Search results for: bi-level optimization model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18910

Search results for: bi-level optimization model

18340 Analysis of Energy Planning and Optimization with Microgrid System in Dawei Region

Authors: Hninn Thiri Naing

Abstract:

In Myanmar, there are many regions that are far away from the national grid. For these areas, isolated regional micro-grids are one of the solutions. The study area in this paper is also operating in such way. The main difficulty in such regions is the high cost of electrical energy. This paper will be approached to cost-effective or cost-optimization by energy planning with renewable energy resources and natural gas. Micro-grid will be set up for performance in the Dawei region since it is economic zone in lower Myanmar and so far from national grids. The required metrological and geographical data collections are done. Currently, the status is electric unit rate is higher than the other. For microgrid planning and optimization, Homer Pro-software is employed in this research.

Keywords: energy planning, renewable energy, homer pro, cost of energy

Procedia PDF Downloads 129
18339 Mechanical Characterization of Porcine Skin with the Finite Element Method Based Inverse Optimization Approach

Authors: Djamel Remache, Serge Dos Santos, Michael Cliez, Michel Gratton, Patrick Chabrand, Jean-Marie Rossi, Jean-Louis Milan

Abstract:

Skin tissue is an inhomogeneous and anisotropic material. Uniaxial tensile testing is one of the primary testing techniques for the mechanical characterization of skin at large scales. In order to predict the mechanical behavior of materials, the direct or inverse analytical approaches are often used. However, in case of an inhomogeneous and anisotropic material as skin tissue, analytical approaches are not able to provide solutions. The numerical simulation is thus necessary. In this work, the uniaxial tensile test and the FEM (finite element method) based inverse method were used to identify the anisotropic mechanical properties of porcine skin tissue. The uniaxial tensile experiments were performed using Instron 8800 tensile machine®. The uniaxial tensile test was simulated with FEM, and then the inverse optimization approach (or the inverse calibration) was used for the identification of mechanical properties of the samples. Experimentally results were compared to finite element solutions. The results showed that the finite element model predictions of the mechanical behavior of the tested skin samples were well correlated with experimental results.

Keywords: mechanical skin tissue behavior, uniaxial tensile test, finite element analysis, inverse optimization approach

Procedia PDF Downloads 408
18338 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning

Procedia PDF Downloads 115
18337 Dosimetric Comparison of Conventional Optimization Methods with Inverse Planning Simulated Annealing Technique

Authors: Shraddha Srivastava, N. K. Painuly, S. P. Mishra, Navin Singh, Muhsin Punchankandy, Kirti Srivastava, M. L. B. Bhatt

Abstract:

Various optimization methods used in interstitial brachytherapy are based on dwell positions and dwell weights alteration to produce dose distribution based on the implant geometry. Since these optimization schemes are not anatomy based, they could lead to deviations from the desired plan. This study was henceforth carried out to compare anatomy-based Inverse Planning Simulated Annealing (IPSA) optimization technique with graphical and geometrical optimization methods in interstitial high dose rate brachytherapy planning of cervical carcinoma. Six patients with 12 CT data sets of MUPIT implants in HDR brachytherapy of cervical cancer were prospectively studied. HR-CTV and organs at risk (OARs) were contoured in Oncentra treatment planning system (TPS) using GYN GEC-ESTRO guidelines on cervical carcinoma. Three sets of plans were generated for each fraction using IPSA, graphical optimization (GrOPT) and geometrical optimization (GOPT) methods. All patients were treated to a dose of 20 Gy in 2 fractions. The main objective was to cover at least 95% of HR-CTV with 100% of the prescribed dose (V100 ≥ 95% of HR-CTV). IPSA, GrOPT, and GOPT based plans were compared in terms of target coverage, OAR doses, homogeneity index (HI) and conformity index (COIN) using dose-volume histogram (DVH). Target volume coverage (mean V100) was found to be 93.980.87%, 91.341.02% and 85.052.84% for IPSA, GrOPT and GOPT plans respectively. Mean D90 (minimum dose received by 90% of HR-CTV) values for IPSA, GrOPT and GOPT plans were 10.19 ± 1.07 Gy, 10.17 ± 0.12 Gy and 7.99 ± 1.0 Gy respectively, while D100 (minimum dose received by 100% volume of HR-CTV) for IPSA, GrOPT and GOPT plans was 6.55 ± 0.85 Gy, 6.55 ± 0.65 Gy, 4.73 ± 0.14 Gy respectively. IPSA plans resulted in lower doses to the bladder (D₂

Keywords: cervical cancer, HDR brachytherapy, IPSA, MUPIT

Procedia PDF Downloads 187
18336 Optimizing Scribe Resourcing to Improve Hospitalist Workloads

Authors: Ahmed Hamzi, Bryan Norman

Abstract:

Having scribes help document patient records in electronic health record systems can improve hospitalists’ productivity. But hospitals need to determine the optimum number of scribes to hire to maximize scribe cost effectiveness. Scribe attendance uncertainty due to planned and unplanned absences is a primary challenge. This paper presents simulation and analytical models to determine the optimum number of scribes for a hospital to hire. Scribe staffing practices vary from one context to another; different staffing scenarios are considered where having extra attending scribes provides or does not provide additional value and utilizing on-call scribes to fill in for potentially absent scribes. These staffing scenarios are assessed for different scribe revenue ratios (ratio of the value of the scribe relative to scribe costs) ranging from 100% to 300%. The optimum solution depends on the absenteeism rate, revenue ratio, and desired service level. The analytical model obtains solutions easier and faster than the simulation model, but the simulation model is more accurate. Therefore, the analytical model’s solutions are compared with the simulation model’s solutions regarding both the number of scribes hired and cost-effectiveness. Additionally, an Excel tool has been developed to facilitate decision-makers in easily obtaining solutions using the analytical model.

Keywords: hospitalists, workload, optimization cost, economic analysis

Procedia PDF Downloads 45
18335 A Weighted Sum Particle Swarm Approach (WPSO) Combined with a Novel Feasibility-Based Ranking Strategy for Constrained Multi-Objective Optimization of Compact Heat Exchangers

Authors: Milad Yousefi, Moslem Yousefi, Ricarpo Poley, Amer Nordin Darus

Abstract:

Design optimization of heat exchangers is a very complicated task that has been traditionally carried out based on a trial-and-error procedure. To overcome the difficulties of the conventional design approaches especially when a large number of variables, constraints and objectives are involved, a new method based on a well-stablished evolutionary algorithm, particle swarm optimization (PSO), weighted sum approach and a novel constraint handling strategy is presented in this study. Since, the conventional constraint handling strategies are not effective and easy-to-implement in multi-objective algorithms, a novel feasibility-based ranking strategy is introduced which is both extremely user-friendly and effective. A case study from industry has been investigated to illustrate the performance of the presented approach. The results show that the proposed algorithm can find the near pareto-optimal with higher accuracy when it is compared to conventional non-dominated sorting genetic algorithm II (NSGA-II). Moreover, the difficulties of a trial-and-error process for setting the penalty parameters is solved in this algorithm.

Keywords: Heat exchanger, Multi-objective optimization, Particle swarm optimization, NSGA-II Constraints handling.

Procedia PDF Downloads 555
18334 Development of a General Purpose Computer Programme Based on Differential Evolution Algorithm: An Application towards Predicting Elastic Properties of Pavement

Authors: Sai Sankalp Vemavarapu

Abstract:

This paper discusses the application of machine learning in the field of transportation engineering for predicting engineering properties of pavement more accurately and efficiently. Predicting the elastic properties aid us in assessing the current road conditions and taking appropriate measures to avoid any inconvenience to commuters. This improves the longevity and sustainability of the pavement layer while reducing its overall life-cycle cost. As an example, we have implemented differential evolution (DE) in the back-calculation of the elastic modulus of multi-layered pavement. The proposed DE global optimization back-calculation approach is integrated with a forward response model. This approach treats back-calculation as a global optimization problem where the cost function to be minimized is defined as the root mean square error in measured and computed deflections. The optimal solution which is elastic modulus, in this case, is searched for in the solution space by the DE algorithm. The best DE parameter combinations and the most optimum value is predicted so that the results are reproducible whenever the need arises. The algorithm’s performance in varied scenarios was analyzed by changing the input parameters. The prediction was well within the permissible error, establishing the supremacy of DE.

Keywords: cost function, differential evolution, falling weight deflectometer, genetic algorithm, global optimization, metaheuristic algorithm, multilayered pavement, pavement condition assessment, pavement layer moduli back calculation

Procedia PDF Downloads 164
18333 A New Optimization Algorithm for Operation of a Microgrid

Authors: Sirus Mohammadi, Rohala Moghimi

Abstract:

The main advantages of microgrids are high energy efficiency through the application of Combined Heat and Power (CHP), high quality and reliability of the delivered electric energy and environmental and economic advantages. This study presents an energy management system (EMS) to optimize the operation of the microgrid (MG). In this paper an Adaptive Modified Firefly Algorithm (AMFA) is presented for optimal operation of a typical MG with renewable energy sources (RESs) accompanied by a back-up Micro-Turbine/Fuel Cell/Battery hybrid power source to level the power mismatch or to store the energy surplus when it’s needed. The problem is formulated as a nonlinear constraint problem to minimize the total operating cost. The management of Energy storage system (ESS), economic load dispatch and operation optimization of distributed generation (DG) are simplified into a single-object optimization problem in the EMS. The proposed algorithm is tested on a typical grid-connected MG including WT/PV/Micro Turbine/Fuel Cell and Energy Storage Devices (ESDs) then its superior performance is compared with those from other evolutionary algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Fuzzy Self Adaptive PSO (FSAPSO), Chaotic Particle PSO (CPSO), Adaptive Modified PSO (AMPSO), and Firefly Algorithm (FA).

Keywords: microgrid, operation management, optimization, firefly algorithm (AMFA)

Procedia PDF Downloads 341
18332 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination

Authors: N. Santatriniaina, J. Deseure, T. Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana

Abstract:

Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 mm is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.

Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization

Procedia PDF Downloads 506
18331 Analyzing Test Data Generation Techniques Using Evolutionary Algorithms

Authors: Arslan Ellahi, Syed Amjad Hussain

Abstract:

Software Testing is a vital process in software development life cycle. We can attain the quality of software after passing it through software testing phase. We have tried to find out automatic test data generation techniques that are a key research area of software testing to achieve test automation that can eventually decrease testing time. In this paper, we review some of the approaches presented in the literature which use evolutionary search based algorithms like Genetic Algorithm, Particle Swarm Optimization (PSO), etc. to validate the test data generation process. We also look into the quality of test data generation which increases or decreases the efficiency of testing. We have proposed test data generation techniques for model-based testing. We have worked on tuning and fitness function of PSO algorithm.

Keywords: search based, evolutionary algorithm, particle swarm optimization, genetic algorithm, test data generation

Procedia PDF Downloads 190
18330 RBF Modelling and Optimization Control for Semi-Batch Reactors

Authors: Magdi M. Nabi, Ding-Li Yu

Abstract:

This paper presents a neural network based model predictive control (MPC) strategy to control a strongly exothermic reaction with complicated nonlinear kinetics given by Chylla-Haase polymerization reactor that requires a very precise temperature control to maintain product uniformity. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. Such a process usually controlled by conventional cascade control, it provides a robust operation, but often lacks accuracy concerning the required strict temperature tolerances. The predictive control strategy based on the RBF neural model is applied to solve this problem to achieve set-point tracking of the reactor temperature against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the desired reaction temperature.

Keywords: Chylla-Haase reactor, RBF neural network modelling, model predictive control, semi-batch reactors

Procedia PDF Downloads 468
18329 Patient Scheduling Improvement in a Cancer Treatment Clinic Using Optimization Techniques

Authors: Maryam Haghi, Ivan Contreras, Nadia Bhuiyan

Abstract:

Chemotherapy is one of the most popular and effective cancer treatments offered to patients in outpatient oncology centers. In such clinics, patients first consult with an oncologist and the oncologist may prescribe a chemotherapy treatment plan for the patient based on the blood test results and the examination of the health status. Then, when the plan is determined, a set of chemotherapy and consultation appointments should be scheduled for the patient. In this work, a comprehensive mathematical formulation for planning and scheduling different types of chemotherapy patients over a planning horizon considering blood test, consultation, pharmacy and treatment stages has been proposed. To be more realistic and to provide an applicable model, this study is focused on a case study related to a major outpatient cancer treatment clinic in Montreal, Canada. Comparing the results of the proposed model with the current practice of the clinic under study shows significant improvements regarding different performance measures. These major improvements in the patients’ schedules reveal that using optimization techniques in planning and scheduling of patients in such highly demanded cancer treatment clinics is an essential step to provide a good coordination between different involved stages which ultimately increases the efficiency of the entire system and promotes the staff and patients' satisfaction.

Keywords: chemotherapy patients scheduling, integer programming, integrated scheduling, staff balancing

Procedia PDF Downloads 175
18328 Optimisation of B2C Supply Chain Resource Allocation

Authors: Firdaous Zair, Zoubir Elfelsoufi, Mohammed Fourka

Abstract:

The allocation of resources is an issue that is needed on the tactical and operational strategic plan. This work considers the allocation of resources in the case of pure players, manufacturers and Click & Mortars that have launched online sales. The aim is to improve the level of customer satisfaction and maintaining the benefits of e-retailer and of its cooperators and reducing costs and risks. Our contribution is a decision support system and tool for improving the allocation of resources in logistics chains e-commerce B2C context. We first modeled the B2C chain with all operations that integrates and possible scenarios since online retailers offer a wide selection of personalized service. The personalized services that online shopping companies offer to the clients can be embodied in many aspects, such as the customizations of payment, the distribution methods, and after-sales service choices. In addition, every aspect of customized service has several modes. At that time, we analyzed the optimization problems of supply chain resource allocation in customized online shopping service mode, which is different from the supply chain resource allocation under traditional manufacturing or service circumstances. Then we realized an optimization model and algorithm for the development based on the analysis of the allocation of the B2C supply chain resources. It is a multi-objective optimization that considers the collaboration of resources in operations, time and costs but also the risks and the quality of services as well as dynamic and uncertain characters related to the request.

Keywords: e-commerce, supply chain, B2C, optimisation, resource allocation

Procedia PDF Downloads 272
18327 Post-Anesthetic Recovery: The Best Moment to Apply Positive Pressure in Airway in Postoperative Bariatric Surgery

Authors: Eli Maria Pazzianotto-Forti, Patrícia Brigatto, Letícia Baltieri, Carolina Moraes Da Costa, Maura Rigoldi Simoes Da Rocha, Irineu Rasera Jr

Abstract:

The application of positive pressure in airway can contribute to the restoration of lung volumes, capacities and prevent respiratory complications. The aim was to investigate the use of Bilevel Positive Airway Pressure (BIPAP) in morbidly obese in two moments in postoperative bariatric surgery: In the post-anesthetic recovery (PAR) and on the 1st postoperative day (1stPO). Twenty morbidly obese, aged between 25 and 55 years, underwent pulmonary function test and chest X-ray preoperatively and on the day of discharge (2nd day after surgery). They were randomly allocated in groups. GPAR: received BIPAP treatment in PAR, for an hour and G1stPO: received BIPAP for one hour, on the 1stPO. There were significant reductions in slow vital capacity (SVC) (p=0.0007), inspiratory reserve volume (IRV) (p=0.0016) and forced vital capacity (FVC) (p=0.0013) in the postoperative in GPAR and the expiratory reserve volume (ERV) remained (p=0.4446). In the G1stPO, there were significant reductions for: SVC p=<0.0001, ERV p=0.0191, IRV p= 0.0026 and FVC p=<0.0001. Comparing between groups, the SVC (p=0.0027) and FVC (p=0.0028) showed significant difference between the treatments. However, the GPAR showed fewer declines of these capacities. To the ERV (p= 0.1646) and IRV (p=0.3973) there was no significant difference between groups. The atelectasis prevalence was 10% for the GPAR and 30% for G1stPO, with significant difference between the proportions (p = 0.0027). The lowest reduction in SVC and FVC happens when positive pressure is applied in PAR. Thus, the use of BIPAP in the PAR can promote a restoration of ERV and contribute to the reduction of atelectasis. FAPESP 2013/06334-8.

Keywords: atelectasis, bariatric surgery, physiotherapy, pulmonary function, positive pressure

Procedia PDF Downloads 404
18326 Planning a Supply Chain with Risk and Environmental Objectives

Authors: Ghanima Al-Sharrah, Haitham M. Lababidi, Yusuf I. Ali

Abstract:

The main objective of the current work is to introduce sustainability factors in optimizing the supply chain model for process industries. The supply chain models are normally based on purely economic considerations related to costs and profits. To account for sustainability, two additional factors have been introduced; environment and risk. A supply chain for an entire petroleum organization has been considered for implementing and testing the proposed optimization models. The environmental and risk factors were introduced as indicators reflecting the anticipated impact of the optimal production scenarios on sustainability. The aggregation method used in extending the single objective function to multi-objective function is proven to be quite effective in balancing the contribution of each objective term. The results indicate that introducing sustainability factor would slightly reduce the economic benefit while improving the environmental and risk reduction performances of the process industries.

Keywords: environmental indicators, optimization, risk, supply chain

Procedia PDF Downloads 351
18325 Construction Time - Cost Trade-Off Analysis Using Fuzzy Set Theory

Authors: V. S. S. Kumar, B. Vikram, G. C. S. Reddy

Abstract:

Time and cost are the two critical objectives of construction project management and are not independent but intricately related. Trade-off between project duration and cost are extensively discussed during project scheduling because of practical relevance. Generally when the project duration is compressed, the project calls for an increase in labor and more productive equipments, which increases the cost. Thus, the construction time-cost optimization is defined as a process to identify suitable construction activities for speeding up to attain the best possible savings in both time and cost. As there is hidden tradeoff relationship between project time and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of compressing the schedule. Different combinations of duration and cost for the activities associated with the project determine the best set in the time-cost optimization. Therefore, the contractors need to select the best combination of time and cost to perform each activity, all of which will ultimately determine the project duration and cost. In this paper, the fuzzy set theory is used to model the uncertainties in the project environment for time-cost trade off analysis.

Keywords: fuzzy sets, uncertainty, qualitative factors, decision making

Procedia PDF Downloads 652
18324 Tuning Fractional Order Proportional-Integral-Derivative Controller Using Hybrid Genetic Algorithm Particle Swarm and Differential Evolution Optimization Methods for Automatic Voltage Regulator System

Authors: Fouzi Aboura

Abstract:

The fractional order proportional-integral-derivative (FOPID) controller or fractional order (PIλDµ) is a proportional-integral-derivative (PID) controller where integral order (λ) and derivative order (µ) are fractional, one of the important application of classical PID is the Automatic Voltage Regulator (AVR).The FOPID controller needs five parameters optimization while the design of conventional PID controller needs only three parameters to be optimized. In our paper we have proposed a comparison between algorithms Differential Evolution (DE) and Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) ,we have studied theirs characteristics and performance analysis to find an optimum parameters of the FOPID controller, a new objective function is also proposed to take into account the relation between the performance criteria’s.

Keywords: FOPID controller, fractional order, AVR system, objective function, optimization, GA, PSO, HGAPSO

Procedia PDF Downloads 90
18323 Improvement Image Summarization using Image Processing and Particle swarm optimization Algorithm

Authors: Hooman Torabifard

Abstract:

In the last few years, with the progress of technology and computers and artificial intelligence entry into all kinds of scientific and industrial fields, the lifestyles of human life have changed and in general, the way of humans live on earth has many changes and development. Until now, some of the changes has occurred in the context of digital images and image processing and still continues. However, besides all the benefits, there have been disadvantages. One of these disadvantages is the multiplicity of images with high volume and data; the focus of this paper is on improving and developing a method for summarizing and enhancing the productivity of these images. The general method used for this purpose in this paper consists of a set of methods based on data obtained from image processing and using the PSO (Particle swarm optimization) algorithm. In the remainder of this paper, the method used is elaborated in detail.

Keywords: image summarization, particle swarm optimization, image threshold, image processing

Procedia PDF Downloads 133
18322 Reallocation of Bed Capacity in a Hospital Combining Discrete Event Simulation and Integer Linear Programming

Authors: Muhammed Ordu, Eren Demir, Chris Tofallis

Abstract:

The number of inpatient admissions in the UK has been significantly increasing over the past decade. These increases cause bed occupancy rates to exceed the target level (85%) set by the Department of Health in England. Therefore, hospital service managers are struggling to better manage key resource such as beds. On the other hand, this severe demand pressure might lead to confusion in wards. For example, patients can be admitted to the ward of another inpatient specialty due to lack of resources (i.e., bed). This study aims to develop a simulation-optimization model to reallocate the available number of beds in a mid-sized hospital in the UK. A hospital simulation model was developed to capture the stochastic behaviours of the hospital by taking into account the accident and emergency department, all outpatient and inpatient services, and the interactions between each other. A couple of outputs of the simulation model (e.g., average length of stay and revenue) were generated as inputs to be used in the optimization model. An integer linear programming was developed under a number of constraints (financial, demand, target level of bed occupancy rate and staffing level) with the aims of maximizing number of admitted patients. In addition, a sensitivity analysis was carried out by taking into account unexpected increases on inpatient demand over the next 12 months. As a result, the major findings of the approach proposed in this study optimally reallocate the available number of beds for each inpatient speciality and reveal that 74 beds are idle. In addition, the findings of the study indicate that the hospital wards will be able to cope with 14% demand increase at most in the projected year. In conclusion, this paper sheds a new light on how best to reallocate beds in order to cope with current and future demand for healthcare services.

Keywords: bed occupancy rate, bed reallocation, discrete event simulation, inpatient admissions, integer linear programming, projected usage

Procedia PDF Downloads 144
18321 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines

Authors: Kamyar Tolouei, Ehsan Moosavi

Abstract:

In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.

Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization

Procedia PDF Downloads 105
18320 Potential Opportunity and Challenge of Developing Organic Rankine Cycle Geothermal Power Plant in China Based on an Energy-Economic Model

Authors: Jiachen Wang, Dongxu Ji

Abstract:

Geothermal power generation is a mature technology with zero carbon emission and stable power output, which could play a vital role as an optimum substitution of base load technology in China’s future decarbonization society. However, the development of geothermal power plants in China is stagnated for a decade due to the underestimation of geothermal energy and insufficient favoring policy. Lack of understanding of the potential value of base-load technology and environmental benefits is the critical reason for disappointed policy support. This paper proposed a different energy-economic model to uncover the potential benefit of developing a geothermal power plant in Puer, including the value of base-load power generation, and environmental and economic benefits. Optimization of the Organic Rankine Cycle (ORC) for maximum power output and minimum Levelized cost of electricity was first conducted. This process aimed at finding the optimum working fluid, turbine inlet pressure, pinch point temperature difference and superheat degrees. Then the optimal ORC model was sent to the energy-economic model to simulate the potential economic and environmental benefits. Impact of geothermal power plants based on the scenarios of implementing carbon trade market, the direct subsidy per electricity generation and nothing was tested. In addition, a requirement of geothermal reservoirs, including geothermal temperature and mass flow rate for a competitive power generation technology with other renewables, was listed. The result indicated that the ORC power plant has a significant economic and environmental benefit over other renewable power generation technologies when implementing carbon trading market and subsidy support. At the same time, developers must locate the geothermal reservoirs with minimum temperature and mass flow rate of 130 degrees and 50 m/s to guarantee a profitable project under nothing scenarios.

Keywords: geothermal power generation, optimization, energy model, thermodynamics

Procedia PDF Downloads 68
18319 Optimal Price Points in Differential Pricing

Authors: Katerina Kormusheva

Abstract:

Pricing plays a pivotal role in the marketing discipline as it directly influences consumer perceptions, purchase decisions, and overall market positioning of a product or service. This paper seeks to expand current knowledge in the area of discriminatory and differential pricing, a main area of marketing research. The methodology includes developing a framework and a model for determining how many price points to implement in differential pricing. We focus on choosing the levels of differentiation, derive a function form of the model framework proposed, and lastly, test it empirically with data from a large-scale marketing pricing experiment of services in telecommunications.

Keywords: marketing, differential pricing, price points, optimization

Procedia PDF Downloads 93
18318 Model Predictive Control with Unscented Kalman Filter for Nonlinear Implicit Systems

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

A class of implicit systems is known as a more generalized class of systems than a class of explicit systems. To establish a control method for such a generalized class of systems, we adopt model predictive control method which is a kind of optimal feedback control with a performance index that has a moving initial time and terminal time. However, model predictive control method is inapplicable to systems whose all state variables are not exactly known. In other words, model predictive control method is inapplicable to systems with limited measurable states. In fact, it is usual that the state variables of systems are measured through outputs, hence, only limited parts of them can be used directly. It is also usual that output signals are disturbed by process and sensor noises. Hence, it is important to establish a state estimation method for nonlinear implicit systems with taking the process noise and sensor noise into consideration. To this purpose, we apply the model predictive control method and unscented Kalman filter for solving the optimization and estimation problems of nonlinear implicit systems, respectively. The objective of this study is to establish a model predictive control with unscented Kalman filter for nonlinear implicit systems.

Keywords: optimal control, nonlinear systems, state estimation, Kalman filter

Procedia PDF Downloads 202
18317 Optimization of Shear Frame Structures Applying Various Forms of Wavelet Transforms

Authors: Seyed Sadegh Naseralavi, Sohrab Nemati, Ehsan Khojastehfar, Sadegh Balaghi

Abstract:

In the present research, various formulations of wavelet transform are applied on acceleration time history of earthquake. The mentioned transforms decompose the strong ground motion into low and high frequency parts. Since the high frequency portion of strong ground motion has a minor effect on dynamic response of structures, the structure is excited by low frequency part. Consequently, the seismic response of structure is predicted consuming one half of computational time, comparing with conventional time history analysis. Towards reducing the computational effort needed in seismic optimization of structure, seismic optimization of a shear frame structure is conducted by applying various forms of mentioned transformation through genetic algorithm.

Keywords: time history analysis, wavelet transform, optimization, earthquake

Procedia PDF Downloads 234
18316 Modeling and Optimization of a Microfluidic Electrochemical Cell for the Electro-Reduction of CO₂ to CH₃OH

Authors: Barzin Rajabloo, Martin Desilets

Abstract:

First, an electrochemical model for the reduction of CO₂ into CH₃OH is developed in which mass and charge transfer, reactions at the surface of the electrodes and fluid flow of the electrolyte are considered. This mathematical model is developed in COMSOL Multiphysics® where both secondary and tertiary current distribution interfaces are coupled to consider concentrations and potentials inside different parts of the cell. Constant reaction rates are assumed as the fitted parameters to minimize the error between experimental data and modeling results. The model is validated through a comparison with experimental data in terms of faradaic efficiency for production of CH₃OH, the current density in different applied cathode potentials as well as current density in different electrolyte flow rates. The comparison between model outputs and experimental measurements shows a good agreement. The model indicates the higher hydrogen evolution in comparison with CH₃OH production as well as mass transfer limitation caused by CO₂ concentration, which are consistent with findings in the literature. After validating the model, in the second part of the study, some design parameters of the cell, such as cathode geometry and catholyte/anolyte channel widths, are modified to reach better performance and higher faradaic efficiency of methanol production.

Keywords: carbon dioxide, electrochemical reduction, methanol, modeling

Procedia PDF Downloads 109
18315 A New Evolutionary Algorithm for Multi-Objective Cylindrical Spur Gear Design Optimization

Authors: Hammoudi Abderazek

Abstract:

The present paper introduces a modified adaptive mixed differential evolution (MAMDE) to select the main geometry parameters of specific cylindrical spur gear. The developed algorithm used the self-adaptive mechanism in order to update the values of mutation and crossover factors. The feasibility rules are used in the selection phase to improve the search exploration of MAMDE. Moreover, the elitism is performed to keep the best individual found in each generation. For the constraints handling the normalization method is used to treat each constraint design equally. The finite element analysis is used to confirm the optimization results for the maximum bending resistance. The simulation results reached in this paper indicate clearly that the proposed algorithm is very competitive in precision gear design optimization.

Keywords: evolutionary algorithm, spur gear, tooth profile, meta-heuristics

Procedia PDF Downloads 131
18314 An Efficient Approach for Speed up Non-Negative Matrix Factorization for High Dimensional Data

Authors: Bharat Singh Om Prakash Vyas

Abstract:

Now a day’s applications deal with High Dimensional Data have tremendously used in the popular areas. To tackle with such kind of data various approached has been developed by researchers in the last few decades. To tackle with such kind of data various approached has been developed by researchers in the last few decades. One of the problems with the NMF approaches, its randomized valued could not provide absolute optimization in limited iteration, but having local optimization. Due to this, we have proposed a new approach that considers the initial values of the decomposition to tackle the issues of computationally expensive. We have devised an algorithm for initializing the values of the decomposed matrix based on the PSO (Particle Swarm Optimization). Through the experimental result, we will show the proposed method converse very fast in comparison to other row rank approximation like simple NMF multiplicative, and ACLS techniques.

Keywords: ALS, NMF, high dimensional data, RMSE

Procedia PDF Downloads 342
18313 Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach

Authors: Arbnor Pajaziti, Hasan Cana

Abstract:

In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results.

Keywords: robotic arm, neural network, genetic algorithm, optimization

Procedia PDF Downloads 523
18312 Two-stage Robust Optimization for Collaborative Distribution Network Design Under Uncertainty

Authors: Reza Alikhani

Abstract:

This research focuses on the establishment of horizontal cooperation among companies to enhance their operational efficiency and competitiveness. The study proposes an approach to horizontal collaboration, called coalition configuration, which involves partnering companies sharing distribution centers in a network design problem. The paper investigates which coalition should be formed in each distribution center to minimize the total cost of the network. Moreover, potential uncertainties, such as operational and disruption risks, are considered during the collaborative design phase. To address this problem, a two-stage robust optimization model for collaborative distribution network design under surging demand and facility disruptions is presented, along with a column-and-constraint generation algorithm to obtain exact solutions tailored to the proposed formulation. Extensive numerical experiments are conducted to analyze solutions obtained by the model in various scenarios, including decisions ranging from fully centralized to fully decentralized settings, collaborative versus non-collaborative approaches, and different amounts of uncertainty budgets. The results show that the coalition formation mechanism proposes some solutions that are competitive with the savings of the grand coalition. The research also highlights that collaboration increases network flexibility and resilience while reducing costs associated with demand and capacity uncertainties.

Keywords: logistics, warehouse sharing, robust facility location, collaboration for resilience

Procedia PDF Downloads 69
18311 Stimuli Responsives of Crosslinked Poly on 2-HydroxyEthyl MethAcrylate – Optimization of Parameters by Experimental Design

Authors: Tewfik Bouchaour, Salah Hamri, Yasmina Houda Bendahma, Ulrich Maschke

Abstract:

Stimuli-responsive materials based on UV crosslinked acrylic polymer networks are fabricated. A various kinds of polymeric systems, hydrophilic polymers based on 2-Hydroxyethyl methacrylate have been widely studied because of their ability to simulate biological tissues, which leads to many applications. The acrylic polymer network PHEMA developed by UV photopolymerization has been used for dye retention. For these so-called smart materials, the properties change in response to an external stimulus. In this contribution, we report the influence of some parameters (initial composition, temperature, and nature of components) in the properties of final materials. Optimization of different parameters is examined by experimental design.

Keywords: UV photo-polymerization, PHEMA, external stimulus, optimization

Procedia PDF Downloads 255