Search results for: biology experiments
3060 Effect of Variable Fluxes on Optimal Flux Distribution in a Metabolic Network
Authors: Ehsan Motamedian
Abstract:
Finding all optimal flux distributions of a metabolic model is an important challenge in systems biology. In this paper, a new algorithm is introduced to identify all alternate optimal solutions of a large scale metabolic network. The algorithm reduces the model to decrease computations for finding optimal solutions. The algorithm was implemented on the Escherichia coli metabolic model to find all optimal solutions for lactate and acetate production. There were more optimal flux distributions when acetate production was optimized. The model was reduced from 1076 to 80 variable fluxes for lactate while it was reduced to 91 variable fluxes for acetate. These 11 more variable fluxes resulted in about three times more optimal flux distributions. Variable fluxes were from 12 various metabolic pathways and most of them belonged to nucleotide salvage and extra cellular transport pathways.Keywords: flux variability, metabolic network, mixed-integer linear programming, multiple optimal solutions
Procedia PDF Downloads 4353059 Predicting and Optimizing the Mechanical Behavior of a Flax Reinforced Composite
Authors: Georgios Koronis, Arlindo Silva
Abstract:
This study seeks to understand the mechanical behavior of a natural fiber reinforced composite (epoxy/flax) in more depth, utilizing both experimental and numerical methods. It is attempted to identify relationships between the design parameters and the product performance, understand the effect of noise factors and reduce process variations. Optimization of the mechanical performance of manufactured goods has recently been implemented by numerous studies for green composites. However, these studies are limited and have explored in principal mass production processes. It is expected here to discover knowledge about composite’s manufacturing that can be used to design artifacts that are of low batch and tailored to niche markets. The goal is to reach greater consistency in the performance and further understand which factors play significant roles in obtaining the best mechanical performance. A prediction of response function (in various operating conditions) of the process is modeled by the DoE. Normally, a full factorial designed experiment is required and consists of all possible combinations of levels for all factors. An analytical assessment is possible though with just a fraction of the full factorial experiment. The outline of the research approach will comprise of evaluating the influence that these variables have and how they affect the composite mechanical behavior. The coupons will be fabricated by the vacuum infusion process defined by three process parameters: flow rate, injection point position and fiber treatment. Each process parameter is studied at 2-levels along with their interactions. Moreover, the tensile and flexural properties will be obtained through mechanical testing to discover the key process parameters. In this setting, an experimental phase will be followed in which a number of fabricated coupons will be tested to allow for a validation of the design of the experiment’s setup. Finally, the results are validated by performing the optimum set of in a final set of experiments as indicated by the DoE. It is expected that after a good agreement between the predicted and the verification experimental values, the optimal processing parameter of the biocomposite lamina will be effectively determined.Keywords: design of experiments, flax fabrics, mechanical performance, natural fiber reinforced composites
Procedia PDF Downloads 2043058 Phytochemical Screening and Antibacterial Activities of Tapinanthus dodoneifolius Leaves Extracts against Some Selected Clinical Isolates
Authors: Isa Usman Balan, Umar Aliyu, Ahmad Tijjani Muhammed
Abstract:
The laboratory scale experiment was conducted to determine the phytochemical constituents and antibacterial activities of epiphytic neem leaves (Tapinanthusdodoneifolius) extracts on some selected clinical isolates. The samples were collected using polythene bags to avoid unnecessary contamination of the plants, and they were collected from the old site garden of the BUK. The phytochemical screening and antibacterial test were carried out in the Chemistry and Biology laboratory, respectively at Bayero University Kano (BUK). The result obtained showed that carbohydrates, glycosides, steroids, alkaloids, phenol, saponins and flavonoids are present in the ethanolic extract. However, chloroform extract showed only glycosides, phenols, and carbohydrates. Furthermore, there was no significant difference between the ethanolic extracts and bacterial isolates (p<0.05).Keywords: phytochemical screening, antibacterial, clinical isolates, epiphytic neem leaves, Tapinanthus dodoneifolius
Procedia PDF Downloads 803057 Measuring the Effect of Ventilation on Cooking in Indoor Air Quality by Low-Cost Air Sensors
Authors: Andres Gonzalez, Adam Boies, Jacob Swanson, David Kittelson
Abstract:
The concern of the indoor air quality (IAQ) has been increasing due to its risk to human health. The smoking, sweeping, and stove and stovetop use are the activities that have a major contribution to the indoor air pollution. Outdoor air pollution also affects IAQ. The most important factors over IAQ from cooking activities are the materials, fuels, foods, and ventilation. The low-cost, mobile air quality monitoring (LCMAQM) sensors, is reachable technology to assess the IAQ. This is because of the lower cost of LCMAQM compared to conventional instruments. The IAQ was assessed, using LCMAQM, during cooking activities in a University of Minnesota graduate-housing evaluating different ventilation systems. The gases measured are carbon monoxide (CO) and carbon dioxide (CO2). The particles measured are particle matter (PM) 2.5 micrometer (µm) and lung deposited surface area (LDSA). The measurements are being conducted during April 2019 in Como Student Community Cooperative (CSCC) that is a graduate housing at the University of Minnesota. The measurements are conducted using an electric stove for cooking. The amount and type of food and oil using for cooking are the same for each measurement. There are six measurements: two experiments measure air quality without any ventilation, two using an extractor as mechanical ventilation, and two using the extractor and windows open as mechanical and natural ventilation. 3The results of experiments show that natural ventilation is most efficient system to control particles and CO2. The natural ventilation reduces the concentration in 79% for LDSA and 55% for PM2.5, compared to the no ventilation. In the same way, CO2 reduces its concentration in 35%. A well-mixed vessel model was implemented to assess particle the formation and decay rates. Removal rates by the extractor were significantly higher for LDSA, which is dominated by smaller particles, than for PM2.5, but in both cases much lower compared to the natural ventilation. There was significant day to day variation in particle concentrations under nominally identical conditions. This may be related to the fat content of the food. Further research is needed to assess the impact of the fat in food on particle generations.Keywords: cooking, indoor air quality, low-cost sensor, ventilation
Procedia PDF Downloads 1133056 Integer Programming-Based Generation of Difficulty Level for a Racing Game
Authors: Sangchul Kim, Dosaeng Park
Abstract:
It is one of the important design issues to provide various levels of difficulty in order to suit the skillfulness of an individual. In this paper we propose an integer programming-based method for selecting a mixture of challenges for a racing game that meet a given degree of difficulty. The proposed method can also be used to dynamically adjust the difficulty of the game during the progression of playing. By experiments, it is shown that our method performs well enough to generate games with various degrees of difficulty that match the perception of players.Keywords: level generation, level adjustment, racing game, ip
Procedia PDF Downloads 3753055 Reduction of Chemical Fertilizer in Rice-Rice Cropping Pattern Using Different Vermicompost
Authors: Azizul Haque, Kamrun Nahar
Abstract:
Field experiments were conducted to reduce the chemical fertilizers with the integrated use of straight and phospho- vermicompost with chemical fertilizers in T. aman-Boro rice cropping pattern at the BINA farm, Mymensingh during 2019-20. Six treatments were used in the experiment for both the crops. The treatments used for T. aman rice (Binadhan 17) with straight vermicompost were as follows: T1: Native soil fertility, T2: 100% N from Chemical Fertilizer (CF), T3:70%N from CF, T4: 30% N from vermicompost-3 + 70% N from CF and T5:30% N from vermicompost-4 + 70% N from CF and T6: 100% PKS only. The treatments of Boro rice (var. Binadhan -10) with phospho-vermicompost were: T1: Native soil fertility, T2: 100% NPKS from chemical fertilizer (CF), T3:75% NKS from CF (Non IPNS) with 1 t ha-1 Phospho-vermicompost (P-Vermicom), T4: 100% NKS (IPNS) with 2 t ha-1 P-Vermicom, T5: 100% NKS from CF (Non IPNS) with 2 t ha-1 P-Vermicom and T6: 100% NKS. The experiments were conducted in a Randomized Complete Block Design with three replications. The treatment T5 (5.5 t ha-1) gave maximum grain yield of T.aman rice followed by the treatment T4 (5.4 t ha-1). But the treatmentsT5, T4, and T2 gave identical grain yields of T. aman rice. Similar results were observed in case of straw yields of T. Aman rice. The result indicated that 70% N from CF with 30% N from either straight vermicompost-3 or straight vermicompost-4 gave comparable yield to the sole application of 100% N from CF alone. Therefore, 30% chemical fertilizers (N, P, K and S) could be saved with the integrated (IPNS) use of vermicompost-3 or vermicompost-4 in the cultivation of T. aman rice. Application of Phospho-vermicompost significantly influenced the yield and yield contributing characters of Boro rice (Binadhan-10). The treatment T4 (7.23.0 t ha-1) gave maximum grain yield of Boro rice followed by the treatments T2 and T5. But the treatments T2 and T5 produced statistically similar grain yields. The results from the treatment T4 (100% NKS (IPNS) with 2.0 t ha-1P-Vermicom) indicated that full demand of P could be met up from 2 t ha-1 Phospho-vermicompost with IPNS chemical fertilizers (NKS) which was sufficient for attaining the highest grain yield of Boro rice than that of the treatment T2 (100% NPKS from CF) and the treatmentT5 (100% NKS from CF (Non IPNS) + 2 t ha-1 Phospho-vermicompost). The results revealed that 100% P and substantial amount of N (21%), K (44.6%) and S (53.7%) fertilizers could be saved with the integrated use of Phospho-vermicompost in the cultivation of Boro rice. In case of Boro rice partial cost benefit analysis showed that the application of Phospho-vermicompost (@2 tha--1) with IPNS chemical fertilizes (NKS) gave higher return of Tk. 18,213 / - than that of only 100% chemical fertilizer. Therefore, use of Phospho-vermicompost was beneficial for the cultivation of Boro rice in combination with suitable dose of chemical fertilizers.Keywords: phosphovermicompost, cropping pattern, rice yield, chemical fertilizer
Procedia PDF Downloads 1043054 Analysis of the Black Sea Gas Hydrates
Authors: Sukru Merey, Caglar Sinayuc
Abstract:
Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4~80 to 99.9%) source. In this study, by using the literature, seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, the optimum gas production method for the Black Sea gas hydrates was selected as mainly depressurization method. Numerical simulations were run to analyze gas production from gas hydrate deposited in turbidites in the Black Sea by depressurization.Keywords: CH4 hydrate, Black Sea hydrates, gas hydrate experiments, HydrateResSim
Procedia PDF Downloads 6243053 Collagen Gel in Hip Cartilage Repair: in vivo Preliminary Study
Authors: A. Bajek, J. Skopinska-Wisniewska, A. Rynkiewicz, A. Jundzill, M. Bodnar, A. Marszalek, T. Drewa
Abstract:
Traumatic injury and age-related degenerative diseases associated with cartilage are major health problems worldwide. The articular cartilage is comprised of a relatively small number of cells, which have a relatively slow rate of turnover. Therefore, damaged articular cartilage has a limited capacity for self-repair. New clinical methods have been designed to achieve better repair of injured cartilage. However, there is no treatment that enables full restoration of it. The aim of this study was to evaluate how collagen gel with bone marrow mesenchymal stem cells (MSCs) and collagen gel alone will influence on the hip cartilage repair after injury. Collagen type I was isolated from rats’ tails and cross-linked with N-hydroxysuccinimide in 24-hour process. MSCs were isolated from rats’ bone marrow. The experiments were conducted according to the guidelines for animal experiments of Ethics Committee. Fifteen 8-week-old Wistar rats were used in this study. All animals received hip joint surgery with a total of 30 created cartilage defects. Then, animals were randomly divided into three groups and filled, respectively, with collagen gel (group 1), collagen gel cultured with MSCs (group II) or left untreated as a control (control group). Immunohistochemy and radiological evaluation was carried out 11 weeks post implantation. It has been proved that the surface of the matrix is non-toxic, and its porosity promotes cell adhesion and growth. However, the in vivo regeneration process was poor. We observed the low integration rate of biomaterial. Immunohistochemical evaluation of cartilage after 11 weeks of treatment showed low II and high X collagen expression in two tested groups in comparison to the control one, in which we observed the high II collagen expression. What is more, after radiological analysis, we observed the best regeneration process in control group. The biomaterial construct and mesenchymal stem cells, as well as the use of the biomaterial itself was not sufficient to regenerate the hip cartilage surfaces. These results suggest that the collagen gel based biomaterials, even with MSCs, are not satisfactory in repar of hip cartilage defect. However, additional evaluation is needed to confirm these results.Keywords: collafen gel, MSCs, cartilage repair, hip cartilage
Procedia PDF Downloads 4573052 Investigation of Hydrate Formation of Associated Petroleum Gas from Promoter Solutions for the Purpose of Utilization and Reduction of Its Burning
Authors: M. E. Semenov, U. Zh. Mirzakimov, A. S. Stoporev, R. S. Pavelev, M. A. Varfolomeev
Abstract:
Gas hydrates are host-guest compounds. Guest molecules can be low molecular weight components of associated petroleum gas (C1-C4 hydrocarbons), carbon dioxide, hydrogen sulfide, nitrogen. Gas hydrates have a number of unique properties that make them interesting from a technological point of view, for example, for storing hydrocarbon gases in solid form under moderate thermobaric conditions. Currently, the possibility of storing and transporting hydrocarbon gases in the form of solid hydrate is being actively explored throughout the world. The hydrate form of gas has a number of advantages, including a significant gas content in the hydrate, relative safety and environmental friendliness of the process. Recently, new developments have been proposed that seek to reduce the number of steps to obtain the finished hydrate, for example, using a pressing device/screw inside the reactor. However, the energy consumption required for the hydrate formation process remains a challenge. Thus, the goal of the current work is to study the patterns and mechanisms of the hydrate formation process using small additions of hydrate formation promoters under static conditions. The study of these aspects will help solve the problem of accelerated production of gas hydrates with minimal energy consumption. New compounds have been developed at Kazan Federal University that can accelerate the formation of methane hydrate with a small amount of promoter in water, not exceeding 0.1% by weight. These promoters were synthesized based on available natural compounds and showed high efficiency in accelerating the growth of methane hydrate. To test the influence of promoters on the process of hydrate formation, standard experiments are carried out under dynamic conditions with stirring. During such experiments, the time at which hydrate formation begins (induction period), the temperature at which formation begins (supercooling), the rate of hydrate formation, and the degree of conversion of water to hydrate are assessed. This approach helps to determine the most effective compound in comparative experiments with different promoters and select their optimal concentration. These experimental studies made it possible to study the features of the formation of associated petroleum gas hydrate from promoter solutions under static conditions. Phase transformations were studied using high-pressure micro-differential scanning calorimetry under various experimental conditions. Visual studies of the growth mode of methane hydrate depending on the type of promoter were also carried out. The work is an extension of the methodology for studying the effect of promoters on the process of associated petroleum gas hydrate formation in order to identify new ways to accelerate the formation of gas hydrates without the use of mixing. This work presents the results of a study of the process of associated petroleum gas hydrate formation using high-pressure differential scanning micro-calorimetry, visual investigation, gas chromatography, autoclave study, and stability data. It was found that the synthesized compounds multiply the conversion of water into hydrate under static conditions up to 96% due to a change in the growth mechanism of associated petroleum gas hydrate. This work was carried out in the framework of the program Priority-2030.Keywords: gas hydrate, gas storage, promotor, associated petroleum gas
Procedia PDF Downloads 733051 The Effect of Subsurface Dam on Saltwater Intrusion in Heterogeneous Coastal Aquifers
Authors: Antoifi Abdoulhalik, Ashraf Ahmed
Abstract:
Saltwater intrusion (SWI) in coastal aquifers has become a growing threat for many countries around the world. While various control measures have been suggested to mitigate SWI, the construction of subsurface physical barriers remains one of the most effective solutions for this problem. In this work, we used laboratory experiments and numerical simulations to investigate the effectiveness of subsurface dams in heterogeneous layered coastal aquifer with different layering patterns. Four different cases were investigated, including a homogeneous (case H), and three heterogeneous cases in which a low permeability (K) layer was set in the top part of the system (case LH), in the middle part of the system (case HLH) and the bottom part of the system (case HL). Automated image analysis technique was implemented to quantify the main SWI parameters under high spatial and temporal resolution. The method also provides transient salt concentration maps, allowing for the first time clear visualization of the spillage of saline water over the dam (advancing wedge condition) as well as the flushing of residual saline water from the freshwater area (receding wedge condition). The SEAWAT code was adopted for the numerical simulations. The results show that the presence of an overlying layer of low permeability enhanced the ability of the dam to retain the saline water. In such conditions, the rate of saline water spillage and inland extension may considerably be reduced. Conversely, the presence of an underlying low K layer led to a faster increase of saltwater volume on the seaward side of the wall, therefore considerably facilitating the spillage. The results showed that a complete removal of the residual saline water eventually occurred in all the investigated scenarios, with a rate of removal strongly affected by the hydraulic conductivity of the lower part of the aquifer. The data showed that the addition of the underlying low K layer in case HL caused the complete flushing to be almost twice longer than in the homogeneous scenario.Keywords: heterogeneous coastal aquifers, laboratory experiments, physical barriers, seawater intrusion control
Procedia PDF Downloads 2513050 A Survey of Domain Name System Tunneling Attacks: Detection and Prevention
Authors: Lawrence Williams
Abstract:
As the mechanism which converts domains to internet protocol (IP) addresses, Domain Name System (DNS) is an essential part of internet usage. It was not designed securely and can be subject to attacks. DNS attacks have become more frequent and sophisticated and the need for detecting and preventing them becomes more important for the modern network. DNS tunnelling attacks are one type of attack that are primarily used for distributed denial-of-service (DDoS) attacks and data exfiltration. Discussion of different techniques to detect and prevent DNS tunneling attacks is done. The methods, models, experiments, and data for each technique are discussed. A proposal about feasibility is made. Future research on these topics is proposed.Keywords: DNS, tunneling, exfiltration, botnet
Procedia PDF Downloads 763049 Architectural Design Strategies and Visual Perception of Contemporary Spatial Design
Authors: Nora Geczy
Abstract:
In today’s architectural practice, during the process of designing public, educational, healthcare and cultural space, human-centered architectural designs helping spatial orientation, safe space usage and the appropriate spatial sequence of actions are gaining increasing importance. Related to the methodology of designing public buildings, several scientific experiments in spatial recognition, spatial analysis and spatial psychology with regard to the components of space producing mental and physiological effects have been going on at the Department of Architectural Design and the Interdisciplinary Student Workshop (IDM) at the Széchenyi István University, Győr since 2013. Defining the creation of preventive, anticipated spatial design and the architectural tools of spatial comfort of public buildings and their practical usability are in the limelight of our research. In the experiments applying eye-tracking cameras, we studied the way public spaces are used, especially concentrating on the characteristics of spatial behaviour, orientation, recognition, the sequence of actions, and space usage. Along with the role of mental maps, human perception, and interaction problems in public spaces (at railway stations, galleries, and educational institutions), we analyzed the spatial situations influencing psychological and ergonomic factors. We also analyzed the eye movements of the experimental subjects in dynamic situations, in spatial procession, using stairs and corridors. We monitored both the consequences and the distorting effects of the ocular dominance of the right eye on spatial orientation; we analyzed the gender-based differences of women and men’s orientation, stress-inducing spaces, spaces affecting concentration and the spatial situation influencing territorial behaviour. Based on these observations, we collected the components of creating public interior spaces, which -according to our theory- contribute to the optimal usability of public spaces. We summed up our research in criteria for design, including 10 points. Our further goals are testing design principles needed for optimizing orientation and space usage, their discussion, refinement, and practical usage.Keywords: architecture, eye-tracking, human-centered spatial design, public interior spaces, visual perception
Procedia PDF Downloads 1123048 Simulation of the Large Hadrons Collisions Using Monte Carlo Tools
Authors: E. Al Daoud
Abstract:
In many cases, theoretical treatments are available for models for which there is no perfect physical realization. In this situation, the only possible test for an approximate theoretical solution is to compare with data generated from a computer simulation. In this paper, Monte Carlo tools are used to study and compare the elementary particles models. All the experiments are implemented using 10000 events, and the simulated energy is 13 TeV. The mean and the curves of several variables are calculated for each model using MadAnalysis 5. Anomalies in the results can be seen in the muons masses of the minimal supersymmetric standard model and the two Higgs doublet model.Keywords: Feynman rules, hadrons, Lagrangian, Monte Carlo, simulation
Procedia PDF Downloads 3193047 Effect of Jet Diameter on Surface Quenching at Different Spatial Locations
Authors: C. Agrawal, R. Kumar, A. Gupta, B. Chatterjee
Abstract:
An experimental investigation has been carried out to study the cooling of a hot horizontal Stainless Steel surface of 3 mm thickness, which has 800±10 °C initial temperature. A round water jet of 22 ± 1 °C temperature was injected over the hot surface through straight tube type nozzles of 2.5-4.8 mm diameter and 250 mm length. The experiments were performed for the jet exit to target surface spacing of 4 times of jet diameter and jet Reynolds number of 5000-24000. The effect of change in jet Reynolds number on the surface quenching has been investigated form the stagnation point to 16 mm spatial location.Keywords: hot-surface, jet impingement, quenching, stagnation point
Procedia PDF Downloads 6103046 Poly(Methyl Methacrylate) Degradation Products and Its in vitro Cytotoxicity Evaluation in NIH3T3 Cells
Authors: Lesly Y Carmona-Sarabia, Luisa Barraza-Vergara, Vilmalí López-Mejías, Wandaliz Torres-García, Maribella Domenech-Garcia, Madeline Torres-Lugo
Abstract:
Biosensors are used in many applications providing real-time monitoring to treat long-term conditions. Thus, understanding the physicochemical properties and biological side effects on the skin of polymers (e. g., poly(methyl methacrylate), PMMA) employed in the fabrication of wearable biosensors is crucial for the selection of manufacturing materials within this field. The PMMA (hydrophobic and thermoplastic polymer) is commonly employed as a coating material or substrate in the fabrication of wearable devices. The cytotoxicityof PMMA (including residual monomers or degradation products) on the skin, in terms of cells and tissue, is required to prevent possible adverse effects (cell death, skin reactions, sensitization) on human health. Within this work, accelerated aging of PMMA (Mw ~ 15000) through thermal and photochemical degradation was under-taken. The accelerated aging of PMMA was carried out by thermal (200°C, 1h) and photochemical degradation (UV-Vis, 8-15d) adapted employing ISO protocols (ISO-10993-12, ISO-4892-1:2016, ISO-877-1:2009, ISO-188: 2011). In addition, in vitro cytotoxicity evaluation of PMMA degradation products was performed using NIH3T3 fibroblast cells to assess the response of skin tissues (in terms of cell viability) exposed with polymers utilized to manufacture wearable biosensors, such as PMMA. The PMMA (Mw ~ 15000) before and after accelerated aging experiments was characterized by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), powder X-ray diffractogram (PXRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) to determine and verify the successful degradation of this polymer under the specific conditions previously mention. The degradation products were characterized through nuclear magnetic resonance (NMR) to identify possible byproducts generated after the accelerated aging. Results demonstrated a percentage (%) weight loss between 1.5-2.2% (TGA thermographs) for PMMA after accelerated aging. The EDS elemental analysis reveals a 1.32 wt.% loss of carbon for PMMA after thermal degradation. These results might be associated with the amount (%) of PMMA degrade after the accelerated aging experiments. Furthermore, from the thermal degradation products was detected the presence of the monomer and methyl formate (low concentrations) and a low molecular weight radical (·COOCH3) in higher concentrations by NMR. In the photodegradation products, methyl formate was detected in higher concentrations. These results agree with the proposed thermal or photochemical degradation mechanisms found in the literature.1,2 Finally, significant cytotoxicity on the NIH3T3 cells was obtained for the thermal and photochemical degradation products. A decrease in cell viability by > 90% (stock solutions) was observed. It is proposed that the presence of byproducts (e.g. methyl formate or radicals such as ·COOCH₃) from the PMMA degradation might be responsible for the cytotoxicity observed in the NIH3T3 fibroblast cells. Additionally, experiments using skin models will be employed to compare with the NIH3T3 fibroblast cells model.Keywords: biosensors, polymer, skin irritation, degradation products, cell viability
Procedia PDF Downloads 1403045 Reduction of Chlordecone Rates in Bioelectrochemicals Systems from Water and Sediment Swamp Mangrove in Absence of a Redox Mediator
Authors: Malory Beaujolais
Abstract:
Chlordecone is an organochlorine pesticide with a bishomocubane structure which led to high stability in organic matter. Microbial fuel cell is a type of electrochemical system that can convert organic matters into electricity thanks to electroactive bacteria. This technique has been used with mangrove swamp from Martinique to try to reduce chlordecone rates. Those experiments led to characterize the behavior of the electroactive biofilm formed at the cathode, without added redox mediator. The designed bioelectrochemical system seems to provide the necessary conditions for chlordecone degradation.Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp
Procedia PDF Downloads 443044 Automatic Vowel and Consonant's Target Formant Frequency Detection
Authors: Othmane Bouferroum, Malika Boudraa
Abstract:
In this study, a dual exponential model for CV formant transition is derived from locus theory of speech perception. Then, an algorithm for automatic vowel and consonant’s target formant frequency detection is developed and tested on real speech. The results show that vowels and consonants are detected through transitions rather than their small stable portions. Also, vowel reduction is clearly observed in our data. These results are confirmed by the observations made in perceptual experiments in the literature.Keywords: acoustic invariance, coarticulation, formant transition, locus equation
Procedia PDF Downloads 2733043 Effect of Non-Regulated pH on the Dynamics of Dark Fermentative Biohydrogen Production with Suspended and Immobilized Cell Culture
Authors: Joelle Penniston, E. B. Gueguim-Kana
Abstract:
Biohydrogen has been identified as a promising alternative to the use of non-renewable fossil reserves, owing to its sustainability and non-polluting nature. pH is considered as a key parameter in fermentative biohydrogen production processes, due to its effect on the hydrogenase activity, metabolic activity as well as substrate hydrolysis. The present study assesses the influence of regulating pH on dark fermentative biohydrogen production. Four experimental hydrogen production schemes were evaluated. Two were implemented using suspended cells under regulated pH growth conditions (Sus_R) and suspended and non-regulated pH (Sus_N). The two others regimes consisted of alginate immobilized cells under pH regulated growth conditions (Imm_R) and immobilized and non-pH regulated conditions (Imm_N). All experiments were carried out at 37.5°C with glucose as sole source of carbon. Sus_R showed a lag time of 5 hours and a peak hydrogen fraction of 36% and a glucose degradation of 37%, compared to Sus_N which showed a peak hydrogen fraction of 44% and complete glucose degradation. Both suspended culture systems showed a higher peak biohydrogen fraction compared to the immobilized cell system. Imm_R experiments showed a lag phase of 8 hours, a peak biohydrogen fraction of 35%, while Imm_N showed a lag phase of 5 hours, a peak biohydrogen fraction of 22%. 100% glucose degradation was observed in both pH regulated and non-regulated processes. This study showed that biohydrogen production in batch mode with suspended cells in a non-regulated pH environment results in a partial degradation of substrate, with lower yield. This scheme has been the culture mode of choice for most reported studies in biohydrogen research. The relatively lower slope in pH trend of the non-regulated pH experiment with immobilized cells (Imm_N) compared to Sus_N revealed that that immobilized systems have a better buffering capacity compared to suspended systems, which allows for the extended production of biohydrogen even under non-regulated pH conditions. However, alginate immobilized cultures in flask systems showed some drawbacks associated to high rate of gas production that leads to increased buoyancy of the immobilization beads. This ultimately impedes the release of gas out of the flask.Keywords: biohydrogen, sustainability, suspended, immobilized
Procedia PDF Downloads 3423042 Family Functionality in Mexican Children with Congenital and Non-Congenital Deafness
Authors: D. Estrella, A. Silva, R. Zapata, H. Rubio
Abstract:
A total of 100 primary caregivers (mothers, fathers, grandparents) with at least one child or grandchild with a diagnosis of congenital bilateral profound deafness were assessed in order to evaluate the functionality of families with a deaf member, who was evaluated by specialists in audiology, molecular biology, genetics and psychology. After confirmation of the clinical diagnosis, DNA from the patients and parents were analyzed in search of the 35delG deletion of the GJB2 gene to determine who possessed the mutation. All primary caregivers were provided psychological support, regardless of whether or not they had the mutation, and prior and subsequent, the family APGAR test was applied. All parents, grandparents were informed of the results of the genetic analysis during the psychological intervention. The family APGAR, after psychological and genetic counseling, showed that 14% perceived their families as functional, 62% moderately functional and 24% dysfunctional. This shows the importance of psychological support in family functionality that has a direct impact on the quality of life of these families.Keywords: deafness, psychological support, family, adaptation to disability
Procedia PDF Downloads 4263041 Integrative Omics-Portrayal Disentangles Molecular Heterogeneity and Progression Mechanisms of Cancer
Authors: Binder Hans
Abstract:
Cancer is no longer seen as solely a genetic disease where genetic defects such as mutations and copy number variations affect gene regulation and eventually lead to aberrant cell functioning which can be monitored by transcriptome analysis. It has become obvious that epigenetic alterations represent a further important layer of (de-)regulation of gene activity. For example, aberrant DNA methylation is a hallmark of many cancer types, and methylation patterns were successfully used to subtype cancer heterogeneity. Hence, unraveling the interplay between different omics levels such as genome, transcriptome and epigenome is inevitable for a mechanistic understanding of molecular deregulation causing complex diseases such as cancer. This objective requires powerful downstream integrative bioinformatics methods as an essential prerequisite to discover the whole genome mutational, transcriptome and epigenome landscapes of cancer specimen and to discover cancer genesis, progression and heterogeneity. Basic challenges and tasks arise ‘beyond sequencing’ because of the big size of the data, their complexity, the need to search for hidden structures in the data, for knowledge mining to discover biological function and also systems biology conceptual models to deduce developmental interrelations between different cancer states. These tasks are tightly related to cancer biology as an (epi-)genetic disease giving rise to aberrant genomic regulation under micro-environmental control and clonal evolution which leads to heterogeneous cellular states. Machine learning algorithms such as self organizing maps (SOM) represent one interesting option to tackle these bioinformatics tasks. The SOMmethod enables recognizing complex patterns in large-scale data generated by highthroughput omics technologies. It portrays molecular phenotypes by generating individualized, easy to interpret images of the data landscape in combination with comprehensive analysis options. Our image-based, reductionist machine learning methods provide one interesting perspective how to deal with massive data in the discovery of complex diseases, gliomas, melanomas and colon cancer on molecular level. As an important new challenge, we address the combined portrayal of different omics data such as genome-wide genomic, transcriptomic and methylomic ones. The integrative-omics portrayal approach is based on the joint training of the data and it provides separate personalized data portraits for each patient and data type which can be analyzed by visual inspection as one option. The new method enables an integrative genome-wide view on the omics data types and the underlying regulatory modes. It is applied to high and low-grade gliomas and to melanomas where it disentangles transversal and longitudinal molecular heterogeneity in terms of distinct molecular subtypes and progression paths with prognostic impact.Keywords: integrative bioinformatics, machine learning, molecular mechanisms of cancer, gliomas and melanomas
Procedia PDF Downloads 1493040 Experimental and Numerical Modeling of Dynamic Axial Crushing of a Composite Glass/PEHD
Authors: Mahmoudi Noureddine, Kaou Abdellah
Abstract:
Energy absorption is a major requirement for automotive structures. Although crashworthy structures of composite based glass fiber have exhibited energy absorption greater than similar at other composites structures, the crush process in many cases is accompanied by fracture, rather than by plastic deformation. The crash experiments show that the tubes are crushed in progressive manner start from one end of the tubes and delamination takes place between the layers. To better understand details of the crash process, ABAQUS finite element code is used.Keywords: Energy absorption, crash, PEHD
Procedia PDF Downloads 4993039 Experimental and Theoretical Mass Transfer Studies of Pure Carbondioxide Absorption in Sodium Hydroxide in Millichannels
Authors: A. Durgadevi, S. Pushpavanam
Abstract:
For the past several decades, CO2 levels have been dramatically increasing in the atmosphere due to the man-made emissions such as fossil fuel-fired power plants. With the increase in CO2 emissions, CO2 concentration in the atmosphere has increased resulting in global warming. This shows the need to study different ways to capture the emitted CO2 directly from the exhausts of power plants or atmosphere. There are several ways to remove CO2, such as absorption into a liquid solvent, adsorption into a solid, cryogenic separation, permeation through membranes and photochemical conversion. In most industries, the absorption of CO2 in chemical solvents (in absorption towers) is used for CO2 capture. In these towers, the mass transfer along with chemical reactions take place between the gas and liquid phase. This helps in the separation of CO2 from other gases. It is important to understand these processes in detail. These flow patterns are difficult to maintain in large scale industrial absorbers. So to get accurate information controlled gas-liquid absorption experiments are carried out in milli-channels in this work under controlled atmosphere. The absorption experiments of CO2 in varying concentrations of sodium hydroxide solution are carried out in T-junction glass milli-channels with a circular cross section (inner diameter of 2mm). The gas and liquid flow rates are controlled by a mass flow controller (MFC) and a Harvard syringe pump respectively. The slug flow in the channel is recorded using a camera and the videos are analysed. The gas slug of pure CO2 is found to decrease in size along the length of the channel due to absorption of gas in the liquid. This is also captured with the model developed and the mass transfer characteristics are studied. The pressure drop across the channel is determined by sum of the pressure drops from the gas slugs and the liquid plugs. A dimensionless correlation for the mass transfer coefficient is developed in terms of Sherwood number and compared with the existing correlations in the literature. They are found to be in close agreement with each other. In this case, due to the presence of chemical reaction, the enhancement of mass transfer is obtained. This is quantified with the help of an enhancement factor.Keywords: absorption, enhancement factor, mass transfer coefficient, Sherwood number
Procedia PDF Downloads 1783038 Biodegradation Effects onto Source Identification of Diesel Fuel Contaminated Soils
Authors: Colin S. Chen, Chien-Jung Tien, Hsin-Jan Huang
Abstract:
For weathering studies, the change of chemical constituents by biodegradation effect in diesel-contaminated soils are important factors to be considered, especially when there is a prolonged period of weathering processes. The objective was to evaluate biodegradation effects onto hydrocarbon fingerprinting and distribution patterns of diesel fuels, fuel source screening and differentiation, source-specific marker compounds, and diagnostic ratios of diesel fuel constituents by laboratory and field studies. Biodegradation processes of diesel contaminated soils were evaluated by experiments lasting for 15 and 12 months, respectively. The degradation of diesel fuel in top soils was affected by organic carbon content and biomass of microorganisms in soils. Higher depletion of total petroleum hydrocarbon (TPH), n-alkanes, and polynuclear aromatic hydrocarbons (PAHs) and their alkyl homologues was observed in soils containing higher organic carbon content and biomass. Decreased ratio of selected isoprenoids (i.e., pristane (Pr) and phytane (Ph)) including n-C17/pristane and n-C18/phytane was observed. The ratio of pristane/phytane was remained consistent for a longer period of time. At the end of the experimental period, a decrease of pristane/phytane was observed. Biomarker compounds of bicyclic sesquiterpanes (BS) were less susceptible to the effects of biodegradation. The ratios of characteristic factors such as C15 sesquiterpane/ 8β(H)-drimane (BS3/BS5), C15 sesquiterpane/ 8β(H)-drimane (BS4/BS5), 8β(H)-drimane/8β(H)-homodrimane (BS5/BS10), and C15 sesquiterpane/8β(H)-homodrimane (BS3/BS10) could be adopted for source identification of diesel fuels in top soil. However, for biodegradation processes lasted for six months but shorter than nine months, only BS3/BS5 and BS3/BS10 could be distinguished in two diesel fuels. In subsoil experiments (contaminated soil located 50 cm below), the ratios of characteristic factors including BS3/BS5, BS4/BS5, and BS5/BS10 were valid for source identification of two diesel fuels for nine month biodegradation. At the early stage of contamination, biomass of soil decreased significantly. However, 6 and 7 dominant species were found in soils in top soil experiments, respectively. With less oxygen and nutrients in subsoil, less biomass of microorganisms was observed in subsoils. Only 2 and 4 diesel-degrading species of microorganisms were identified in two soils, respectively. Parameters of double ratio such as fluorene/C1-fluorene: C2-phenanthrene/C3-phenanthrene (C0F/C1F:C2P/C3P) in both top and subsoil, C2-naphthalene/C2-phenanthrene: C1-phenanthrene/C3-phenanthrene (C2N/C2P:C1P/C3P), and C1-phenanthrene/C1-fluorene: C3-naphthalene/C3-phenanthrene (C1P/C1F:C3N/C3P) in subsoil could serve as forensic indicators in diesel contaminated sites. BS3/BS10:BS4/BS5 could be used in 6 to 9 months of biodegradation processes. Results of principal component analysis (PCA) indicated that source identification of diesel fuels in top soil could only be perofrmed for weathering process less than 6 months. For subsoil, identification can be conducted for weathering process less than 9 months. Ratio of isoprenoids (pristane and phytane) and PAHs might be affected by biodegradation in spilled sites. The ratios of bicyclic sesquiterpanes could serve as forensic indicators in diesel-contaminated soils. Finally, source identification was attemped for samples collected from different fuel contaminated sites by using the unique pattern of sesquiterpanes. It was anticipated that the information generated from this study would be adopted by decision makers to evaluate the liability of cleanup in diesel contaminated sites.Keywords: biodegradation, diagnostic ratio, diesel fuel, environmental forensics
Procedia PDF Downloads 2283037 Anaerobic Co-digestion of the Halophyte Salicornia Ramosissima and Pig Manure in Lab-Scale Batch and Semi-continuous Stirred Tank Reactors: Biomethane Production and Reactor Performance
Authors: Aadila Cayenne, Hinrich Uellendahl
Abstract:
Optimization of the anaerobic digestion (AD) process of halophytic plants is essential as the biomass contains a high salt content that can inhibit the AD process. Anaerobic co-digestion, together with manure, can resolve the inhibitory effects of saline biomass in order to dilute the salt concentration and establish favorable conditions for the microbial consortia of the AD process. The present laboratory study investigated the co-digestion of S. ramosissima (Sram), and pig manure (PM) in batch and semi-continuous stirred tank reactors (CSTR) under mesophilic (38oC) conditions. The 0.5L batch reactor experiments were in mono- and co-digestion of Sram: PM using different percent volatile solid (VS) based ratios (0:100, 15:85, 25:75, 35:65, 50:50, 100:0) with an inoculum to substate (I/R) ratio of 2. Two 5L CSTR systems (R1 and R2) were operated for 133 days with a feed of PM in a control reactor (R1) and with a co-digestion feed in an increasing Sram VS ratio of Sram: PM of 15:85, 25:75, 35:65 in reactor R2 at an organic loading rate (OLR) of 2 gVS/L/d and hydraulic retention time (HRT) of 20 days. After a start-up phase of 8 weeks for both reactors R1 and R2 with PM feed alone, the halophyte biomass Sram was added to the feed of R2 in an increasing ratio of 15 – 35 %VS Sram over an 11-week period. The process performance was monitored by pH, total solid (TS), VS, total nitrogen (TN), ammonium-nitrogen (NH4 – N), volatile fatty acids (VFA), and biomethane production. In the batch experiments, biomethane yields of 423, 418, 392, 365, 315, and 214 mL-CH4/gVS were achieved for mixtures of 0:100, 15:85, 25:75, 35:65, 50:50, 100:0 %VS Sram: PM, respectively. In the semi-continuous reactor processes, the average biomethane yields were 235, 387, and 365 mL-CH4/gVS for the phase of a co-digestion feed ratio in R2 of 15:85, 25:75, and 35:65 %VS Sram: PM, respectively. The methane yield of PM alone in R1 was in the corresponding phases on average 260, 388, and 446 mL-CH4/gVS. Accordingly, in the continuous AD process, the methane yield of the halophyte Sram was highest at 386 mL-CH4/gVS in the co-digestion ratio of 25:75%VS Sram: PM and significantly lower at 15:85 %VS Sram: PM (100 mL-CH4/gVS) and at 35:65 %VS Sram (214 mL-CH4/gVS). The co-digestion process showed no signs of inhibition at 2 – 4 g/L NH4 – N, 3.5 – 4.5 g/L TN, and total VFA of 0.45 – 2.6 g/L (based on Acetic, Propionic, Butyric and Valeric acid). This study demonstrates that a stable co-digestion process of S. ramosissima and pig manure can be achieved with a feed of 25%VS Sram at HRT of 20 d and OLR of 2 gVS/L/d.Keywords: anaerobic co-digestion, biomethane production, halophytes, pig manure, salicornia ramosissima
Procedia PDF Downloads 1543036 Experience of the Formation of Professional Competence of Students of IT-Specialties
Authors: B. I. Zhumagaliyev, L. Sh. Balgabayeva, G. S. Nabiyeva, B. A. Tulegenova, P. Oralkhan, B. S. Kalenova, S. S. Akhmetov
Abstract:
The article describes an approach to build competence in research of Bachelor and Master, which is now an important feature of modern specialist in the field of engineering. Provides an example of methodical teaching methods with the research aspect, is including the formulation of the problem, the method of conducting experiments, analysis of the results. Implementation of methods allows the student to better consolidate their knowledge and skills at the same time to get research. Knowledge on the part of the media requires some training in the subject area and teaching methods.Keywords: professional competence, model of it-specialties, teaching methods, educational technology, decision making
Procedia PDF Downloads 4373035 Exploring Nanoformulations for Therapeutic Induction of Necroptosis
Authors: Tianjiao Chu, Carla Rios Luci, Christy Maksoudian, Ara Sargsian, Bella B. Manshian, Stefaan J. Soenen
Abstract:
Nanomaterials have gained high interest in their use as potent anticancer agents. Apart from delivering chemotherapeutic agents in order to reduce off-target effects, molecular agents have also been widely explored. The advances in our understanding of cell biology and cell death mechanisms1 has generated a broad library of potential therapeutic targets by siRNA, mRNA, or pDNA complexes. In the present study, we explore the ability of pDNA-polyplexes to induce tumor-specific necroptosis. This results in a cascade of effects, where immunogenic cell death potentiates anti-tumor immune responses and results in an influx of dendritic cells and cytotoxic T cells, rendering the tumor more amenable to immune checkpoint inhibition. This study aims to explore whether the induction of necroptosis in a subpopulation of tumor cells can be used to potentiate immune checkpoint inhibition studies.Keywords: nanoparticle, MLKL, necroptosis, immunotherapy
Procedia PDF Downloads 1393034 Investigation of Riprap Stability on Roughness Bridge Pier in River Bend
Authors: A. Alireza Masjedi, B. Amir Taeedi
Abstract:
In this research, by placing the two cylindrical piers without roughness and with roughness with riprap around its, they proceeded to a series of tests. Experiments were done by three relative diameters of riprap with density 2.1 and one rate of discharge 27 lit/s under pure water condition. In each experiment, flow depth measured in terms of failure threshold then stability number calculated by using data obtained. The results of the research showed that the riprap stability in pier with roughness is more pier without roughness because of the pier with roughness is sharp-pointed and reduced horseshoe vortex.Keywords: riprap stability, roughness, river bend, froude number
Procedia PDF Downloads 3563033 Effect of Riprap Stability on Roughness Bridge Pier in River Bend
Authors: Alireza Masjedi, Amir Taeedi
Abstract:
In this research, by placing the two cylindrical piers without roughness and with roughness with riprap around its, they proceeded to a series of tests. Experiments were done by three relative diameters of riprap with density 2.1 and one rate of discharge 27 lit/s under pure water condition. In each experiment, flow depth measured in terms of failure threshold then stability number calculated by using data obtained. The results of the research showed that the riprap stability in pier with roughness is more pier without roughness because of the pier with roughness is sharp-pointed and reduced horseshoe vortex.Keywords: riprap stability, roughness, river bend, froude number
Procedia PDF Downloads 3543032 Mathematical Modeling of Avascular Tumor Growth and Invasion
Authors: Meitham Amereh, Mohsen Akbari, Ben Nadler
Abstract:
Cancer has been recognized as one of the most challenging problems in biology and medicine. Aggressive tumors are a lethal type of cancers characterized by high genomic instability, rapid progression, invasiveness, and therapeutic resistance. Their behavior involves complicated molecular biology and consequential dynamics. Although tremendous effort has been devoted to developing therapeutic approaches, there is still a huge need for new insights into the dark aspects of tumors. As one of the key requirements in better understanding the complex behavior of tumors, mathematical modeling and continuum physics, in particular, play a pivotal role. Mathematical modeling can provide a quantitative prediction on biological processes and help interpret complicated physiological interactions in tumors microenvironment. The pathophysiology of aggressive tumors is strongly affected by the extracellular cues such as stresses produced by mechanical forces between the tumor and the host tissue. During the tumor progression, the growing mass displaces the surrounding extracellular matrix (ECM), and due to the level of tissue stiffness, stress accumulates inside the tumor. The produced stress can influence the tumor by breaking adherent junctions. During this process, the tumor stops the rapid proliferation and begins to remodel its shape to preserve the homeostatic equilibrium state. To reach this, the tumor, in turn, upregulates epithelial to mesenchymal transit-inducing transcription factors (EMT-TFs). These EMT-TFs are involved in various signaling cascades, which are often associated with tumor invasiveness and malignancy. In this work, we modeled the tumor as a growing hyperplastic mass and investigated the effects of mechanical stress from surrounding ECM on tumor invasion. The invasion is modeled as volume-preserving inelastic evolution. In this framework, principal balance laws are considered for tumor mass, linear momentum, and diffusion of nutrients. Also, mechanical interactions between the tumor and ECM is modeled using Ciarlet constitutive strain energy function, and dissipation inequality is utilized to model the volumetric growth rate. System parameters, such as rate of nutrient uptake and cell proliferation, are obtained experimentally. To validate the model, human Glioblastoma multiforme (hGBM) tumor spheroids were incorporated inside Matrigel/Alginate composite hydrogel and was injected into a microfluidic chip to mimic the tumor’s natural microenvironment. The invasion structure was analyzed by imaging the spheroid over time. Also, the expression of transcriptional factors involved in invasion was measured by immune-staining the tumor. The volumetric growth, stress distribution, and inelastic evolution of tumors were predicted by the model. Results showed that the level of invasion is in direct correlation with the level of predicted stress within the tumor. Moreover, the invasion length measured by fluorescent imaging was shown to be related to the inelastic evolution of tumors obtained by the model.Keywords: cancer, invasion, mathematical modeling, microfluidic chip, tumor spheroids
Procedia PDF Downloads 1133031 Effect of Interaction between Different Concentrations of Colchicine, Time Duration and Two Verities of Crepis capillaris on Chromosome Polyploidy in vitro Culture
Authors: Mosleh M. S. Duhoky, Payman A. A. Zibari
Abstract:
These experiments were conducted at Tissue Culture Laboratory/ Faculty of Agriculture and Forestry/ University of Duhok during the period from January 2011 to May 2013. The objectives of this study were to study the effects of interaction between three different factors on percentage of polyploidy of Crepis capillaris by using Tissue culture technology. Concerning the data it is obvious that shaking of Crepis capillaris with 2B chromosome with 0.15 mM for ten days inscribed a high percentage of polyploidy within most fifteen passages.Keywords: crepis capillaris, 2B chromosome, tissue culture, polyploidy
Procedia PDF Downloads 352