Search results for: Support Vector Machines (SVM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8250

Search results for: Support Vector Machines (SVM)

7680 Needs and Expectations of Digital Support among Parents of Children in Child Healthcare

Authors: Lotha Valan, Åsa Hörnsten, Ulf Isaksson

Abstract:

Introduction: Sweden has a national child health care program (CHCP) where all parents are offered support to raise their children and support them for lifelong health. A systematic review concludes that there is a request for guidance in using the internet effectively for the health purposes of their children. However, a study about internet use among young mothers means that the internet is not always easy to navigate for parents, and they may need support. To fill this gap and develop a digital channel to complement the child health care (CHC) for the support of parents of children within CHC, there is a demand to investigate parents' needs in relation to this purpose. Methods: The study had a qualitative approach using focus group interviews with parents. The interview data were analyzed using qualitative content analysis. Results: The main theme highlights that parents expected that a digital support channel would be something that might strengthen them toward independence concerning the care of their children in a positive way. However, they also felt that they needed personal support and that relationships with other parents and the child health care nurse were significant and meaningful. Another parental desire that emerged was that a future digital channel would facilitate and simplify access to care, and they suggested having both planned and urgent times available for parents to book. The digital channel was expected to make this possible and be a good complement to the physical contacts the traditional child healthcare currently offers. Discussion/conclusions: The parents in this study believed that digital solutions could increase their parental power in relation to the care of their children. Examples were given as nurse-led parent groups where parents with similar problems and experiences around their children could support each other and were expected to strengthen them over time. The parents stressed that a planned digital support channel also needs satisfactory solutions for both contact and response. It was suggested that there should be bookable times for both planned and urgent needs and also the possibility of rescheduling visits.

Keywords: child healthcare, parents, digital support, nursing

Procedia PDF Downloads 77
7679 The Ever-Changing Connection Among Banks and Insurers: An Examination of the Financial Standing of the Financial System

Authors: Iqra Ali

Abstract:

This study uses panel Vector Auto Regression (VAR) to analyses the dynamic link between banking and insurance activities based on the asset size of the insurance industry for 73 countries between 1980 and 2014. Assets in the insurance industry and banking activities usually have a Granger causal link, according to panel Granger-causality tests. Impulse response analyses for the entire sample show that the size of insurance assets responds favorably to a shock to the liquid liabilities and deposits of the financial system but negatively to a shock to deposit money bank assets and private credit offered by commercial banks, other financial institutions, and deposit banks. While the findings for middle- and low-income nations varied significantly, the observations for high-income countries are essentially the same. Furthermore, we find that there is a substantial interplay between banking and insurance activity in civil law nations as opposed to common law ones.

Keywords: vector autoregression, banking, insurance, Granger-causality

Procedia PDF Downloads 8
7678 Prediction of Dubai Financial Market Stocks Movement Using K-Nearest Neighbor and Support Vector Regression

Authors: Abdulla D. Alblooshi

Abstract:

The stock market is a representation of human behavior and psychology, such as fear, greed, and discipline. Those are manifested in the form of price movements during the trading sessions. Therefore, predicting the stock movement and prices is a challenging effort. However, those trading sessions produce a large amount of data that can be utilized to train an AI agent for the purpose of predicting the stock movement. Predicting the stock market price action will be advantageous. In this paper, the stock movement data of three DFM listed stocks are studied using historical price movements and technical indicators value and used to train an agent using KNN and SVM methods to predict the future price movement. MATLAB Toolbox and a simple script is written to process and classify the information and output the prediction. It will also compare the different learning methods and parameters s using metrics like RMSE, MAE, and R².

Keywords: KNN, ANN, style, SVM, stocks, technical indicators, RSI, MACD, moving averages, RMSE, MAE

Procedia PDF Downloads 171
7677 Malaria Vector Situation in Tanjung Subdistrict, West Lombok Regency, West Nusa Tenggara Province, Indonesia

Authors: Subagyo Yotopranoto, Sri Wijayanti Sulistyawati, Sukmawati Basuki, Budi Armika, Yoes Prijatna Dachlan

Abstract:

Malaria is a parasitic infectious disease that still remains a health problem in the world, including Indonesia. There is an outbreak happen at West Nusa Tenggara in 2007. A tourist spot in West Nusa Tenggara called West Lombok is mesoendemic area for malaria. Tanjung is the highest malaria morbidity subdistrict in West Lombok. Thus, the research conducted for the presence of a new species of malaria vectors, that are suspected of one factors which caused high morbidity of malaria in this region. The study was conducted in coastal and highland areas. We collected and identified Anopheles larvae from their breeding places. We also collected and identified Anopheles adult mosquitoes with outdoor cow net, indoor and outdoor human bait. In coastal area (Tembobor village), we found Anopheles vagus larvae from rivers as its breeding places. In highland area (Dasan Tengah village), we found An. subpictus from pool, lagoon, and river as its breeding places. In coastal area, with outdoor human bait, we collected An. vagus and An. subpictus adult mosquitoes. With indoor human bait, we collected An. subpictus adult mosquitoes. Whereas with outdoor cow net, we collected An. subpictus and An. maculatus, the first was more dominant. Furthermore, An subpictus strong suspected as malaria vector in coastal area. Anopheles subpictus was an anthropozoophylic mosquitoes, because it was found at indoor and outdoor places.

Keywords: malaria, vector, Tanjung, West Nusa Tenggara

Procedia PDF Downloads 363
7676 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 146
7675 A Service Evaluation Exploring the Effectiveness of a Tier 3 Weight Management Programme Offering Face-To-Face and Remote Dietetic Support

Authors: Rosemary E. Huntriss, Lucy Jones

Abstract:

Obesity and excess weight continue to be significant health problems in England. Traditional weight management programmes offer face-to-face support or group education. Remote care is recognised as a viable means of support; however, its effectiveness has not previously been evaluated in a tier 3 weight management setting. This service evaluation explored the effectiveness of online coaching, telephone support, and face-to-face support as optional management strategies within a tier 3 weight management programme. Outcome data were collected for adults with a BMI ≥ 45 or ≥ 40 with complex comorbidity who were referred to a Tier 3 weight management programme from January 2018 and had been discharged before October 2018. Following an initial 45-minute consultation with a specialist weight management dietitian, patients were offered a choice of follow-up support in the form of online coaching supported by an app (8 x 15 minutes coaching), face-to-face or telephone appointments (4 x 30 minutes). All patients were invited to a final 30-minute face-to-face assessment. The planned intervention time was between 12 and 24 weeks. Patients were offered access to adjunct face-to-face or telephone psychological support. One hundred and thirty-nine patients were referred into the programme from January 2018 and discharged before October 2018. One hundred and twenty-four patients (89%) attended their initial assessment. Out of those who attended their initial assessment, 110 patients (88.0%) completed more than half of the programme and 77 patients (61.6%) completed all sessions. The average length of the completed programme (all sessions) was 17.2 (SD 4.2) weeks. Eighty-five (68.5%) patients were coached online, 28 (22.6%) patients were supported face-to-face support, and 11 (8.9%) chose telephone support. Two patients changed from online coaching to face-to-face support due to personal preference and were included in the face-to-face group for analysis. For those with data available (n=106), average weight loss across the programme was 4.85 (SD 3.49)%; average weight loss was 4.70 (SD 3.19)% for online coaching, 4.83 (SD 4.13)% for face-to-face support, and 6.28 (SD 4.15)% for telephone support. There was no significant difference between weight loss achieved with face-to-face vs. online coaching (4.83 (SD 4.13)% vs 4.70 (SD 3.19) (p=0.87) or face-to-face vs. remote support (online coaching and telephone support combined) (4.83 (SD 4.13)% vs 4.85 (SD 3.30)%) (p=0.98). Remote support has been shown to be as effective as face-to-face support provided by a dietitian in the short-term within a tier 3 weight management setting. The completion rates were high compared with another tier 3 weight management services suggesting that offering remote support as an option may improve completion rates within a weight management service.

Keywords: dietitian, digital health, obesity, weight management

Procedia PDF Downloads 141
7674 Impact of Self-Efficacy, Resilience and Social Support on Vicarious Trauma among Clinical Psychologists, Counselors and Teachers of Special Schools

Authors: Hamna Hamid, Kashmala Zaman

Abstract:

The aim of this study was to evaluate the relationship between self-efficacy, resilience and social support among clinical psychologists, counselors and teachers of special schools. The study also assesses the gender differences on self-efficacy, resilience, social support and vicarious trauma and also vicarious trauma differences among three professions i.e. clinical psychologists, counselors and teachers of special schools. A sample of 150 women and 97 men were handed out a set questionnaire to complete: General Self-Efficacy Scale, Brief Resilience Scale, Multidimensional Scale of Perceived Social Support and Vicarious Trauma Scale. Results showed that there is significant negative correlation between self-efficacy, resilience and vicarious trauma. Women experiences higher levels of vicarious trauma as compared to men. While clinical psychologists and counselors experience higher levels of vicarious trauma as compared to teachers of special schools. Moderation effect of social support is not significant towards resilience and vicarious trauma.

Keywords: self-efficacy, resilience, vicarious trauma, social-support

Procedia PDF Downloads 75
7673 Understanding of Chinese Organisations Approach to Dementia: A Case Study of Two Community Centres and One Housing Support Service in the UK

Authors: Emily J. Winnall

Abstract:

It is understood that China has the largest population of people living with dementia in the world; however, little is known about this culturally diverse community, specifically the Chinese Communities, which has been poorly represented in past British research Literature. Further research is needed to gain a greater understanding of the support needs of caregivers caring for a relative living with dementia from the Chinese background. Dementia care and caregivers in Chinese communities are less investigated. The study is a case study of two Chinese community centers and one housing support service. Semi-structured one-to-one interviews and a pilot questionnaire were used as the methods for the study. A toolkit will also be created as a document that provides guidance and signposting to health and social care services for Chinese communities. The findings identified three main themes. Caregivers do not receive any formal support from the UK health and social services, and they felt they would have benefited from getting advice on what support they could access. Furthermore, the data also identified that Chinese organisations do not have the knowledge of dementia, to be able to support those living with dementia and their families. Also, people living with dementia and their families rarely present to Chinese organisations and UK health and social care services, meaning they are not receiving the support they are entitled to or need. Additionally, the community center would like to see workshops/courses around dementia for people from Chinese backgrounds. The study concludes that people from Chinese cultural backgrounds do not have sufficient access to support from UK health and social care services. More information needs to be published that will benefit Chinese communities.

Keywords: Chinese, Chinese organisations, Dementia, family caregivers, social care

Procedia PDF Downloads 122
7672 Development of a Web Exploration Support System Focusing on Accumulation of Search Contexts

Authors: T. Yamazaki, R. Onuma, H. Kaminaga, Y. Miyadera, S. Nakamura

Abstract:

Web exploration has increasingly diversified in accordance with the development of browsing environments on the Internet. Moreover, advanced exploration often conducted in intellectual activities such as surveys in research activities. This kind of exploration is conducted for a long period with trials and errors. In such a case, it is extremely important for a user to accumulate the search contexts and understand them. However, existing support systems were not effective enough since most systems could not handle the various factors involved in the exploration. This research aims to develop a novel system to support web exploration focusing on the accumulation of the search contexts. This paper mainly describes the outline of the system. An experiment using the system is also described. Finally, features of the system are discussed based on the results.

Keywords: web exploration context, refinement of search intention, accumulation of context, exploration support, information visualization

Procedia PDF Downloads 309
7671 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker

Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.

Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation

Procedia PDF Downloads 23
7670 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 99
7669 Ensemble-Based SVM Classification Approach for miRNA Prediction

Authors: Sondos M. Hammad, Sherin M. ElGokhy, Mahmoud M. Fahmy, Elsayed A. Sallam

Abstract:

In this paper, an ensemble-based Support Vector Machine (SVM) classification approach is proposed. It is used for miRNA prediction. Three problems, commonly associated with previous approaches, are alleviated. These problems arise due to impose assumptions on the secondary structural of premiRNA, imbalance between the numbers of the laboratory checked miRNAs and the pseudo-hairpins, and finally using a training data set that does not consider all the varieties of samples in different species. We aggregate the predicted outputs of three well-known SVM classifiers; namely, Triplet-SVM, Virgo and Mirident, weighted by their variant features without any structural assumptions. An additional SVM layer is used in aggregating the final output. The proposed approach is trained and then tested with balanced data sets. The results of the proposed approach outperform the three base classifiers. Improved values for the metrics of 88.88% f-score, 92.73% accuracy, 90.64% precision, 96.64% specificity, 87.2% sensitivity, and the area under the ROC curve is 0.91 are achieved.

Keywords: MiRNAs, SVM classification, ensemble algorithm, assumption problem, imbalance data

Procedia PDF Downloads 349
7668 Relationship Building Between Peer Support Worker and Person in Recovery in the Community-based One-to-One Peer Support Service of Mental Health Setting

Authors: Yuen Man Yan

Abstract:

Peer support has been a rising prevalent mental health service in the globe. The community-based mental health services employ persons with lived experience of mental illness to be peer support workers (PSWs) to provide peer support service to those who are in the progress of recovery (PIRs). It represents the transformation of mental health service system to a recovery-oriented and person-centered care. Literatures proved the feasibility and effectiveness of the peer support service. Researchers have attempted to explore the unique good qualities of peer support service that benefit the PIRs. Empirical researches found that the strength of the relationship between those who sought for change and the change agents positively related to the outcomes in one-to-one therapies across theoretical orientations. However, there is lack of literature on investigating the relationship building between the PSWs and PIRs in the one-to-one community-based peer support service. This study aims to identify and characterise the relationship in the community-based one-to-one peer support service from the perspectives of PSWs and PIRs; and to conceptualize the components of relationship building between PSWs and PIRs in the community-based one-to-one peer support service. The study adopted the constructivist grounded theory approach. 10 pairs of the PSWs and PIRs participated in the study. Data were collected through multiple qualitative methods, including observation of the interaction and exchange of the PSWs and PIRs in the 1ₛₜ, 3ᵣ𝒹 and 9th sessions of the community-based one-to-one peer support service; and semi-structural interview with the PSWs and PIRs separately after the 3ᵣ𝒹and 9ₜₕ session of the peer support service. This presentation is going to report the preliminary findings of the study. PSWs and PIRs identified their relationship as “life alliance”. Empathy was found to be one of key components of the relationship between the PSWs and the PIRs. Unlike the empathy, as explained by Carl Roger, in which the service provider was able to put themselves into the shoes of the service recipients as if he was the service recipients, the intensity of the empathy was much greater in the relationship between PSWs and PIRs because PSWs had the lived experience of mental illness and recovery. The dimensions of the empathy in the relationship between PSWs and PIRs was found to be multiple, not only related to the mental illness but also related to various aspects in life, like family relationship, employment, interest of life, self-esteem and etc.

Keywords: person with lived experience, peer support worker, peer support service, relationship building, therapeutic alliance, community-based mental health setting

Procedia PDF Downloads 72
7667 Teaching Basic Life Support in More Than 1000 Young School Children in 5th Grade

Authors: H. Booke, R. Nordmeier

Abstract:

Sudden cardiac arrest is sometimes eye-witnessed by kids. Mostly, their (grand-)parents are affected by sudden cardiac arrest, putting these kids under enormous psychological pressure: Although they are more than desperate to help, they feel insecure and helpless and are afraid of causing harm rather than realizing their chance to help. Even years later, they may blame themselves for not having helped their beloved ones. However, the absolute majority of school children - at least in Germany - is not educated to provide first aid. Teaching young kids (5th grade) in basic life support thus may help to save lives while washing away the kids' fear from causing harm during cardio-pulmonary resuscitation. A teaching of circulatory and respiratory (patho-)physiology, followed by hands-on training of basic life support for every single child, was offered to each school in our district. The teaching was performed by anesthesiologists, and the program was called 'kids can save lives'. However, before enrollment in this program, the entire class must have had lessons in biology with a special focus on heart and circulation as well as lung and gas exchange. More than 1.000 kids were taught and trained in basic life support, giving them the knowledge and skills to provide basic life support. This may help to reduce the rate of failure to provide first aid. Therefore, educating young kids in basic life support may not only help to save lives, but it also may help to prevent any feelings of guilt because of not having helped in cases of eye-witnessed sudden cardiac arrest.

Keywords: teaching, children, basic life support, cardiac arrest, CPR

Procedia PDF Downloads 134
7666 Designing of Induction Motor Efficiency Monitoring System

Authors: Ali Mamizadeh, Ires Iskender, Saeid Aghaei

Abstract:

Energy is one of the important issues with high priority property in the world. Energy demand is rapidly increasing depending on the growing population and industry. The useable energy sources in the world will be insufficient to meet the need for energy. Therefore, the efficient and economical usage of energy sources is getting more importance. In a survey conducted among electric consuming machines, the electrical machines are consuming about 40% of the total electrical energy consumed by electrical devices and 96% of this consumption belongs to induction motors. Induction motors are the workhorses of industry and have very large application areas in industry and urban systems like water pumping and distribution systems, steel and paper industries and etc. Monitoring and the control of the motors have an important effect on the operating performance of the motor, driver selection and replacement strategy management of electrical machines. The sensorless monitoring system for monitoring and calculating efficiency of induction motors are studied in this study. The equivalent circuit of IEEE is used in the design of this study. The terminal current and voltage of induction motor are used in this motor to measure the efficiency of induction motor. The motor nameplate information and the measured current and voltage are used in this system to calculate accurately the losses of induction motor to calculate its input and output power. The efficiency of the induction motor is monitored online in the proposed method without disconnecting the motor from the driver and without adding any additional connection at the motor terminal box. The proposed monitoring system measure accurately the efficiency by including all losses without using torque meter and speed sensor. The monitoring system uses embedded architecture and does not need to connect to a computer to measure and log measured data. The conclusion regarding the efficiency, the accuracy and technical and economical benefits of the proposed method are presented. The experimental verification has been obtained on a 3 phase 1.1 kW, 2-pole induction motor. The proposed method can be used for optimal control of induction motors, efficiency monitoring and motor replacement strategy.

Keywords: induction motor, efficiency, power losses, monitoring, embedded design

Procedia PDF Downloads 348
7665 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors

Authors: V. Rashtchi, H. Bizhani, F. R. Tatari

Abstract:

This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.

Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization

Procedia PDF Downloads 633
7664 Effect of Electronic Banking on the Performance of Deposit Money Banks in Nigeria: Using ATM and Mobile Phone as a Case Study

Authors: Charity Ifunanya Osakwe, Victoria Ogochuchukwu Obi-Nwosu, Chima Kenneth Anachedo

Abstract:

The study investigates how automated teller machines (ATM) and mobile banking affect deposit money banks in the Nigerian economy. The study made use of time series data which were obtained from the Central Bank of Nigeria Statistical Bulletin from 2009 to 2021. The Central Bank of Nigeria (CBN) data on automated teller machine and mobile phones were used to proxy electronic banking while total deposit in banks proxied the performance of deposit money banks. The analysis for the study was done using ordinary least square econometric technique with the aid of economic view statistical package. The results show that the automated teller machine has a positive and significant effect on the total deposits of deposit money banks in Nigeria and that making use of deposits of deposit money banks in Nigeria. It was concluded in the study that e-banking has equally increased banking access to customers and also created room for banks to expand their operations to more customers. The study recommends that banks in Nigeria should prioritize the expansion and maintenance of ATM networks as well as continue to invest in and develop more mobile banking services.

Keywords: electronic, banking, automated teller machines, mobile, deposit

Procedia PDF Downloads 54
7663 Classification of Sequential Sports Using Automata Theory

Authors: Aniket Alam, Sravya Gurram

Abstract:

This paper proposes a categorization of sport that is based on the system of rules that a sport must adhere to. We focus on these systems of rules to examine how a winner is produced in different sports. The rules of a sport dictate the game play and the direction it takes. We propose to break down the game play into events. At this junction, we observe two kinds of events that constitute the game play of a sport –ones that follow sequential logic and ones that do not. Our focus is pertained to sports that are comprised of sequential events. To examine these events further, to understand how a winner emerges, we take the help of finite-state automaton from the theory of computation (Automata theory). We showcase how sequential sports are eligible to be represented as finite state machines. We depict these finite state machines as state diagrams. We examine these state diagrams to observe how a team/player reaches the final states of the sport, with a special focus on one final state –the final state which determines the winner. This exercise has been carried out for the following sports: Hurdles, Track, Shot Put, Long Jump, Bowling, Badminton, Pacman and Weightlifting (Snatch). Based on our observations of how this final state of winning is achieved, we propose a categorization of sports.

Keywords: sport classification, sport modelling, ontology, automata theory

Procedia PDF Downloads 119
7662 The Effect of Peer Support to Interpersonal Problem Solving Tendencies and Skills in Nursing Students

Authors: B. Özlük, A. Karaaslan

Abstract:

This study has been conducted as a supplementary and relationship seeking study with the purpose of measuring the tendency and success of support among peers amid nursing students studying at university in solving interpersonal problems. The population of the study (N:279) is comprised of nursing students who are studying at one state and one private university in the province of Konya, while its sample is comprised of 231 nursing students who agreed to take part in the study voluntarily. As a result of this study, it has been determined that the peer support and interpersonal problem solving characteristics among students were at medium levels and that the interpersonal problem solving skills of students studying in the third year were higher than those of first and second year students. While the interpersonal problem solving characteristics of students who are aged 20 and over were found to be higher, no difference could be determined in terms of the interpersonal problem solving skills and tendencies among students, based on their gender and where they reside. A positive – to a medium degree – and significant relationship was determined between peer support and interpersonal problem solving skills, and it is possible to say that as peer support increases, so do the skills and tendencies to solve problems.

Keywords: nursing students, peer support, interpersonal problem, problem solving

Procedia PDF Downloads 270
7661 The Effects of Cultural Self-Efficacy and Perceived Social Support on Acculturative Stress of International Postgraduate Students in the United Kingdom

Authors: Rhea Mathews

Abstract:

The purpose of the study is to investigate the effects of perceived social support and cultural self-efficacy on the acculturative stress of international postgraduate students in the United Kingdom. The study adopted Berry, Kim, Minde & Mok’s (1987) acculturative framework on acculturative stress and examined the relationship between the variables. The study hypothesized that perceived social support and cultural self-efficacy would predict lower levels of acculturative stress among students. Postgraduate students in the United Kingdom (N = 76) completed three surveys measuring the variables; Acculturative Stress Scale for International Students, Multidimensional Scale of Perceived Social Support, and Cultural Self-efficacy for Adolescents. To evaluate the role of the perceived social support and cultural self-efficacy in determining the acculturative stress level of international students, multiple linear regression was employed. Both independent variables exhibited a significant, negative relationship with acculturative stress (p < 0.001; p < 0.01). Results described that cultural self-efficacy and perceived social support significantly predicted acculturative stress (p < 0.01). Together, the variables accounted for 22% of the variance in acculturative stress scores (adjusted R² = 0.22), with cultural self-efficacy playing a larger role in predicting the dependent variable. Limitations and implications of the study are noted. The findings of the study are discussed in relation to enhancing international students’ acculturative experience when relocating to a new environment.

Keywords: acculturative stress, coping, cultural adjustment, cultural self-efficacy, international education, international students, migration, perceived social support

Procedia PDF Downloads 327
7660 Aggregate Supply Response of Some Livestock Commodities in Algeria: Cointegration- Vector Error Correction Model Approach

Authors: Amine M. Benmehaia, Amine Oulmane

Abstract:

The supply response of agricultural commodities to changes in price incentives is an important issue for the success of any policy reform in the agricultural sector. This study aims to quantify the responsiveness of producers of some livestock commodities to price incentives in Algerian context. Time series analysis is used on annual data for a period of 52 years (1966-2018). Both co-integration and vector error correction model (VECM) are used through the Nerlove model of partial adjustment. The study attempts to determine the long-run and short-run relationships along with the magnitudes of disequilibria in the selected commodities. Results show that the short-run price elasticities are low in cow and sheep meat sectors (8.7 and 8% respectively), while their respective long-run elasticities are 16.5 and 10.5, whereas eggs and milk have very high short-run price elasticities (82 and 90% respectively) with long-run elasticities of 40 and 46 respectively. The error correction coefficient, reflecting the speed of adjustment towards the long-run equilibrium, is statistically significant and have the expected negative sign. Its estimates are 12.7 for cow meat, 33.5 for sheep meat, 46.7 for eggs and 8.4 for milk. It seems that cow meat and milk producers have a weak feedback of about 12.7% and 8.4% respectively of the previous year's disequilibrium from the long-run price elasticity, whereas sheep meat and eggs producers adjust to correct long run disequilibrium with a high speed of adjustment (33.5% and 46.7 % respectively). The implication of this is that much more in-depth research is needed to identify those factors that affect agricultural supply and to describe the effect of factors that shift supply in response to price incentives. This could provide valuable information for government in the use of appropriate policy measures.

Keywords: Algeria, cointegration, livestock, supply response, vector error correction model

Procedia PDF Downloads 141
7659 Incorporating Information Gain in Regular Expressions Based Classifiers

Authors: Rosa L. Figueroa, Christopher A. Flores, Qing Zeng-Treitler

Abstract:

A regular expression consists of sequence characters which allow describing a text path. Usually, in clinical research, regular expressions are manually created by programmers together with domain experts. Lately, there have been several efforts to investigate how to generate them automatically. This article presents a text classification algorithm based on regexes. The algorithm named REX was designed, and then, implemented as a simplified method to create regexes to classify Spanish text automatically. In order to classify ambiguous cases, such as, when multiple labels are assigned to a testing example, REX includes an information gain method Two sets of data were used to evaluate the algorithm’s effectiveness in clinical text classification tasks. The results indicate that the regular expression based classifier proposed in this work performs statically better regarding accuracy and F-measure than Support Vector Machine and Naïve Bayes for both datasets.

Keywords: information gain, regular expressions, smith-waterman algorithm, text classification

Procedia PDF Downloads 320
7658 Finite Element Method Analysis of a Modified Rotor 6/4 Switched Reluctance Motor's and Comparison with Brushless Direct Current Motor in Pan-Tilt Applications

Authors: Umit Candan, Kadir Dogan, Ozkan Akin

Abstract:

In this study, the use of a modified rotor 6/4 Switched Reluctance Motor (SRM) and a Brushless Direct Current Motor (BLDC) in pan-tilt systems is compared. Pan-tilt systems are critical mechanisms that enable the precise orientation of cameras and sensors, and their performance largely depends on the characteristics of the motors used. The aim of the study is to determine how the performance of the SRM can be improved through rotor modifications and how these improvements can compete with BLDC motors. Using Finite Element Method (FEM) analyses, the design characteristics and magnetic performance of the 6/4 Switched Reluctance Motor are examined in detail. The modified SRM is found to offer increased torque capacity and efficiency while standing out with its simple construction and robustness. FEM analysis results of SRM indicate that considering its cost-effectiveness and performance improvements achieved through modifications, the SRM is a strong alternative for certain pan-tilt applications. This study aims to provide engineers and researchers with a performance comparison of the modified rotor 6/4 SRM and BLDC motors in pan-tilt systems, helping them make more informed and effective motor selections.

Keywords: reluctance machines, switched reluctance machines, pan-tilt application, comparison, FEM analysis

Procedia PDF Downloads 59
7657 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining

Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser

Abstract:

Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.

Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract

Procedia PDF Downloads 657
7656 Learning the C-A-Bs: Resuscitation Training at Rwanda Military Hospital

Authors: Kathryn Norgang, Sarah Howrath, Auni Idi Muhire, Pacifique Umubyeyi

Abstract:

Description : A group of nurses address the shortage of trained staff to respond to critical patients at Rwanda Military Hospital (RMH) by developing a training program and a resuscitation response team. Members of the group who received the training when it first launched are now trainer of trainers; all components of the training program are organized and delivered by RMH staff-the clinical mentor only provides adjunct support. This two day training is held quarterly at RMH; basic life support and exposure to interventions for advanced care are included in the test and skills sign off. Seventy staff members have received the training this year alone. An increased number of admission/transfer to ICU due to successful resuscitation attempts is noted. Lessons learned: -Number of staff trained 2012-2014 (to be verified). -Staff who train together practice with greater collaboration during actual resuscitation events. -Staff more likely to initiate BLS if peer support is present-more staff trained equals more support. -More access to Advanced Cardiac Life Support training is necessary now that the cadre of BLS trained staff is growing. Conclusions: Increased access to training, peer support, and collaborative practice are effective strategies to strengthening resuscitation capacity within a hospital.

Keywords: resuscitation, basic life support, capacity building, resuscitation response teams, nurse trainer of trainers

Procedia PDF Downloads 304
7655 Malaria Outbreak Facilitated by Appearance of Vector-Breeding Sites after Heavy Rainfall and Inadequate Preventive Measures: Nwoya District, Uganda, March–May 2018

Authors: Godfrey Nsereko, Daniel Kadobera, Denis Okethwangu, Joyce Nguna, Alex Riolexus Ario

Abstract:

Background: Malaria is a leading cause of morbidity and mortality in Uganda. In April 2018, malaria cases surged in Nwoya District, northern Uganda, exceeding the action thresholds. We investigated to assess the outbreak’s magnitude, identify transmission risk factors, and recommend evidence-based control measures. Methods: We defined a malaria case as onset of fever in a resident of Nwoya District with a positive Rapid Diagnostic Test or microscopy for malaria P. falciparum from 1 February to 22 May 2018. We reviewed medical records in all health facilities of affected sub-counties to find cases. In a case-control study, we compared exposure risk factors between 107 case-persons and 107 asymptomatic controls matched by age and village. We conducted entomological assessment on vector-density and behavior. Results: We identified 3,879 case-persons (attack rate [AR]=6.5%) and 2 deaths (case-fatality rate=5.2/10,000). Females (AR=8.1%) were more affected than males (AR=4.7%). Of all age groups, the 5-18 year age group (AR=8.4%) was most affected. Heavy rain started on 4 March; a propagated outbreak began during the week of 2 April. In the case-control study, 55% (59/107) of case-patients and 18% (19/107) of controls had stagnant water around households for several days following rainfall (ORM-H=5.6, 95%CI=3.0-11); 25% (27/107) of case-patients and 51% (55/107) of controls wore long-sleeve cloths during evening hours (ORM-H=0.30, 95%CI=0.20-0.60); 29% (31/107) of case-patients and 15% (16/107) of controls did not sleep under a long-lasting insecticide-treated net (LLIN) (ORM-H=2.3, 95%CI=1.1-4.9); 37% (40/107) of case-patients and 52% (56/107) of controls had ≥1 LLIN per 2 household members (ORM-H=0.54, 95%CI=0.30-0.97). Entomological assessment indicated active breeding sites; Anopheles gambiae sensu lato species were the predominant vector. Conclusion: Increased vector breeding sites after heavy rainfall, together with inadequate malaria preventive measures caused this outbreak. We recommended increasing coverage for LLINs and larviciding breeding sites.

Keywords: malaria outbreak, Plasmodium falciparum, global health security, Uganda

Procedia PDF Downloads 225
7654 Design of Semi-Autonomous Street Cleaning Vehicle

Authors: Khouloud Safa Azoud, Süleyman Baştürk

Abstract:

In the pursuit of cleaner and more sustainable urban environments, advanced technologies play a critical role in evolving sanitation systems. This paper presents two distinct advancements in automated cleaning machines designed to improve urban sanitation. The first advancement is a semi-automatic road surface cleaning machine that integrates human labor with solar energy to enhance environmental sustainability and adaptability, especially in regions with limited access to electricity. By reducing carbon emissions and increasing operational efficiency, this approach offers significant potential for urban sanitation enhancement. The second advancement is a multifunctional semi-automatic street cleaning machine equipped with a camera, Arduino programming, and GPS for an autonomous operation aimed at addressing cost barriers in developing countries. Prioritizing low energy consumption and cost-effectiveness, this machine provides versatile cleaning solutions adaptable to various environmental conditions. By integrating solar energy with autonomous operating systems and careful design, these developments represent substantial progress in sustainable urban sanitation, particularly in developing regions.

Keywords: automated cleaning machines, solar energy integration, operational efficiency, urban sanitation systems

Procedia PDF Downloads 34
7653 Machines Hacking Humans: Performances Practices in Electronic Music during the 21st Century

Authors: Zimasa Siyasanga Gysman

Abstract:

This paper assesses the history of electronic music and its performance to illustrate that machines and technology have largely influenced how humans perform electronic music. The history of electronic music mainly focuses on the composition and production of electronic music with little to no attention paid to its performance by the majority of scholars in this field. Therefore, establishing a history of performance involves investigating what compositions of electronic music called for in the production of electronic music performance. This investigation into seminal works in the history of electronic music, therefore, illustrates the aesthetics of electronic music performance and the aesthetics established in the very beginnings of electronic music performance demonstrate the aesthetics of electronic music which are still prevalent today. The key aesthetics are the repurposing of technology and the hybridisation of technology. Performers take familiar technology (technology that society has become accustomed to using in daily life), not necessarily related to music or performance and use it as an instrument in their performances, such as a rotary dial telephone. Likewise, since the beginnings of electronic music, producers have always experimented with the latest technologies available to them in their compositions and performances. The spirit of performers of electronic music, therefore, revolves around repurposing familiar technologies and using them in new ways, whilst similarly experimenting with new technologies in their performances. This process of hybridisation plays a key role in the production and performance of electronic music in the twentieth century. Through various interviews with performers of electronic music, it is shown that these aesthetics are driving performance practices in the twenty-first century.

Keywords: body, hybridisation, performance, sound

Procedia PDF Downloads 161
7652 Hierarchical Tree Long Short-Term Memory for Sentence Representations

Authors: Xiuying Wang, Changliang Li, Bo Xu

Abstract:

A fixed-length feature vector is required for many machine learning algorithms in NLP field. Word embeddings have been very successful at learning lexical information. However, they cannot capture the compositional meaning of sentences, which prevents them from a deeper understanding of language. In this paper, we introduce a novel hierarchical tree long short-term memory (HTLSTM) model that learns vector representations for sentences of arbitrary syntactic type and length. We propose to split one sentence into three hierarchies: short phrase, long phrase and full sentence level. The HTLSTM model gives our algorithm the potential to fully consider the hierarchical information and long-term dependencies of language. We design the experiments on both English and Chinese corpus to evaluate our model on sentiment analysis task. And the results show that our model outperforms several existing state of the art approaches significantly.

Keywords: deep learning, hierarchical tree long short-term memory, sentence representation, sentiment analysis

Procedia PDF Downloads 349
7651 Hybrid Fermentation System for Improvement of Ergosterol Biosynthesis

Authors: Alexandra Tucaliuc, Alexandra C. Blaga, Anca I. Galaction, Lenuta Kloetzer, Dan Cascaval

Abstract:

Ergosterol (ergosta-5,7,22-trien-3β-ol), also known as provitamin D2, is the precursor of vitamin D2 (ergocalciferol), because it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). In the yeasts cells, ergosterol is accumulated in membranes, especially in free form in the plasma membrane, but also as esters with fatty acids in membrane lipids. The chemical synthesis of ergosterol does not represent an efficient method for its production, in these circumstances, the most attractive alternative for producing ergosterol at larger-scale remains the aerobic fermentation using S. cerevisiae on glucose or by-products from agriculture of food industry as substrates, in batch or fed-batch operating systems. The aim of this work is to analyze comparatively the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. The effects of the studied factors are quantitatively described by means of the mathematical correlations proposed for each of the two fermentation systems, valid both for the absence and presence of oxygen-vector inside the broth. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. n-Dodecane was used as oxygen-vector and the ergosterol content inside the yeasts cells has been considered at the fermentation moment related to the maximum concentration of ergosterol, 9 hrs for batch process and 20 hrs for fed-batch one. Ergosterol biosynthesis is strongly dependent on the dissolved oxygen concentration. The hydrocarbon concentration exhibits a significant influence on ergosterol production mainly by accelerating the oxygen transfer rate. Regardless of n-dodecane addition, by maintaining the glucose concentration at a constant level in the fed-batch process, the amount of ergosterol accumulated into the yeasts cells has been almost tripled. In the presence of hydrocarbon, the ergosterol concentration increased by over 50%. The value of oxygen-vector concentration corresponding to the maximum level of ergosterol depends mainly on biomass concentration, due to its negative influences on broth viscosity and interfacial phenomena of air bubbles blockage through the adsorption of hydrocarbon droplets–yeast cells associations. Therefore, for the batch process, the maximum ergosterol amount was reached for 5% vol. n-dodecane, while for the fed-batch process for 10% vol. hydrocarbon.

Keywords: bioreactors, ergosterol, fermentation, oxygen-vector

Procedia PDF Downloads 189