus of Bonded Rubber Materials
Authors: Z. N. Haji, S. O. Oyadiji, H. Samami, O. Farrell
Abstract:
The prediction of the vibration response of rubber products by analytical or numerical method depends mainly on the predefined intrinsic material properties such as Young’s modulus, damping factor and Poisson’s ratio. Such intrinsic properties are determined experimentally by subjecting a bonded rubber sample to compression tests. The compression tests on such a sample yield an apparent Young’s modulus which is greater in magnitude than the intrinsic Young’s modulus of the rubber. As a result, many analytical equations have been developed to determine Young’s modulus from an apparent Young’s modulus of bonded rubber materials. In this work, the applicability of some of these analytical equations is assessed via experimental testing. The assessment is based on testing of vulcanized nitrile butadiene rubber (NBR70) samples using tensile test and compression test methods. The analytical equations are used to determine the intrinsic Young’s modulus from the apparent modulus that is derived from the compression test data of the bonded rubber samples. Then, these Young’s moduli are compared with the actual Young’s modulus that is derived from the tensile test data. The results show significant discrepancy between the Young’s modulus derived using the analytical equations and the actual Young’s modulus.Keywords: bonded rubber, quasi-static test, shape factor, apparent Young’s modulus
Procedia PDF Downloads 173766 Generation of High-Quality Synthetic CT Images from Cone Beam CT Images Using A.I. Based Generative Networks
Authors: Heeba A. Gurku
Abstract:
Introduction: Cone Beam CT(CBCT) images play an integral part in proper patient positioning in cancer patients undergoing radiation therapy treatment. But these images are low in quality. The purpose of this study is to generate high-quality synthetic CT images from CBCT using generative models. Material and Methods: This study utilized two datasets from The Cancer Imaging Archive (TCIA) 1) Lung cancer dataset of 20 patients (with full view CBCT images) and 2) Pancreatic cancer dataset of 40 patients (only 27 patients having limited view images were included in the study). Cycle Generative Adversarial Networks (GAN) and its variant Attention Guided Generative Adversarial Networks (AGGAN) models were used to generate the synthetic CTs. Models were evaluated by visual evaluation and on four metrics, Structural Similarity Index Measure (SSIM), Peak Signal Noise Ratio (PSNR) Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), to compare the synthetic CT and original CT images. Results: For pancreatic dataset with limited view CBCT images, our study showed that in Cycle GAN model, MAE, RMSE, PSNR improved from 12.57to 8.49, 20.94 to 15.29 and 21.85 to 24.63, respectively but structural similarity only marginally increased from 0.78 to 0.79. Similar, results were achieved with AGGAN with no improvement over Cycle GAN. However, for lung dataset with full view CBCT images Cycle GAN was able to reduce MAE significantly from 89.44 to 15.11 and AGGAN was able to reduce it to 19.77. Similarly, RMSE was also decreased from 92.68 to 23.50 in Cycle GAN and to 29.02 in AGGAN. SSIM and PSNR also improved significantly from 0.17 to 0.59 and from 8.81 to 21.06 in Cycle GAN respectively while in AGGAN SSIM increased to 0.52 and PSNR increased to 19.31. In both datasets, GAN models were able to reduce artifacts, reduce noise, have better resolution, and better contrast enhancement. Conclusion and Recommendation: Both Cycle GAN and AGGAN were significantly able to reduce MAE, RMSE and PSNR in both datasets. However, full view lung dataset showed more improvement in SSIM and image quality than limited view pancreatic dataset.Keywords: CT images, CBCT images, cycle GAN, AGGAN
Procedia PDF Downloads 83765 Acceleration Techniques of DEM Simulation for Dynamics of Particle Damping
Authors: Masato Saeki
Abstract:
Presented herein is a novel algorithms for calculating the damping performance of particle dampers. The particle damper is a passive vibration control technique and has many practical applications due to simple design. It consists of granular materials constrained to move between two ends in the cavity of a primary vibrating system. The damping effect results from the exchange of momentum during the impact of granular materials against the wall of the cavity. This damping has the advantage of being independent of the environment. Therefore, particle damping can be applied in extreme temperature environments, where most conventional dampers would fail. It was shown experimentally in many papers that the efficiency of the particle dampers is high in the case of resonant vibration. In order to use the particle dampers effectively, it is necessary to solve the equations of motion for each particle, considering the granularity. The discrete element method (DEM) has been found to be effective for revealing the dynamics of particle damping. In this method, individual particles are assumed as rigid body and interparticle collisions are modeled by mechanical elements as springs and dashpots. However, the computational cost is significant since the equation of motion for each particle must be solved at each time step. In order to improve the computational efficiency of the DEM, the new algorithms are needed. In this study, new algorithms are proposed for implementing the high performance DEM. On the assumption that behaviors of the granular particles in the each divided area of the damper container are the same, the contact force of the primary system with all particles can be considered to be equal to the product of the divided number of the damper area and the contact force of the primary system with granular materials per divided area. This convenience makes it possible to considerably reduce the calculation time. The validity of this calculation method was investigated and the calculated results were compared with the experimental ones. This paper also presents the results of experimental studies of the performance of particle dampers. It is shown that the particle radius affect the noise level. It is also shown that the particle size and the particle material influence the damper performance.Keywords: particle damping, discrete element method (DEM), granular materials, numerical analysis, equivalent noise level
Procedia PDF Downloads 453764 Integral Form Solutions of the Linearized Navier-Stokes Equations without Deviatoric Stress Tensor Term in the Forward Modeling for FWI
Authors: Anyeres N. Atehortua Jimenez, J. David Lambraño, Juan Carlos Muñoz
Abstract:
Navier-Stokes equations (NSE), which describe the dynamics of a fluid, have an important application on modeling waves used for data inversion techniques as full waveform inversion (FWI). In this work a linearized version of NSE and its variables, neglecting deviatoric terms of stress tensor, is presented. In order to get a theoretical modeling of pressure p(x,t) and wave velocity profile c(x,t), a wave equation of visco-acoustic medium (VAE) is written. A change of variables p(x,t)=q(x,t)h(ρ), is made on the equation for the VAE leading to a well known Klein-Gordon equation (KGE) describing waves propagating in variable density medium (ρ) with dispersive term α^2(x). KGE is reduced to a Poisson equation and solved by proposing a specific function for α^2(x) accounting for the energy dissipation and dispersion. Finally, an integral form solution is derived for p(x,t), c(x,t) and kinematics variables like particle velocity v(x,t), displacement u(x,t) and bulk modulus function k_b(x,t). Further, it is compared this visco-acoustic formulation with another form broadly used in the geophysics; it is argued that this formalism is more general and, given its integral form, it may offer several advantages from the modern parallel computing point of view. Applications to minimize the errors in modeling for FWI applied to oils resources in geophysics are discussed.Keywords: Navier-Stokes equations, modeling, visco-acoustic, inversion FWI
Procedia PDF Downloads 520763 Interruption Overload in an Office Environment: Hungarian Survey Focusing on the Factors that Affect Job Satisfaction and Work Efficiency
Authors: Fruzsina Pataki-Bittó, Edit Németh
Abstract:
On the one hand, new technologies and communication tools improve employee productivity and accelerate information and knowledge transfer, while on the other hand, information overload and continuous interruptions make it even harder to concentrate at work. It is a great challenge for companies to find the right balance, while there is also an ongoing demand to recruit and retain the talented employees who are able to adopt the modern work style and effectively use modern communication tools. For this reason, this research does not focus on the objective measures of office interruptions, but aims to find those disruption factors which influence the comfort and job satisfaction of employees, and the way how they feel generally at work. The focus of this research is on how employees feel about the different types of interruptions, which are those they themselves identify as hindering factors, and those they feel as stress factors. By identifying and then reducing these destructive factors, job satisfaction can reach a higher level and employee turnover can be reduced. During the research, we collected information from depth interviews and questionnaires asking about work environment, communication channels used in the workplace, individual communication preferences, factors considered as disruptions, and individual steps taken to avoid interruptions. The questionnaire was completed by 141 office workers from several types of workplaces based in Hungary. Even though 66 respondents are working at Hungarian offices of multinational companies, the research is about the characteristics of the Hungarian labor force. The most important result of the research shows that while more than one third of the respondents consider office noise as a disturbing factor, personal inquiries are welcome and considered useful, even if in such cases the work environment will not be convenient to solve tasks requiring concentration. Analyzing the sizes of the offices, in an open-space environment, the rate of those who consider office noise as a disturbing factor is surprisingly lower than in smaller office rooms. Opinions are more diverse regarding information communication technologies. In addition to the interruption factors affecting the employees' job satisfaction, the research also focuses on the role of the offices in the 21st century.Keywords: information overload, interruption, job satisfaction, office environment, work efficiency
Procedia PDF Downloads 227