Search results for: enhancement mode GaN power transistors
8729 Demonstration of Powering up Low Power Wireless Sensor Network by RF Energy Harvesting System
Authors: Lim Teck Beng, Thiha Kyaw, Poh Boon Kiat, Lee Ngai Meng
Abstract:
This work presents discussion on the possibility of merging two emerging technologies in microwave; wireless power transfer (WPT) and RF energy harvesting. The current state of art of the two technologies is discussed and the strength and weakness of the two technologies is also presented. The equivalent circuit of wireless power transfer is modeled and explained as how the range and efficiency can be further increased by controlling certain parameters in the receiver. The different techniques of harvesting the RF energy from the ambient are also extensive study. Last but not least, we demonstrate that a low power wireless sensor network (WSN) can be power up by RF energy harvesting. The WSN is designed to transmit every 3 minutes of information containing the temperature of the environment and also the voltage of the node. One thing worth mention is both the sensors that are used for measurement are also powering up by the RF energy harvesting system.Keywords: energy harvesting, wireless power transfer, wireless sensor network and magnetic coupled resonator
Procedia PDF Downloads 5198728 Mode of Suicide and Alcohol Use Pattern among Female Commercial Sex Workers
Authors: G. V. Vaniprabha, S. Madhusudhan, S. G. Jadhav
Abstract:
The purpose of this study was to explore the pattern of alcohol use, mode of suicide and extent of depression among 150 female commercial sex workers (CSWs) in Bangalore, India. After going through a short detoxification programme of two weeks, Karma yoga principles of Shrimad Bhagavad Gita were used as a tool for cognitive behavioural therapy (CBT) for a period of four weeks to maintain abstinence and help with their depression. A six month follow up indicated that they had maintained abstinence over that period and had not attempted suicide, either.Keywords: alcohol dependence, depression, commercial sex workers, suicide
Procedia PDF Downloads 3728727 Assessment Power and Oscillation Damping Using the POD Controller and Proposed FOD Controller
Authors: Tohid Rahimi, Yahya Naderi, Babak Yousefi, Seyed Hossein Hoseini
Abstract:
Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. However, FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. However, Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper, firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. Therefore, FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.Keywords: power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA)
Procedia PDF Downloads 4768726 Simulation of Reflectometry in Alborz Tokamak
Authors: S. Kohestani, R. Amrollahi, P. Daryabor
Abstract:
Microwave diagnostics such as reflectometry are receiving growing attention in magnetic confinement fusionresearch. In order to obtain the better understanding of plasma confinement physics, more detailed measurements on density profile and its fluctuations might be required. A 2D full-wave simulation of ordinary mode propagation has been written in an effort to model effects seen in reflectometry experiment. The code uses the finite-difference-time-domain method with a perfectly-matched-layer absorption boundary to solve Maxwell’s equations.The code has been used to simulate the reflectometer measurement in Alborz Tokamak.Keywords: reflectometry, simulation, ordinary mode, tokamak
Procedia PDF Downloads 4208725 Wind Farm Power Performance Verification Using Non-Parametric Statistical Inference
Authors: M. Celeska, K. Najdenkoski, V. Dimchev, V. Stoilkov
Abstract:
Accurate determination of wind turbine performance is necessary for economic operation of a wind farm. At present, the procedure to carry out the power performance verification of wind turbines is based on a standard of the International Electrotechnical Commission (IEC). In this paper, nonparametric statistical inference is applied to designing a simple, inexpensive method of verifying the power performance of a wind turbine. A statistical test is explained, examined, and the adequacy is tested over real data. The methods use the information that is collected by the SCADA system (Supervisory Control and Data Acquisition) from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. The study has used data on the monthly output of wind farm in the Republic of Macedonia, and the time measuring interval was from January 1, 2016, to December 31, 2016. At the end, it is concluded whether the power performance of a wind turbine differed significantly from what would be expected. The results of the implementation of the proposed methods showed that the power performance of the specific wind farm under assessment was acceptable.Keywords: canonical correlation analysis, power curve, power performance, wind energy
Procedia PDF Downloads 3368724 Stability Analysis of DC Microgrid with Varying Supercapacitor Operating Voltages
Authors: Annie B. V., Anu A. G., Harikumar R.
Abstract:
Microgrid (MG) is a self-governing miniature section of the power system. Nowadays the majority of loads and energy storage devices are inherently in DC form. This necessitates a greater scope of research in the various types of energy storage devices in DC microgrids. In a modern power system, DC microgrid is a manageable electric power system usually integrated with renewable energy sources (RESs) and DC loads with the help of power electronic converters. The stability of the DC microgrid mainly depends on the power imbalance. Power imbalance due to the presence of intermittent renewable energy resources (RERs) is supplied by energy storage devices. Battery, supercapacitor, flywheel, etc. are some of the commonly used energy storage devices. Owing to the high energy density provided by the batteries, this type of energy storage system is mainly utilized in all sorts of hybrid energy storage systems. To minimize the stability issues, a Supercapacitor (SC) is usually interfaced with the help of a bidirectional DC/DC converter. SC can exchange power during transient conditions due to its high power density. This paper analyses the stability issues of DC microgrids with hybrid energy storage systems (HESSs) arises from a reduction in SC operating voltage due to self-discharge. The stability of DC microgrid and power management is analyzed with different control strategies.Keywords: DC microgrid, hybrid energy storage system (HESS), power management, small signal modeling, supercapacitor
Procedia PDF Downloads 2498723 Techno Economic Analysis for Solar PV and Hydro Power for Kafue Gorge Power Station
Authors: Elvis Nyirenda
Abstract:
This research study work was done to evaluate and propose an optimum measure to enhance the uptake of clean energy technologies such as solar photovoltaics, the study also aims at enhancing the country’s energy mix from the overdependence on hydro power which is susceptible to droughts and climate change challenges The country in the years 2015 - 2016 and 2018 - 2019 had received rainfall below average due to climate change and a shift in the weather pattern; this resulted in prolonged power outages and load shedding for more than 10 hours per day. ZESCO Limited, the utility company that owns infrastructure in the generation, transmission, and distribution of electricity (state-owned), is seeking alternative sources of energy in order to reduce the over-dependence on hydropower stations. One of the alternative sources of energy is Solar Energy from the sun. However, solar power is intermittent in nature and to smoothen the load curve, investment in robust energy storage facilities is of great importance to enhance security and reliability of electricity supply in the country. The methodology of the study looked at the historical performance of the Kafue gorge upper power station and utilised the hourly generation figures as input data for generation modelling in Homer software. The average yearly demand was derived from the available data on the system SCADA. The two dams were modelled as natural battery with the absolute state of charging and discharging determined by the available water resource and the peak electricity demand. The software Homer Energy System is used to simulate the scheme incorporating a pumped storage facility and Solar photovoltaic systems. The pumped hydro scheme works like a natural battery for the conservation of water, with the only losses being evaporation and water leakages from the dams and the turbines. To address the problem of intermittency on the solar resource and the non-availability of water for hydropower generation, the study concluded that utilising the existing Hydro power stations, Kafue Gorge upper and Kafue Gorge Lower to work conjunctively with Solar energy will reduce power deficits and increase the security of supply for the country. An optimum capacity of 350MW of solar PV can be integrated while operating Kafue Gorge power station in both generating and pumping mode to enable efficient utilisation of water at Kafue Gorge upper Dam and Kafue Gorge Lower dam.Keywords: hydropower, solar power systems, energy storage, photovoltaics, solar irradiation, pumped hydro storage system, supervisory control and data acquisition, Homer energy
Procedia PDF Downloads 1178722 Innovative Power Engineering in a Selected Rural Commune
Authors: Pawel Sowa, Joachim Bargiel
Abstract:
This paper presents modern solutions of distributed generation in rural communities aiming at the improvement of energy and environmental security, as well as power supply reliability to important customers (e.g. health care, sensitive consumer required continuity). Distributed sources are mainly gas and biogas cogeneration units, as well as wind and photovoltaic sources. Some examples of their applications in a selected Silesian community are given.Keywords: energy security, mini energy centres , power engineering, power supply reliability
Procedia PDF Downloads 3008721 Development of a Single Drive for the Accessories Components in IC Engine
Authors: R. Rishi Jain, S. V. Viswanath, R. Naveen Vasanthan
Abstract:
Generally all the IC engines, alternators, air conditioner compressors, oil pumps and coolant pumps are driven by a crankshaft utilizing V-belt drivers. An increase in the number of idle pulleys results in the increase of frictional power. Further, components like idler and belt tensioner are also needed to run the belt drive which adds to the frictional power. The aspiration of this paper is to minimize the friction power by introducing a new system that could combine all the accessories in one shaft within a single casing. This is conceptualized to minimize the friction power, service and maintenance cost, space and also time. The validation of this work can be executed through a simpler drive transmitting power from the crank shaft.Keywords: single drive, idler pulley, belt tensioner, friction power, casing, space and cost
Procedia PDF Downloads 3188720 Study on the Enhancement of Soil Fertility and Tomato Quality by Applying Concentrated Biogas Slurry
Authors: Fang Bo Yu, Li Bo Guan
Abstract:
Biogas slurry is a low-cost source of crop nutrients and can offer extra benefits to soil fertility and fruit quality. However, its current utilization mode and low content of active ingredients limit its application scale. In this report, one growing season field research was conducted to assess the effects of concentrated biogas slurry on soil property, tomato fruit quality, and composition of the microflora in both non-rhizosphere and rhizosphere soils. The results showed that application of concentrated slurry could cause significant changes to tomato cultivation, including increases in organic matter, available N, P, and K, total N, and P, electrical conductivity, and fruit contents of amino acids, protein, soluble sugar, β-carotene, tannins, and vitamin C, together with the R/S ratios and the culturable counts of bacteria, actinomycetes, and fungi in soils. It could be concluded as the application is a practicable means in tomato production and might better service the sustainable agriculture in the near future.Keywords: concentrated slurry, fruit quality, soil fertility, sustainable agriculture
Procedia PDF Downloads 4578719 A Double Epilayer PSGT Trench Power MOSFETs for Low to Medium Voltage Power Applications
Authors: Alok Kumar Kamal, Vinod Kumar
Abstract:
The trench gate MOSFET has shown itself as the most appropriate power device for low to medium voltage power applications due to its lowest possible ON resistance among all power semiconductor devices. In this research work a double-epilayer PSGT structure using a thin layer of N+ polysilicon as gate material. The total ON-state resistance (RON) of UMOSFET can be reduced by optimizing the epilayer thickness. The optimized structure of Double-Epilayer exhibits a 25.8% reduction in the ON-state resistance at Vgs=5V and improving the switching characteristics by reducing the Reverse transfer capacitance (Cgd) by 7.4%.Keywords: Miller-capacitance, double-Epilayer;switching characteristics, power trench MOSFET (U-MOSFET), on-state resistance, blocking voltage
Procedia PDF Downloads 738718 Optimization of Solar Chimney Power Production
Authors: Olusola Bamisile, Oluwaseun Ayodele, Mustafa Dagbasi
Abstract:
The main objective of this research is to optimize the power produced by a solar chimney wind turbine. The cut out speed and the maximum possible production are considered while performing the optimization. Solar chimney is one of the solar technologies that can be used in rural areas at cheap cost. With over 50% of rural areas still yet to have access to electricity. The OptimTool in MATLAB is used to maximize power produced by the turbine subject to certain constraints. The results show that an optimized turbine produces about ten times the power of the normal turbine which is 111 W/h. The rest of the research discuss in detail solar chimney power plant and the optimization simulation used in this study.Keywords: solar chimney, optimization, wind turbine, renewable energy systems
Procedia PDF Downloads 5858717 Performance of Derna Steam Power Plant at Varying Super-Heater Operating Conditions Based on Exergy
Authors: Idris Elfeituri
Abstract:
In the current study, energy and exergy analysis of a 65 MW steam power plant was carried out. This study investigated the effect of variations of overall conductance of the super heater on the performance of an existing steam power plant located in Derna, Libya. The performance of the power plant was estimated by a mathematical modelling which considers the off-design operating conditions of each component. A fully interactive computer program based on the mass, energy and exergy balance equations has been developed. The maximum exergy destruction has been found in the steam generation unit. A 50% reduction in the design value of overall conductance of the super heater has been achieved, which accordingly decreases the amount of the net electrical power that would be generated by at least 13 MW, as well as the overall plant exergy efficiency by at least 6.4%, and at the same time that would cause an increase of the total exergy destruction by at least 14 MW. The achieved results showed that the super heater design and operating conditions play an important role on the thermodynamics performance and the fuel utilization of the power plant. Moreover, these considerations are very useful in the process of the decision that should be taken at the occasions of deciding whether to replace or renovate the super heater of the power plant.Keywords: Exergy, Super-heater, Fouling; Steam power plant; Off-design., Fouling;, Super-heater, Steam power plant
Procedia PDF Downloads 3338716 Perspective and Challenge of Tidal Power in Bangladesh
Authors: Md. Alamgir Hossain, Md. Zakir Hossain, Md. Atiqur Rahman
Abstract:
Tidal power can play a vital role in integrating as new source of renewable energy to the off-grid power connection in isolated areas, namely Sandwip, in Bangladesh. It can reduce the present energy crisis and improve the social, environmental and economic perspective of Bangladesh. Tidal energy is becoming popular around the world due to its own facilities. The development of any country largely depends on energy sector improvement. Lack of energy sector is because of hampering progress of any country development, and the energy sector will be stable by only depend on sustainable energy sources. Renewable energy having environmental friendly is the only sustainable solution of secure energy system. Bangladesh has a huge potential of tidal power at different locations, but effective measures on this issue have not been considered sincerely. This paper summarizes the current energy scenario, and Bangladesh can produce power approximately 53.19 MW across the country to reduce the growing energy demand utilizing tidal energy as well as it is shown that Sandwip is highly potential place to produce tidal power, which is estimated approximately 16.49 MW by investing only US $10.37 million. Besides this, cost management for tidal power plant has been also discussed.Keywords: sustainable energy, tidal power, cost analysis, power demand, gas crisis
Procedia PDF Downloads 4948715 Efficiency Improvement for Conventional Rectangular Horn Antenna by Using EBG Technique
Authors: S. Kampeephat, P. Krachodnok, R. Wongsan
Abstract:
The conventional rectangular horn has been used for microwave antenna a long time. Its gain can be increased by enlarging the construction of horn to flare exponentially. This paper presents a study of the shaped woodpile Electromagnetic Band Gap (EBG) to improve its gain for conventional horn without construction enlargement. The gain enhancement synthesis method for shaped woodpile EBG that has to transfer the electromagnetic fields from aperture of a horn antenna through woodpile EBG is presented by using the variety of shaped woodpile EBGs such as planar, triangular, quadratic, circular, gaussian, cosine, and squared cosine structures. The proposed technique has the advantages of low profile, low cost for fabrication and light weight. The antenna characteristics such as reflection coefficient (S11), radiation patterns and gain are simulated by utilized A Computer Simulation Technology (CST) software. With the proposed concept, an antenna prototype was fabricated and experimented. The S11 and radiation patterns obtained from measurements show a good impedance matching and a gain enhancement of the proposed antenna. The gain at dominant frequency of 10 GHz is 25.6 dB, application for X- and Ku-Band Radar, that higher than the gain of the basic rectangular horn antenna around 8 dB with adding only one appropriated EBG structures.Keywords: conventional rectangular horn antenna, electromagnetic band gap, gain enhancement, X- and Ku-band radar
Procedia PDF Downloads 2788714 A Study on Solutions to Connect Distribution Power Grid up to Renewable Energy Sources at KEPCO
Authors: Seung Yoon Hyun, Hyeong Seung An, Myeong Ho Choi, Sung Hwan Bae, Yu Jong Sim
Abstract:
In 2015, the southern part of the Korean Peninsula has 8.6 million poles, 1.25 million km power lines, and 2 million transformers, etc. It is the massive amount of distribution equipments which could cover a round-trip distance from the earth to the moon and 11 turns around the earth. These distribution equipments are spread out like capillaries and supplying power to every corner of the Korean Peninsula. In order to manage these huge power facility efficiently, KEPCO use DAS (Distribution Automation System) to operate distribution power system since 1997. DAS is integrated system that enables to remotely supervise and control breakers and switches on distribution network. Using DAS, we can reduce outage time and power loss. KEPCO has about 160,000 switches, 50%(about 80,000) of switches are automated, and 41 distribution center monitoring&control these switches 24-hour 365 days to get the best efficiency of distribution networks. However, the rapid increasing renewable energy sources become the problem in the efficient operation of distributed power system. (currently 2,400 MW, 75,000 generators operate in distribution power system). In this paper, it suggests the way to interconnect between renewable energy source and distribution power system.Keywords: distribution, renewable, connect, DAS (Distribution Automation System)
Procedia PDF Downloads 6218713 Research on the Teaching Quality Evaluation of China’s Network Music Education APP
Authors: Guangzhuang Yu, Chun-Chu Liu
Abstract:
With the advent of the Internet era in recent years, social music education has gradually shifted from the original entity education mode to the mode of entity plus network teaching. No matter for school music education, professional music education or social music education, the teaching quality is the most important evaluation index. Regarding the research on teaching quality evaluation, scholars at home and abroad have contributed a lot of research results on the basis of multiple methods and evaluation subjects. However, to our best knowledge the complete evaluation model for the virtual teaching interaction mode of the emerging network music education Application (APP) has not been established. This research firstly found out the basic dimensions that accord with the teaching quality required by the three parties, constructing the quality evaluation index system; and then, on the basis of expounding the connotation of each index, it determined the weight of each index by using method of fuzzy analytic hierarchy process, providing ideas and methods for scientific, objective and comprehensive evaluation of the teaching quality of network education APP.Keywords: network music education APP, teaching quality evaluation, index and connotation
Procedia PDF Downloads 1288712 QI Wireless Charging a Scope of Magnetic Inductive Coupling
Authors: Sreenesh Shashidharan, Umesh Gaikwad
Abstract:
QI or 'Chee' which is an interface standard for inductive electrical power transfer over distances of up to 4 cm (1.6 inches). The Qi system comprises a power transmission pad and a compatible receiver in a portable device which is placed on top of the power transmission pad, which charges using the principle of electromagnetic induction. An alternating current is passed through the transmitter coil, generating a magnetic field. This, in turn, induces a voltage in the receiver coil; this can be used to power a mobile device or charge a battery. The efficiency of the power transfer depends on the coupling (k) between the inductors and their quality (Q) The coupling is determined by the distance between the inductors (z) and the relative size (D2 /D). The coupling is further determined by the shape of the coils and the angle between them. If the receiver coil is at a certain distance to the transmitter coil, only a fraction of the magnetic flux, which is generated by the transmitter coil, penetrates the receiver coil and contributes to the power transmission. The more flux reaches the receiver, the better the coils are coupled.Keywords: inductive electric power, electromagnetic induction, magnetic flux, coupling
Procedia PDF Downloads 7328711 Maximizing Profit Using Optimal Control by Exploiting the Flexibility in Thermal Power Plants
Authors: Daud Mustafa Minhas, Raja Rehan Khalid, Georg Frey
Abstract:
The next generation power systems are equipped with abundantly available free renewable energy resources (RES). During their low-cost operations, the price of electricity significantly reduces to a lower value, and sometimes it becomes negative. Therefore, it is recommended not to operate the traditional power plants (e.g. coal power plants) and to reduce the losses. In fact, it is not a cost-effective solution, because these power plants exhibit some shutdown and startup costs. Moreover, they require certain time for shutdown and also need enough pause before starting up again, increasing inefficiency in the whole power network. Hence, there is always a trade-off between avoiding negative electricity prices, and the startup costs of power plants. To exploit this trade-off and to increase the profit of a power plant, two main contributions are made: 1) introducing retrofit technology for state of art coal power plant; 2) proposing optimal control strategy for a power plant by exploiting different flexibility features. These flexibility features include: improving ramp rate of power plant, reducing startup time and lowering minimum load. While, the control strategy is solved as mixed integer linear programming (MILP), ensuring optimal solution for the profit maximization problem. Extensive comparisons are made considering pre and post-retrofit coal power plant having the same efficiencies under different electricity price scenarios. It concludes that if the power plant must remain in the market (providing services), more flexibility reflects direct economic advantage to the plant operator.Keywords: discrete optimization, power plant flexibility, profit maximization, unit commitment model
Procedia PDF Downloads 1438710 Low Power CNFET SRAM Design
Authors: Pejman Hosseiniun, Rose Shayeghi, Iman Rahbari, Mohamad Reza Kalhor
Abstract:
CNFET has emerged as an alternative material to silicon for high performance, high stability and low power SRAM design in recent years. SRAM functions as cache memory in computers and many portable devices. In this paper, a new SRAM cell design based on CNFET technology is proposed. The proposed SRAM cell design for CNFET is compared with SRAM cell designs implemented with the conventional CMOS and FinFET in terms of speed, power consumption, stability, and leakage current. The HSPICE simulation and analysis show that the dynamic power consumption of the proposed 8T CNFET SRAM cell’s is reduced about 48% and the SNM is widened up to 56% compared to the conventional CMOS SRAM structure at the expense of 2% leakage power and 3% write delay increase.Keywords: SRAM cell, CNFET, low power, HSPICE
Procedia PDF Downloads 4148709 Self-Tuning-Filter and Fuzzy Logic Control for Shunt Active Power Filter
Authors: Kaddari Faiza, Mazari Benyounes, Mihoub Youcef, Safa Ahmed
Abstract:
Active filtering of electric power has now become a mature technology for reactive power and harmonic compensation caused by the proliferation of power electronics devices used for industrial, commercial and residential purposes. The aim of this study is to enhance the power quality by improving the performances of shunt active power filter in harmonic mitigation to obtain sinusoidal source currents with very weak ripples. A power circuit configuration and control scheme for shunt active power filter are described with an improved method for harmonics compensation using self-tuning-filter for harmonics identification and fuzzy logic control to generate reference current. Simulation results (using MATLAB/SIMULINK) illustrates the compensation characteristics of the proposed control strategy. Analysis of these results proves the feasibility and effectiveness of this method to improve the power quality and also show the performances of fuzzy logic control which provides flexibility, high precision and fast response. The total harmonic distortion (THD %) for the simulations found to be within the recommended imposed IEEE 519-1992 harmonic standard.Keywords: Active Powers Filter (APF), Self-Tuning-Filter (STF), fuzzy logic control, hysteresis-band control
Procedia PDF Downloads 7388708 Harmony Search-Based K-Coverage Enhancement in Wireless Sensor Networks
Authors: Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit
Abstract:
Many wireless sensor network applications require K-coverage of the monitored area. In this paper, we propose a scalable harmony search based algorithm in terms of execution time, K-Coverage Enhancement Algorithm (KCEA), it attempts to enhance initial coverage, and achieve the required K-coverage degree for a specific application efficiently. Simulation results show that the proposed algorithm achieves coverage improvement of 5.34% compared to K-Coverage Rate Deployment (K-CRD), which achieves 1.31% when deploying one additional sensor. Moreover, the proposed algorithm is more time efficient.Keywords: Wireless Sensor Networks (WSN), harmony search algorithms, K-Coverage, Mobile WSN
Procedia PDF Downloads 5268707 Stochastic Modelling for Mixed Mode Fatigue Delamination Growth of Wind Turbine Composite Blades
Authors: Chi Zhang, Hua-Peng Chen
Abstract:
With the increasingly demanding resources in the word, renewable and clean energy has been considered as an alternative way to replace traditional ones. Thus, one of practical examples for using wind energy is wind turbine, which has gained more attentions in recent research. Like most offshore structures, the blades, which is the most critical components of the wind turbine, will be subjected to millions of loading cycles during service life. To operate safely in marine environments, the blades are typically made from fibre reinforced composite materials to resist fatigue delamination and harsh environment. The fatigue crack development of blades is uncertain because of indeterminate mechanical properties for composite and uncertainties under offshore environment like wave loads, wind loads, and humid environments. There are three main delamination failure modes for composite blades, and the most common failure type in practices is subjected to mixed mode loading, typically a range of opening (mode 1) and shear (mode 2). However, the fatigue crack development for mixed mode cannot be predicted as deterministic values because of various uncertainties in realistic practical situation. Therefore, selecting an effective stochastic model to evaluate the mixed mode behaviour of wind turbine blades is a critical issue. In previous studies, gamma process has been considered as an appropriate stochastic approach, which simulates the stochastic deterioration process to proceed in one direction such as realistic situation for fatigue damage failure of wind turbine blades. On the basis of existing studies, various Paris Law equations are discussed to simulate the propagation of the fatigue crack growth. This paper develops a Paris model with the stochastic deterioration modelling according to gamma process for predicting fatigue crack performance in design service life. A numerical example of wind turbine composite materials is investigated to predict the mixed mode crack depth by Paris law and the probability of fatigue failure by gamma process. The probability of failure curves under different situations are obtained from the stochastic deterioration model for comparisons. Compared with the results from experiments, the gamma process can take the uncertain values into consideration for crack propagation of mixed mode, and the stochastic deterioration process shows a better agree well with realistic crack process for composite blades. Finally, according to the predicted results from gamma stochastic model, assessment strategies for composite blades are developed to reduce total lifecycle costs and increase resistance for fatigue crack growth.Keywords: Reinforced fibre composite, Wind turbine blades, Fatigue delamination, Mixed failure mode, Stochastic process.
Procedia PDF Downloads 4138706 Load Flow Analysis of 5-IEEE Bus Test System Using Matlab
Abstract:
A power flow analysis is a steady-state study of power grid. The goal of power flow analysis is to determine the voltages, currents, and real and reactive power flows in a system under a given load conditions. In this paper, the load flow analysis program by Newton Raphson polar coordinates Method is developed. The effectiveness of the developed program is evaluated through a simple 5-IEEE test system bus by simulations using MATLAB.Keywords: power flow analysis, Newton Raphson polar coordinates method
Procedia PDF Downloads 6038705 Impact of PV Distributed Generation on Loop Distribution Network at Saudi Electricity Company Substation in Riyadh City
Authors: Mohammed Alruwaili
Abstract:
Nowadays, renewable energy resources are playing an important role in replacing traditional energy resources such as fossil fuels by integrating solar energy with conventional energy. Concerns about the environment led to an intensive search for a renewable energy source. The Rapid growth of distributed energy resources will have prompted increasing interest in the integrated distributing network in the Kingdom of Saudi Arabia next few years, especially after the adoption of new laws and regulations in this regard. Photovoltaic energy is one of the promising renewable energy sources that has grown rapidly worldwide in the past few years and can be used to produce electrical energy through the photovoltaic process. The main objective of the research is to study the impact of PV in distribution networks based on real data and details. In this research, site survey and computer simulation will be dealt with using the well-known computer program software ETAB to simulate the input of electrical distribution lines with other variable inputs such as the levels of solar radiation and the field study that represent the prevailing conditions and conditions in Diriah, Riyadh region, Saudi Arabia. In addition, the impact of adding distributed generation units (DGs) to the distribution network, including solar photovoltaic (PV), will be studied and assessed for the impact of adding different power capacities. The result has been achieved with less power loss in the loop distribution network from the current condition by more than 69% increase in network power loss. However, the studied network contains 78 buses. It is hoped from this research that the efficiency, performance, quality and reliability by having an enhancement in power loss and voltage profile of the distribution networks in Riyadh City. Simulation results prove that the applied method can illustrate the positive impact of PV in loop distribution generation.Keywords: renewable energy, smart grid, efficiency, distribution network
Procedia PDF Downloads 1408704 Performance Analysis of Different Power Electronics Structures for Electric Vehicles (EVs)
Authors: Sekkak Abdelmalek
Abstract:
The aim of this paper is to establish an energy balance of the drivetrain of a low power electric vehicle (around ten kilowatts). The study is based on two topologies of power electronics converter, the voltage source inverter and cascaded H-Bridge inverter. For each of these solutions, two voltage levels are studied for the drivetrain. At first a discussion of cascaded H-Bridge inverters will be performed on the potential benefits of this structure for its use to other functions such as macroscopic batteries management system. In a second step, the performances of the traction chain are compared according to the structure of the power converter and the voltage level of the traction chain.Keywords: power electronics, static converters, cascaded H-Bridge, traction chain, efficiency, losses, batteries balancing
Procedia PDF Downloads 5128703 Comparative Study of Line Voltage Stability Indices for Voltage Collapse Forecasting in Power Transmission System
Authors: H. H. Goh, Q. S. Chua, S. W. Lee, B. C. Kok, K. C. Goh, K. T. K. Teo
Abstract:
At present, the evaluation of voltage stability assessment experiences sizeable anxiety in the safe operation of power systems. This is due to the complications of a strain power system. With the snowballing of power demand by the consumers and also the restricted amount of power sources, therefore, the system has to perform at its maximum proficiency. Consequently, the noteworthy to discover the maximum ability boundary prior to voltage collapse should be undertaken. A preliminary warning can be perceived to evade the interruption of power system’s capacity. The effectiveness of line voltage stability indices (LVSI) is differentiated in this paper. The main purpose of the indices is used to predict the proximity of voltage instability of the electric power system. On the other hand, the indices are also able to decide the weakest load buses which are close to voltage collapse in the power system. The line stability indices are assessed using the IEEE 14 bus test system to validate its practicability. Results demonstrated that the implemented indices are practically relevant in predicting the manifestation of voltage collapse in the system. Therefore, essential actions can be taken to dodge the incident from arising.Keywords: critical line, line outage, line voltage stability indices (LVSI), maximum loadability, voltage collapse, voltage instability, voltage stability analysis
Procedia PDF Downloads 3598702 Flexible Alternative Current Transmission System Impact on Grid Stability and Power Markets
Authors: Abdulrahman M. Alsuhaibani, Martin Maken
Abstract:
FACTS devices have great influence on the grid stability and power markets price. Recently, there is intent to integrate a large scale of renewable energy sources to the power system which in turn push the power system to operate closer to the security limits. This paper discusses the power system stability and reliability improvement that could be achieved by using FACTS. There is a comparison between FACTS devices to evaluate their performance for different functions. A case study has also been made about its effect on reducing generation cost and minimizing transmission losses which have good impact on efficient and economic operation of electricity marketsKeywords: FACTS, grid stability, spot price, OPF
Procedia PDF Downloads 1578701 Concept, Modules and Objectives of the Syllabus Course: Small Power Plants and Renewable Energy Sources
Authors: Rade M. Ciric, Nikola L. J. Rajakovic
Abstract:
This paper presents a curriculum of the subject small power plants and renewable energy sources, dealing with the concept of distributed generation, renewable energy sources, hydropower, wind farms, geothermal power plants, cogeneration plants, biogas plants of agriculture and animal origin, solar power and fuel cells. The course is taught the manner of connecting small power plants to the grid, the impact of small generators on the distribution system, as well as economic, environmental and legal aspects of operation of distributed generators.Keywords: distributed generation, renewable energy sources, energy policy, curriculum
Procedia PDF Downloads 3578700 Governance Question and the Participatory Policy Making: Making the Process Functional in Nigeria
Authors: Albert T. Akume, P. D. Dahida
Abstract:
This paper examines the effect of various epochs of governments on policy making in Nigeria. The character of governance and public policy making of both epochs was exclusive, non-participatory and self-centric. As a consequence the interests of citizenry were not represented, neither protected nor sought to meet fairly the needs of all groups. The introduction of the post-1999 democratic government demand that the hitherto skewed pattern of policy making cease to be a character of governance. Hence, the need for citizen participation in the policy making process. The question then is what mode is most appropriate to engender public participation so as to make the policy making process functional? Given the prevailing social, economic and political dilemmas the utilization of the direct mode of citizen participation to affect policy outcome is doubtful if not unattainable. It is due to these predicament that this paper uses the documentary research design argues for the utilization of the indirect mode of citizen participation in the policy making process so as to affect public policy outcome appropriately and with less cost, acrimony and delays.Keywords: governance, public policy, participation, representation, civil society
Procedia PDF Downloads 374