Search results for: k-means clustering approach
13729 Building an Absurdist Approach to the Philosophy of Science: Combining Camus and Feyerabend
Authors: Robert Herold
Abstract:
This project aims to begin building out a new approach within the philosophy of science that is based around a combination of insights from Albert Camus and Paul Feyerabend. This approach is one that will be labeled an absurdist approach as it uses, for its foundation, the philosophy of the absurd as discussed by Camus. While Camus didn’t directly discuss the philosophy of science, nor did he offer his own views on the subject in any substantial way, that doesn’t mean that his work doesn’t have applications within the philosophy of science. In fact, as is argued throughout the piece, much of the work done by Paul Feyerabend stems from a similar metaphysical and epistemological foundation as Camus. This foundation is the notion of the absurd and the inability of us as humans to reach some sort of objective truth. In modern times both Camus and Feyerabend have been largely pushed to the wayside, though Feyerabend has undoubtedly received the most unfair treatment of the two, and this is something that serves to act more as a hindrance than anything else. Much of the claims and arguments made by both Camus and Feyerabend have not been truly refuted and have simply been pushed aside by pointing to supposed contradictions or inconsistencies. However, while it would be a monumental task to attempt to discuss all of this past work, perhaps it might be better to move beyond both Camus and Feyerabend and chart a new path. This is the overall goal of this paper. This research will demonstrate that not only are the philosophies of Camus and Feyerabend surprisingly similar and able to mesh well together, they also are able to form into something that is truly more than the sum of its parts. While the task of actually building out an approach is a monumental undertaking, the plan is to use this project as a jumping-off point. As such, this paper will start by examining some of the main claims made by both Camus and Feyerabend. Once this is done, then begin weaving them together and demonstrating where the links between the philosophies of both are. Then this study will end by building out the very begging foundations of the absurdist approach to the philosophy of science.Keywords: philosophy, philosophy of science, albert camus, paul feyerabend
Procedia PDF Downloads 25113728 Cutting Tools in Finishing Operations for CNC Rapid Manufacturing Processes: Experimental Studies
Authors: M. N. Osman Zahid, K. Case, D. Watts
Abstract:
This paper reports an advanced approach in the application of CNC machining for rapid manufacturing processes (CNC-RM). The aim of this study is to improve the quality of machined parts by introducing different cutting tools during finishing operations. As the cutting is performed in different directions, the surfaces presented on part can be classified into several categories. Therefore, suitable cutting tools are assigned to machine particular surfaces and to improve the quality. Experimental studies have been carried out by fabricating several parts based on the suggested approach. The results provide further support for implementing this approach in rapid machining processes.Keywords: CNC machining, end mill tool, finishing operation, rapid manufacturing
Procedia PDF Downloads 34613727 A Machine Learning Approach for Performance Prediction Based on User Behavioral Factors in E-Learning Environments
Authors: Naduni Ranasinghe
Abstract:
E-learning environments are getting more popular than any other due to the impact of COVID19. Even though e-learning is one of the best solutions for the teaching-learning process in the academic process, it’s not without major challenges. Nowadays, machine learning approaches are utilized in the analysis of how behavioral factors lead to better adoption and how they related to better performance of the students in eLearning environments. During the pandemic, we realized the academic process in the eLearning approach had a major issue, especially for the performance of the students. Therefore, an approach that investigates student behaviors in eLearning environments using a data-intensive machine learning approach is appreciated. A hybrid approach was used to understand how each previously told variables are related to the other. A more quantitative approach was used referred to literature to understand the weights of each factor for adoption and in terms of performance. The data set was collected from previously done research to help the training and testing process in ML. Special attention was made to incorporating different dimensionality of the data to understand the dependency levels of each. Five independent variables out of twelve variables were chosen based on their impact on the dependent variable, and by considering the descriptive statistics, out of three models developed (Random Forest classifier, SVM, and Decision tree classifier), random forest Classifier (Accuracy – 0.8542) gave the highest value for accuracy. Overall, this work met its goals of improving student performance by identifying students who are at-risk and dropout, emphasizing the necessity of using both static and dynamic data.Keywords: academic performance prediction, e learning, learning analytics, machine learning, predictive model
Procedia PDF Downloads 15713726 On Phase Based Stereo Matching and Its Related Issues
Authors: András Rövid, Takeshi Hashimoto
Abstract:
The paper focuses on the problem of the point correspondence matching in stereo images. The proposed matching algorithm is based on the combination of simpler methods such as normalized sum of squared differences (NSSD) and a more complex phase correlation based approach, by considering the noise and other factors, as well. The speed of NSSD and the preciseness of the phase correlation together yield an efficient approach to find the best candidate point with sub-pixel accuracy in stereo image pairs. The task of the NSSD in this case is to approach the candidate pixel roughly. Afterwards the location of the candidate is refined by an enhanced phase correlation based method which in contrast to the NSSD has to run only once for each selected pixel.Keywords: stereo matching, sub-pixel accuracy, phase correlation, SVD, NSSD
Procedia PDF Downloads 46813725 Supplier Selection by Considering Cost and Reliability
Authors: K. -H. Yang
Abstract:
Supplier selection problem is one of the important issues of supply chain problems. Two categories of methodologies include qualitative and quantitative approaches which can be applied to supplier selection problems. However, due to the complexities of the problem and lacking of reliable and quantitative data, qualitative approaches are more than quantitative approaches. This study considers operational cost and supplier’s reliability factor and solves the problem by using a quantitative approach. A mixed integer programming model is the primary analytic tool. Analyses of different scenarios with variable cost and reliability structures show that the effectiveness of this approach to the supplier selection problem.Keywords: mixed integer programming, quantitative approach, supplier’s reliability, supplier selection
Procedia PDF Downloads 38413724 Cr Induced Magnetization in Zinc-Blende ZnO-Based Diluted Magnetic Semiconductors
Authors: Bakhtiar Ul Haq, R. Ahmed, A. Shaari, Mazmira Binti Mohamed, Nisar Ali
Abstract:
The capability of exploiting the electronic charge and spin properties simultaneously in a single material has made diluted magnetic semiconductors (DMS) remarkable in the field of spintronics. We report the designing of DMS based on zinc-blend ZnO doped with Cr impurity. The full potential linearized augmented plane wave plus local orbital FP-L(APW+lo) method in density functional theory (DFT) has been adapted to carry out these investigations. For treatment of exchange and correlation energy, generalized gradient approximations have been used. Introducing Cr atoms in the matrix of ZnO has induced strong magnetic moment with ferromagnetic ordering at stable ground state. Cr:ZnO was found to favor the short range magnetic interaction that reflect the tendency of Cr clustering. The electronic structure of ZnO is strongly influenced in the presence of Cr impurity atoms where impurity bands appear in the band gap.Keywords: ZnO, density functional theory, diluted agnetic semiconductors, ferromagnetic materials, FP-L(APW+lo)
Procedia PDF Downloads 42513723 Introduction to Techno-Sectoral Innovation System Modeling and Functions Formulating
Authors: S. M. Azad, H. Ghodsi Pour, F. Roshannafasa
Abstract:
In recent years ‘technology management and policymaking’ is one of the most important problems in management science. In this field, different generations of innovation and technology management are presented which the earliest one is Innovation System (IS) approach. In a general classification, innovation systems are divided in to 4 approaches: Technical, sectoral, regional, and national. There are many researches in relation to each of these approaches in different academic fields. Every approach has some benefits. If two or more approaches hybrid, their benefits would be combined. In addition, according to the sectoral structure of the governance model in Iran, in many sectors such as information technology, the combination of three other approaches with sectoral approach is essential. Hence, in this paper, combining two IS approaches (technical and sectoral) and using system dynamics, a generic model is presented for a sample of software industry. As a complimentary point, this article is introducing a new hybrid approach called Techno-Sectoral Innovation System. This TSIS model is accomplished by Changing concepts of the ‘functions’ which came from Technological IS literature and using them into sectoral system as measurable indicators.Keywords: innovation system, technology, techno-sectoral system, functional indicators, system dynamics
Procedia PDF Downloads 43913722 New Public Management: Step towards Democratization
Authors: Aneri Mehta, Krunal Mehta
Abstract:
Administration is largely based on two sciences: ‘management science’ and ‘political science’. The approach of new public management is more inclined towards the management science. Era of ‘New Public Management’ has affected the developing countries very immensely. Public management reforms are needed to enhance the development of the countries. This reform mainly includes capacity building, control of corruption, political decentralization, debureaucratization and public empowerment. This gives the opportunity to create self-sustaining change in the governance. This paper includes the link of approach of new public management and their effect on building effective democratization in the country. This approach mainly focuses on rationality and effectiveness of governance system. These need to have deep efforts on technological, organizational, social and cultural fields. Bringing citizen participation in governance is main objective of NPM. The shift from traditional public management to new public management have low success rate of reforms. This research includes case study of RTI which is a big step of government towards citizen centric approach of governance. The aspect of ‘publicness’ in the democratic policy implementation is important for good governance in India.Keywords: public management, development, public empowerment, governance
Procedia PDF Downloads 50513721 Expert-Driving-Criteria Based on Fuzzy Logic Approach for Intelligent Driving Diagnosis
Authors: Andrés C. Cuervo Pinilla, Christian G. Quintero M., Chinthaka Premachandra
Abstract:
This paper considers people’s driving skills diagnosis under real driving conditions. In that sense, this research presents an approach that uses GPS signals which have a direct correlation with driving maneuvers. Besides, it is presented a novel expert-driving-criteria approximation using fuzzy logic which seeks to analyze GPS signals in order to issue an intelligent driving diagnosis. Based on above, this works presents in the first section the intelligent driving diagnosis system approach in terms of its own characteristics properties, explaining in detail significant considerations about how an expert-driving-criteria approximation must be developed. In the next section, the implementation of our developed system based on the proposed fuzzy logic approach is explained. Here, a proposed set of rules which corresponds to a quantitative abstraction of some traffics laws and driving secure techniques seeking to approach an expert-driving- criteria approximation is presented. Experimental testing has been performed in real driving conditions. The testing results show that the intelligent driving diagnosis system qualifies driver’s performance quantitatively with a high degree of reliability.Keywords: driver support systems, intelligent transportation systems, fuzzy logic, real time data processing
Procedia PDF Downloads 51713720 The Application of System Approach to Knowledge Management and Human Resource Management Evidence from Tehran Municipality
Authors: Vajhollah Ghorbanizadeh, Seyed Mohsen Asadi, Mirali Seyednaghavi, Davoud Hoseynpour
Abstract:
In the current era, all organizations need knowledge to be able to manage the diverse human resources. Creative, dynamic and knowledge-based Human resources are important competitive advantage and the scarcest resource in today's knowledge-based economy. In addition managers with skills of knowledge management must be aware of human resource management science. It is now generally accepted that successful implementation of knowledge management requires dynamic interaction between knowledge management and human resource management. This is emphasized at systematic approach to knowledge management as well. However human resource management can be complementary of knowledge management because human resources management with the aim of empowering human resources as the key resource organizations in the 21st century, the use of other resources, creating and growing and developing today. Thus, knowledge is the major capital of every organization which is introduced through the process of knowledge management. In this context, knowledge management is systematic approach to create, receive, organize, access, and use of knowledge and learning in the organization. This article aims to define and explain the concepts of knowledge management and human resource management and the importance of these processes and concepts. Literature related to knowledge management and human resource management as well as related topics were studied, then to design, illustrate and provide a theoretical model to explain the factors affecting the relationship between knowledge management and human resource management and knowledge management system approach, for schematic design and are drawn.Keywords: systemic approach, human resources, knowledge, human resources management, knowledge management
Procedia PDF Downloads 37613719 An Improved C-Means Model for MRI Segmentation
Authors: Ying Shen, Weihua Zhu
Abstract:
Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.Keywords: magnetic resonance image (MRI), c-means model, image segmentation, information entropy
Procedia PDF Downloads 22513718 Agile Software Development Implementation in Developing a Diet Tracker Mobile Application
Authors: Dwi Puspita Sari, Gulnur Baltabayeva, Nadia Salman, Maxut Toleuov, Vijay Kanabar
Abstract:
Technology era drives people to use mobile phone to support their daily life activities. Technology development has a rapid phase which pushes the IT company to adjust any technology changes in order to fulfill customer’s satisfaction. As a result of that, many companies in the USA emerged from systematics software development approach to agile software development approach in developing systems and applications to develop many mobile phone applications in a short phase to fulfill user’s needs. As a systematic approach is considered as time consuming, costly, and too risky, agile software development has become a more popular approach to use for developing software including mobile applications. This paper reflects a short-term project to develop a diet tracker mobile application using agile software development that focused on applying scrum framework in the development process.Keywords: agile software development, scrum, diet tracker, mobile application
Procedia PDF Downloads 25713717 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System
Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa
Abstract:
Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)
Procedia PDF Downloads 30913716 An Adaptive Dimensionality Reduction Approach for Hyperspectral Imagery Semantic Interpretation
Authors: Akrem Sellami, Imed Riadh Farah, Basel Solaiman
Abstract:
With the development of HyperSpectral Imagery (HSI) technology, the spectral resolution of HSI became denser, which resulted in large number of spectral bands, high correlation between neighboring, and high data redundancy. However, the semantic interpretation is a challenging task for HSI analysis due to the high dimensionality and the high correlation of the different spectral bands. In fact, this work presents a dimensionality reduction approach that allows to overcome the different issues improving the semantic interpretation of HSI. Therefore, in order to preserve the spatial information, the Tensor Locality Preserving Projection (TLPP) has been applied to transform the original HSI. In the second step, knowledge has been extracted based on the adjacency graph to describe the different pixels. Based on the transformation matrix using TLPP, a weighted matrix has been constructed to rank the different spectral bands based on their contribution score. Thus, the relevant bands have been adaptively selected based on the weighted matrix. The performance of the presented approach has been validated by implementing several experiments, and the obtained results demonstrate the efficiency of this approach compared to various existing dimensionality reduction techniques. Also, according to the experimental results, we can conclude that this approach can adaptively select the relevant spectral improving the semantic interpretation of HSI.Keywords: band selection, dimensionality reduction, feature extraction, hyperspectral imagery, semantic interpretation
Procedia PDF Downloads 35413715 Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study
Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier
Abstract:
Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.Keywords: eating disorders, risk factors, physical activity, machine learning
Procedia PDF Downloads 8313714 The Efficacy of Open Educational Resources in Students’ Performance and Engagement
Authors: Huda Al-Shuaily, E. M. Lacap
Abstract:
Higher Education is one of the most essential fundamentals for the advancement and progress of a country. It demands to be as accessible as possible and as comprehensive as it can be reached. In this paper, we succeeded to expand the accessibility and delivery of higher education using an Open Educational Resources (OER), a freely accessible, openly licensed documents, and media for teaching and learning. This study creates a comparative design of student’s academic performance on the course Introduction to Database and student engagement to the virtual learning environment (VLE). The study was done in two successive semesters - one without using the OER and the other is using OER. In the study, we established that there is a significant increase in student’s engagement in VLE in the latter semester compared to the former. By using the latter semester’s data, we manage to show that the student’s engagement has a positive impact on students’ academic performance. Moreso, after clustering their academic performance, the impact is seen higher for students who are low performing. The results show that these engagements can be used to potentially predict the learning styles of the student with a high degree of precision.Keywords: EDM, learning analytics, moodle, OER, student-engagement
Procedia PDF Downloads 33913713 Posterior Thigh Compartment Syndrome Associated with Hamstring Avulsion and Antiplatelet Therapy
Authors: Andrea Gatti, Federica Coppotelli, Ma Primavera, Laura Palmieri, Umberto Tarantino
Abstract:
Aim of study: Scientific literature is scarce of studies and reviews valuing the pros and cons of the paratricipital approach for the treatment of humeral shaft fractures; the lateral paratricipital approach is a valid alternative to the classical posterior approach to the humeral shaft as it preserves both the triceps muscle and the elbow extensor mechanisms; based on our experience, this retrospective analysis aims at analyzing outcome, risks and benefits of the lateral paratricipital approach for humeral shaft fractures. Methods: Our study includes 14 patients treated between 2018 and 2019 for unilateral humeral shaft fractures: 13 with a B1 or B2 and a patient with a C fracture type (according to the AO/ATO Classification); 6 of our patients identified as male while 8 as female; age average was 57.8 years old (range 21-73 years old). A lateral paratricipital approach was performed on all 14 patients, sparing the triceps muscle by avoiding the olecranon osteotomy and by assessing the integrity and the preservation of the radial nerve; the humeral shaft fracture osteosynthesis was performed by means of plates and screws. After surgery all patients have started elbow functional rehabilitation with acceptable pain management. Post-operative follow-up has been carried out by assessing radiographs, MEPS (Mayo Elbow Performance Score) and DASH (Disability of Arm Shoulder and Hand) functional assessment and ROM of the affected joint. Results: All 14 patients had an optimal post-operative follow-up with an adequate osteosynthesis and functional rehabilitations by entirely preserving the operated elbow joint; the mean elbow ROM was 0-118.6 degree (range of 0-130) while the average MEPS score was 86 (range75-100) and 79.9 for the DASH (range 21.7-86.1). Just 2 patients suffered of temporary radial nerve apraxia, healed in the subsequent follow-ups. CONCLUSION: The lateral paratricipital approach preserve both the integrity of the triceps muscle and the elbow biomechanism but we do strongly recommend additional studies to be carried out to highlight differences between it and the classical posterior approach in treating humeral shaft fractures.Keywords: paratricepital approach, humerus shaft fracture, posterior approach humeral shaft, paratricipital postero-lateral approach
Procedia PDF Downloads 12913712 Microbial Biogeography of Greek Olive Varieties Assessed by Amplicon-Based Metagenomics Analysis
Authors: Lena Payati, Maria Kazou, Effie Tsakalidou
Abstract:
Table olives are one of the most popular fermented vegetables worldwide, which along with olive oil, have a crucial role in the world economy. They are highly appreciated by the consumers for their characteristic taste and pleasant aromas, while several health and nutritional benefits have been reported as well. Until recently, microbial biogeography, i.e., the study of microbial diversity over time and space, has been mainly associated with wine. However, nowadays, the term 'terroir' has been extended to other crops and food products so as to link the geographical origin and environmental conditions to quality aspects of fermented foods. Taking the above into consideration, the present study focuses on the microbial fingerprinting of the most important olive varieties of Greece with the state-of-the-art amplicon-based metagenomics analysis. Towards this, in 2019, 61 samples from 38 different olive varieties were collected at the final stage of ripening from 13 well spread geographical regions in Greece. For the metagenomics analysis, total DNA was extracted from the olive samples, and the 16S rRNA gene and ITS DNA region were sequenced and analyzed using bioinformatics tools for the identification of bacterial and yeasts/fungal diversity, respectively. Furthermore, principal component analysis (PCA) was also performed for data clustering based on the average microbial composition of all samples from each region of origin. According to the composition, results obtained, when samples were analyzed separately, the majority of both bacteria (such as Pantoea, Enterobacter, Roserbergiella, and Pseudomonas) and yeasts/fungi (such as Aureobasidium, Debaromyces, Candida, and Cladosporium) genera identified were found in all 61 samples. Even though interesting differences were observed at the relative abundance level of the identified genera, the bacterial genus Pantoea and the yeast/fungi genus Aureobasidium were the dominant ones in 35 and 40 samples, respectively. Of note, olive samples collected from the same region had similar fingerprint (genera identified and relative abundance level) regardless of the variety, indicating a potential association between the relative abundance of certain taxa and the geographical region. When samples were grouped by region of origin, distinct bacterial profiles per region were observed, which was also evident from the PCA analysis. This was not the case for the yeast/fungi profiles since 10 out of the 13 regions were grouped together mainly due to the dominance of the genus Aureobasidium. A second cluster was formed for the islands Crete and Rhodes, both of which are located in the Southeast Aegean Sea. These two regions clustered together mainly due to the identification of the genus Toxicocladosporium in relatively high abundances. Finally, the Agrinio region was separated from the others as it showed a completely different microbial fingerprinting. However, due to the limited number of olive samples from some regions, a subsequent PCA analysis with more samples from these regions is expected to yield in a more clear clustering. The present study is part of a bigger project, the first of its kind in Greece, with the ultimate goal to analyze a larger set of olive samples of different varieties and from different regions in Greece in order to have a reliable olives’ microbial biogeography.Keywords: amplicon-based metagenomics analysis, bacteria, microbial biogeography, olive microbiota, yeasts/fungi
Procedia PDF Downloads 11413711 An Analytical Approach to Calculate Thermo-Mechanical Stresses in Integral Abutment Bridge Piles
Authors: Jafar Razmi
Abstract:
Integral abutment bridges are bridges that do not have joints. If these bridges are subject to large seasonal and daily temperature variations, the expansion and contraction of the bridge slab is transferred to the piles. Since the piles are deep into the soil, displacement induced by slab can cause bending and stresses in piles. These stresses cause fatigue and failure of piles. A complex mechanical interaction exists between the slab, pile, soil and abutment. This complex interaction needs to be understood in order to calculate the stresses in piles. This paper uses a mechanical approach in developing analytical equations for the complex structure to determine the stresses in piles. The solution to these analytical solutions is developed and compared with finite element analysis results and experimental data. Our comparison shows that using analytical approach can accurately predict the displacement in piles. This approach offers a simplified technique that can be utilized without the need for computationally extensive finite element model.Keywords: integral abutment bridges, piles, thermo-mechanical stress, stress and strains
Procedia PDF Downloads 24013710 Defects Estimation of Embedded Systems Components by a Bond Graph Approach
Authors: I. Gahlouz, A. Chellil
Abstract:
The paper concerns the estimation of system components faults by using an unknown inputs observer. To reach this goal, we used the Bond Graph approach to physical modelling. We showed that this graphical tool is allowing the representation of system components faults as unknown inputs within the state representation of the considered physical system. The study of the causal and structural features of the system (controllability, observability, finite structure, and infinite structure) based on the Bond Graph approach was hence fulfilled in order to design an unknown inputs observer which is used for the system component fault estimation.Keywords: estimation, bond graph, controllability, observability
Procedia PDF Downloads 41313709 A Generic Approach to Reuse Unified Modeling Language Components Following an Agile Process
Authors: Rim Bouhaouel, Naoufel Kraïem, Zuhoor Al Khanjari
Abstract:
Unified Modeling Language (UML) is considered as one of the widespread modeling language standardized by the Object Management Group (OMG). Therefore, the model driving engineering (MDE) community attempts to provide reuse of UML diagrams, and do not construct it from scratch. The UML model appears according to a specific software development process. The existing method generation models focused on the different techniques of transformation without considering the development process. Our work aims to construct an UML component from fragments of UML diagram basing on an agile method. We define UML fragment as a portion of a UML diagram, which express a business target. To guide the generation of fragments of UML models using an agile process, we need a flexible approach, which adapts to the agile changes and covers all its activities. We use the software product line (SPL) to derive a fragment of process agile method. This paper explains our approach, named RECUP, to generate UML fragments following an agile process, and overviews the different aspects. In this paper, we present the approach and we define the different phases and artifacts.Keywords: UML, component, fragment, agile, SPL
Procedia PDF Downloads 39713708 Ecopsychological Approach to Enhance Space Consciousness Toward Environment
Authors: Tiwi Kamidin
Abstract:
After years of effort trying to integrate environmental education, studies keep revealing that Malaysian still not reached the certain level of desired commitment toward the environment. Some researchers mentioned that our planet healthy is depending on our mentally health especially our psychological and spiritual is split from the natural. Therefore, this study discussed on ecopcyhological approach in order to enhance space consciousness toward the environment. Space consciousness represents not only freedom from ego but also from dependency on the things of this world, from materialism and materiality. It is the spiritual dimension which alone can give transcendent and true meaning to this world. If pupils can balance this internal awareness will put an individual to respect the environment as part of yourself and your family against only as contributors to the continuance of human’s life. Qualitative findings showed that the informants considered their consciousness toward environment has been changed.Keywords: ecopsychological approach, space consciousness, environmental education, environment
Procedia PDF Downloads 30813707 A Novel Machine Learning Approach to Aid Agrammatism in Non-fluent Aphasia
Authors: Rohan Bhasin
Abstract:
Agrammatism in non-fluent Aphasia Cases can be defined as a language disorder wherein a patient can only use content words ( nouns, verbs and adjectives ) for communication and their speech is devoid of functional word types like conjunctions and articles, generating speech of with extremely rudimentary grammar . Past approaches involve Speech Therapy of some order with conversation analysis used to analyse pre-therapy speech patterns and qualitative changes in conversational behaviour after therapy. We describe this approach as a novel method to generate functional words (prepositions, articles, ) around content words ( nouns, verbs and adjectives ) using a combination of Natural Language Processing and Deep Learning algorithms. The applications of this approach can be used to assist communication. The approach the paper investigates is : LSTMs or Seq2Seq: A sequence2sequence approach (seq2seq) or LSTM would take in a sequence of inputs and output sequence. This approach needs a significant amount of training data, with each training data containing pairs such as (content words, complete sentence). We generate such data by starting with complete sentences from a text source, removing functional words to get just the content words. However, this approach would require a lot of training data to get a coherent input. The assumptions of this approach is that the content words received in the inputs of both text models are to be preserved, i.e, won't alter after the functional grammar is slotted in. This is a potential limit to cases of severe Agrammatism where such order might not be inherently correct. The applications of this approach can be used to assist communication mild Agrammatism in non-fluent Aphasia Cases. Thus by generating these function words around the content words, we can provide meaningful sentence options to the patient for articulate conversations. Thus our project translates the use case of generating sentences from content-specific words into an assistive technology for non-Fluent Aphasia Patients.Keywords: aphasia, expressive aphasia, assistive algorithms, neurology, machine learning, natural language processing, language disorder, behaviour disorder, sequence to sequence, LSTM
Procedia PDF Downloads 16413706 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries
Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammad Hossein Sedaaghi
Abstract:
Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy C-Means (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic C-Means (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.Keywords: facial image, segmentation, PCM, FCM, skin error, facial surgery
Procedia PDF Downloads 58613705 Genomic Adaptation to Local Climate Conditions in Native Cattle Using Whole Genome Sequencing Data
Authors: Rugang Tian
Abstract:
In this study, we generated whole-genome sequence (WGS) data from110 native cattle. Together with whole-genome sequences from world-wide cattle populations, we estimated the genetic diversity and population genetic structure of different cattle populations. Our findings revealed clustering of cattle groups in line with their geographic locations. We identified noticeable genetic diversity between indigenous cattle breeds and commercial populations. Among all studied cattle groups, lower genetic diversity measures were found in commercial populations, however, high genetic diversity were detected in some local cattle, particularly in Rashoki and Mongolian breeds. Our search for potential genomic regions under selection in native cattle revealed several candidate genes related with immune response and cold shock protein on multiple chromosomes such as TRPM8, NMUR1, PRKAA2, SMTNL2 and OXR1 that are involved in energy metabolism and metabolic homeostasis.Keywords: cattle, whole-genome, population structure, adaptation
Procedia PDF Downloads 7313704 Communicative Language Teaching Technique: A Neglected Approach in Reading Comprehension Instruction
Authors: Olumide Yusuf Jimoh
Abstract:
Reading comprehension is an interactive and purposeful process of getting meaning from and bringing meaning to a text. Over the years, teachers of the English Language (in Nigeria) have been glued to the monotonous method of making students read comprehension passages silently and then answer the questions that follow such passages without making the reading session interactive. Hence, students often find such exercises monotonous and boring. Consequently, students' interest in language learning continues to dwindle, and this often affects their overall academic performance. Relying on Communicative Accommodation Theory therefore, the study employed the qualitative research design method to x-ray Communicative Language Teaching Approach (CLTA) in reading comprehension. Moreover, techniques such as the Genuinely Collaborative Reading Approach (GCRA), Jigsaw reading, Pre-reading, and Post-reading tasks were examined. The researcher submitted that effective reading comprehension could not be done passively. Students must respond to what they read; they must interact not only with the materials being read but also with one another and with the teacher; this can be achieved by developing communicative and interactive reading programs.Keywords: collaborative reading approach, communicative teaching, interactive reading program, pre-reading task, reading comprehension
Procedia PDF Downloads 10513703 Bioinformatics Analysis of DGAT1 Gene in Domestic Ruminnants
Authors: Sirous Eydivandi
Abstract:
Diacylglycerol-O-acyltransferase (DGAT1) gene encodes diacylglycerol transferase enzyme that plays an important role in glycerol lipid metabolism. DGAT1 is considered to be the key enzyme in controlling the synthesis of triglycerides in adipocytes. This enzyme catalyzes the final step of triglyceride synthesis (transform triacylglycerol (DAG) into triacylglycerol (TAG). A total of 20 DGAT1 gene sequences and corresponding amino acids belonging to 4 species include cattle, goats, sheep and yaks were analyzed, and the differentiation within and among the species was also studied. The length of the DGAT1 gene varies greatly, from 1527 to 1785 bp, due to deletion, insertion, and stop codon mutation resulting in elongation. Observed genetic diversity was higher among species than within species, and Goat had more polymorphisms than any other species. Novel amino acid variation sites were detected within several species which might be used to illustrate the functional variation. Differentiation of the DGAT1 gene was obvious among species, and the clustering result was consistent with the taxonomy in the National Center for Biotechnology Information.Keywords: DGAT1gene, bioinformatic, ruminnants, biotechnology information
Procedia PDF Downloads 49113702 Investigating Homicide Offender Typologies Based on Their Clinical Histories and Crime Scene Behaviour Patterns
Authors: Valeria Abreu Minero, Edward Barker, Hannah Dickson, Francois Husson, Sandra Flynn, Jennifer Shaw
Abstract:
Purpose – The purpose of this paper is to identify offender typologies based on aspects of the offenders’ psychopathology and their associations with crime scene behaviours using data derived from the National Confidential Enquiry into Suicide and Safety in Mental Health concerning homicides in England and Wales committed by offenders in contact with mental health services in the year preceding the offence (n=759). Design/methodology/approach – The authors used multiple correspondence analysis to investigate the interrelationships between the variables and hierarchical agglomerative clustering to identify offender typologies. Variables describing: the offender’s mental health history; the offenders’ mental state at the time of offence; characteristics useful for police investigations; and patterns of crime scene behaviours were included. Findings – Results showed differences in the offender’s histories in relation to their crime scene behaviours. Further, analyses revealed three homicide typologies: externalising, psychosis and depression. Analyses revealed three homicide typologies: externalising, psychotic and depressive. Practical implications – These typologies may assist the police during homicide investigations by: furthering their understanding of the crime or likely suspect; offering insights into crime patterns; provide advice as to what an offender’s offence behaviour might signify about his/her mental health background; findings suggest information concerning offender psychopathology may be useful for offender profiling purposes in cases of homicide offenders with schizophrenia, depression and comorbid diagnosis of personality disorder and alcohol/drug dependence. Originality/value – Empirical studies with an emphasis on offender profiling have almost exclusively focussed on the inference of offender demographic characteristics. This study provides a first step in the exploration of offender psychopathology and its integration to the multivariate analysis of offence information for the purposes of investigative profiling of homicide by identifying the dominant patterns of mental illness within homicidal behaviour.Keywords: offender profiling, mental illness, psychopathology, multivariate analysis, homicide, crime scene analysis, crime scene behviours, investigative advice
Procedia PDF Downloads 12913701 The Implementation of Organizational Ecoinnovativeness as an Expression of a Strategic Approach of an Organization
Authors: Marzena Hajduk-Stelmachowicz
Abstract:
This paper presents the reasons why the implementation of the organizational eco-innovation (based on requirements of the International Standard ISO 14001) can be an expression of a strategic organization approach. An elaboration about different issues associated with the Environmental Management Systems are given.Keywords: envionmental management system, ISO 14001, organizational ecoinnovativeness, ecoinnovation
Procedia PDF Downloads 31413700 Sentiment Classification of Documents
Authors: Swarnadip Ghosh
Abstract:
Sentiment Analysis is the process of detecting the contextual polarity of text. In other words, it determines whether a piece of writing is positive, negative or neutral.Sentiment analysis of documents holds great importance in today's world, when numerous information is stored in databases and in the world wide web. An efficient algorithm to illicit such information, would be beneficial for social, economic as well as medical purposes. In this project, we have developed an algorithm to classify a document into positive or negative. Using our algorithm, we obtained a feature set from the data, and classified the documents based on this feature set. It is important to note that, in the classification, we have not used the independence assumption, which is considered by many procedures like the Naive Bayes. This makes the algorithm more general in scope. Moreover, because of the sparsity and high dimensionality of such data, we did not use empirical distribution for estimation, but developed a method by finding degree of close clustering of the data points. We have applied our algorithm on a movie review data set obtained from IMDb and obtained satisfactory results.Keywords: sentiment, Run's Test, cross validation, higher dimensional pmf estimation
Procedia PDF Downloads 402