Search results for: liver and spleen segmentation
1183 Multidimensional Sports Spectators Segmentation and Social Media Marketing
Authors: B. Schmid, C. Kexel, E. Djafarova
Abstract:
Understanding consumers is elementary for practitioners in marketing. Consumers of sports events, the sports spectators, are a particularly complex consumer crowd. In order to identify and define their profiles different segmentation approaches can be found in literature, one of them being multidimensional segmentation. Multidimensional segmentation models correspond to the broad range of attitudes, behaviours, motivations and beliefs of sports spectators, other than earlier models. Moreover, in sports there are some well-researched disciplines (e.g. football or North American sports) where consumer profiles and marketing strategies are elaborate and others where no research at all can be found. For example, there is almost no research on athletics spectators. This paper explores the current state of research on sports spectators segmentation. An in-depth literature review provides the framework for a spectators segmentation in athletics. On this basis, additional potential consumer groups and implications for social media marketing will be explored. The findings are the basis for further research.Keywords: multidimensional segmentation, social media, sports marketing, sports spectators segmentation
Procedia PDF Downloads 3071182 Arabic Handwriting Recognition Using Local Approach
Authors: Mohammed Arif, Abdessalam Kifouche
Abstract:
Optical character recognition (OCR) has a main role in the present time. It's capable to solve many serious problems and simplify human activities. The OCR yields to 70's, since many solutions has been proposed, but unfortunately, it was supportive to nothing but Latin languages. This work proposes a system of recognition of an off-line Arabic handwriting. This system is based on a structural segmentation method and uses support vector machines (SVM) in the classification phase. We have presented a state of art of the characters segmentation methods, after that a view of the OCR area, also we will address the normalization problems we went through. After a comparison between the Arabic handwritten characters & the segmentation methods, we had introduced a contribution through a segmentation algorithm.Keywords: OCR, segmentation, Arabic characters, PAW, post-processing, SVM
Procedia PDF Downloads 711181 Physiochemical and Histological Study on the Effect of the Hibernation on the Liver of Uromastyx acanthinura (Bell, 1825)
Authors: Youssef. K. A. Abdalhafid, Ezaldin A. M. Mohammed, Masoud M. M. Zatout
Abstract:
This study described the changes in the liver of Uromastyx acanthinura (Bell, 1825) males and females during hibernation and activity seasons. The results revealed that, hibernation causes increase fatty liver and pigment cells with abundant damage, comparing with nearly normal structure and less fatty liver after the hibernation with almost normal pattern. Genomic DNA showed apparent separation during hibernation. Also, caspase 3 and caspase 7 activity reached a high level in the liver tissue during hibernation comparing with activity season.Keywords: histological liver, DNA fragmentation, hibernation, caspase 3 and caspase 7
Procedia PDF Downloads 3171180 Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries
Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed
Abstract:
This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast.Keywords: image segmentation, hierarchical analysis, 2-D histogram, classification
Procedia PDF Downloads 3801179 Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate
Authors: Neetu Manocha
Abstract:
Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR).Keywords: satellite image, image segmentation, edge detection, error rate, MSE, PSNR, HIST-SI, linking, filtering, imp_HIST-SI
Procedia PDF Downloads 1401178 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue
Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni
Abstract:
Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM
Procedia PDF Downloads 3311177 Hepatic Regenerative Capacity after Acetaminophen-Induced Liver Injury in Mouse Model
Authors: N. F. Hamid, A. Kipar, J. Stewart, D. J. Antoine, B. K. Park, D. P. Williams
Abstract:
Acetaminophen (APAP) is a widely used analgesic that is safe at therapeutic doses. The mouse model of APAP has been extensively used for studies on pathogenesis and intervention of drug induced liver injury based on the CytP450 mediated formation of N-acetyl-p-benzo-quinoneimine and, more recently, as model for mechanism based biomarkers. Delay of the fasted CD1 mice to rebound to the basal level of hepatic GSH compare to fed mice is reported in this study. Histologically, 15 hours fasted mice prior to APAP treatment leading to overall more intense cell loss with no evidence of apoptosis as compared to non-fasted mice, where the apoptotic cells were clearly seen on cleaved caspase-3 immunostaining. After 15 hours post APAP administration, hepatocytes underwent stage of recovery with evidence of mitotic figures in fed mice and return to completely no histological difference to control at 24 hours. On the contrary, the evidence of ongoing cells damage and inflammatory cells infiltration are still present on fasted mice until the end of the study. To further measure the regenerative capacity of the hepatocytes, the inflammatory mediators of cytokines that involved in the progression or regression of the toxicity like TNF-α and IL-6 in liver and spleen using RT-qPCR were also included. Yet, quantification of proliferating cell nuclear antigen (PCNA) has demonstrated the time for hepatic regenerative in fasted is longer than that to fed mice. Together, these data would probably confirm that fasting prior to APAP treatment does not only modulate liver injury, but could have further effects to delay subsequent regeneration of the hepatocytes.Keywords: acetaminophen, liver, proliferating cell nuclear antigen, regeneration, apoptosis
Procedia PDF Downloads 4311176 Undifferentiated Embryonal Sarcoma of Liver: A Rare Case Report
Authors: Thieu-Thi Tra My
Abstract:
Undifferentiated embryonal sarcoma of the liver (UESL), a rare malignant mesenchymal tumor, is commonly seen in children. The symptoms and imaging were not specific, so it could be mimicked with other tumors or liver abscesses. The tumor often appears as a large heterogeneous echoic solid mass with small cystic areas while showing a cyst-like appearance on CT and MRI. The histopathological manifestation of the UESL consisted of stellate-shaped and spindle cells scattered on a myxoid background with high mitotic count. Cells with multiple or bizarre nuclear were also observed. Here, we aimed to describe a 9-year-old male diagnosed with UESL focused on imaging and histopathological characteristics.Keywords: undifferentiated embryonal sarcoma of liver, UESL, liver sarcoma, liver tumor, children
Procedia PDF Downloads 741175 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision
Authors: Lianzhong Zhang, Chao Huang
Abstract:
Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.Keywords: SAR, sea-land segmentation, deep learning, transformer
Procedia PDF Downloads 1811174 Histomorphological Comparisons of Liver of Broiler Chickens and Wild Boar in Algeria
Authors: Khenenou Tarek
Abstract:
Aim: The objective of present study was to compare the normal macro and microscopic appearance of the liver in two very different species, one is an omnivorous mammal; the wild boar and the other belongs to the family of poultry; broiler chicken from the region of Bouhmama (Khenchela). Materials and methods: Eight broilers (58 days of age) and eight wild boars were included in the experiment to obtain information about the morpho-histological appearances of liver in two species. Results: There is a big difference in the liver appearance between the two species, in the wild boar it is of firm consistency with a tiger aspect and divided into four lobes, whereas in the broiler, the liver is brown and sometimes pale during the first 10-14 days, so it was divided into two lobes. Concerning the liver parenchyma, we used the Russian LOMBO MBS-10 stereo microscope, our results showed that the liver parenchyma was well developed in wild boar than in broiler chickens whereas, in broiler chickens; an excessive development of the sinus; the latter were less developed in the wild boar. Conclusion: The macroscopic observation showed a marked difference in liver between the two species. The microscopic examination of liver showed that the parenchyma is less pronounced in broilers whereas the sinuses were highly developed in the wild boar.Keywords: broiler chicken, liver, macro and microscopic appearances, wild boar, Algeria
Procedia PDF Downloads 211173 Evaluating the Diagnostic Accuracy of the ctDNA Methylation for Liver Cancer
Authors: Maomao Cao
Abstract:
Objective: To test the performance of ctDNA methylation for the detection of liver cancer. Methods: A total of 1233 individuals have been recruited in 2017. 15 male and 15 female samples (including 10 cases of liver cancer) were randomly selected in the present study. CfDNA was extracted by MagPure Circulating DNA Maxi Kit. The concentration of cfDNA was obtained by Qubit™ dsDNA HS Assay Kit. A pre-constructed predictive model was used to analyze methylation data and to give a predictive score for each cfDNA sample. Individuals with a predictive score greater than or equal to 80 were classified as having liver cancer. CT tests were considered the gold standard. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis of liver cancer were calculated. Results: 9 patients were diagnosed with liver cancer according to the prediction model (with high sensitivity and threshold of 80 points), with scores of 99.2, 91.9, 96.6, 92.4, 91.3, 92.5, 96.8, 91.1, and 92.2, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of ctDNA methylation for the diagnosis of liver cancer were 0.70, 0.90, 0.78, and 0.86, respectively. Conclusions: ctDNA methylation could be an acceptable diagnostic modality for the detection of liver cancer.Keywords: liver cancer, ctDNA methylation, detection, diagnostic performance
Procedia PDF Downloads 1501172 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset
Authors: Jaiden X. Schraut
Abstract:
Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.Keywords: chest X-ray, deep learning, image segmentation, image classification
Procedia PDF Downloads 1441171 Digital Retinal Images: Background and Damaged Areas Segmentation
Authors: Eman A. Gani, Loay E. George, Faisel G. Mohammed, Kamal H. Sager
Abstract:
Digital retinal images are more appropriate for automatic screening of diabetic retinopathy systems. Unfortunately, a significant percentage of these images are poor quality that hinders further analysis due to many factors (such as patient movement, inadequate or non-uniform illumination, acquisition angle and retinal pigmentation). The retinal images of poor quality need to be enhanced before the extraction of features and abnormalities. So, the segmentation of retinal image is essential for this purpose, the segmentation is employed to smooth and strengthen image by separating the background and damaged areas from the overall image thus resulting in retinal image enhancement and less processing time. In this paper, methods for segmenting colored retinal image are proposed to improve the quality of retinal image diagnosis. The methods generate two segmentation masks; i.e., background segmentation mask for extracting the background area and poor quality mask for removing the noisy areas from the retinal image. The standard retinal image databases DIARETDB0, DIARETDB1, STARE, DRIVE and some images obtained from ophthalmologists have been used to test the validation of the proposed segmentation technique. Experimental results indicate the introduced methods are effective and can lead to high segmentation accuracy.Keywords: retinal images, fundus images, diabetic retinopathy, background segmentation, damaged areas segmentation
Procedia PDF Downloads 4031170 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning
Authors: Yanwen Li, Shuguo Xie
Abstract:
In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.Keywords: gradient image, segmentation and extract, mean-shift algorithm, dictionary iearning
Procedia PDF Downloads 2661169 Influence of Copper-Methionine on Hematological and Biochemical Changes and Ascites Incidence in Cold-Stressed Broilers
Authors: M. Bagheri Varzaneh, H. R. Rahmani, R. Jahanian
Abstract:
The present study aimed to investigate the effects of copper-methionine on ascites incidence and hematological, morphological and enzymatic responses in broiler chickens. A total of 480 one-day-old Ross 308 broiler chicks were used in a completely randomized design in a 2×3 factorial arrangement of treatments including two ambient temperatures (thermoneutral and cold stress) and three copper levels (0, 100, and 200 mg/kg as copper-methionine) with 4 replicates (20 birds in each replicate). Broilers were kept in an environmentally-controlled room from 1 to 28 days; then, half of them exposed to cold temperature from 28 to 45 days of age. The birds were sacrificed at days 38 and 45 of age. Heparinized blood samples were collected to measure hematocrit, hemoglobin concentration, red blood cell (RBC) count, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Heart, lungs, liver, and spleen were collected and weighed separately on a sensitive digital scale. At d 38 of age, none of hematological variables, enzymatic parameters, and relative weights of organs were affected by treatments. Ascitic broilers were observed in group subjected to cold temperature and control diet (without supplemental copper) at d 45 of age. Relative weight of lungs and relative weight of heart in broilers fed on copper-methionine supplemented diets in cold temperature were lower compared with other groups. Relative liver weight, ALT, AST activities, and hematological parameters such as hematocrit, hemoglobin concentration, red blood cell count in ascitic broilers were significantly increased. In contrast, a significant decrease of the relative weight of spleen was shown in these chickens. The results showed that dietary supplementation with copper–methionine can decrease probability of ascites incidence in broilers chicks, especially under cold condition.Keywords: ascites, cold temperature, copper-methionine, cold-stressed broiler
Procedia PDF Downloads 6361168 Effective Texture Features for Segmented Mammogram Images Based on Multi-Region of Interest Segmentation Method
Authors: Ramayanam Suresh, A. Nagaraja Rao, B. Eswara Reddy
Abstract:
Texture features of mammogram images are useful for finding masses or cancer cases in mammography, which have been used by radiologists. Textures are greatly succeeded for segmented images rather than normal images. It is necessary to perform segmentation for exclusive specification of cancer and non-cancer regions separately. Region of interest (ROI) is most commonly used technique for mammogram segmentation. Limitation of this method is that it is unable to explore segmentation for large collection of mammogram images. Therefore, this paper is proposed multi-ROI segmentation for addressing the above limitation. It supports greatly in finding the best texture features of mammogram images. Experimental study demonstrates the effectiveness of proposed work using benchmarked images.Keywords: texture features, region of interest, multi-ROI segmentation, benchmarked images
Procedia PDF Downloads 3101167 Comparative Stem Cells Therapy for Regeneration of Liver Fibrosis
Authors: H. M. Imam, H. M. Rezk, A. F. Tohamy
Abstract:
Background: Human umbilical cord blood (HUCB) is considered as a unique source for stem cells. HUCB contain different types of progenitor cells which could differentiate into hepatocytes. Aims: To investigate the potential of rat's liver damage repair using human umbilical cord mesenchymal stem cells (hUCMSCs). We investigated the feasibility for hUCMSCs in recovery from liver damage. Moreover, investigating fibrotic liver repair and using the CCl4-induced model for liver damage in the rat. Methods: Rats were injected with 0.5 ml/kg CCl4 to induce liver damage and progressive liver fibrosis. hUCMSCs were injected into the rats through the tail vein; Stem cells were transplanted at a dose of 1×106 cells/rat after 72 hours of CCl4 injection without receiving any immunosuppressant. After (6 and 8 weeks) of transplantation, blood samples were collected to assess liver functions (ALT, AST, GGT and ALB) and level of Procollagen III as a liver fibrosis marker. In addition, hepatic tissue regeneration was assessed histopathologically and immunohistochemically using antihuman monoclonal antibodies against CD34, CK19 and albumin. Results: Biochemical and histopathological analysis showed significantly increased recovery from liver damage in the transplanted group. In addition, HUCB stem cells transdifferentiated into functional hepatocytes in rats with hepatic injury which results in improving liver structure and function. Conclusion: Our findings suggest that transplantation of hUCMSCs may be a novel therapeutic approach for treating liver fibrosis. Therefore, hUCMSCs are a potential option for treatment of liver cirrhosis.Keywords: carbon tetra chloride, liver fibrosis, mesenchymal stem cells, rat
Procedia PDF Downloads 3421166 Vision-Based Hand Segmentation Techniques for Human-Computer Interaction
Abstract:
This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image.Keywords: HCI, sign language recognition, object tracking, hand segmentation
Procedia PDF Downloads 4121165 Image Segmentation Techniques: Review
Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo
Abstract:
Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.Keywords: clustering-based, convolution-network, edge-based, region-growing
Procedia PDF Downloads 961164 Comparison between Transient Elastography (FibroScan) and Liver Biopsy for Diagnosis of Hepatic Fibrosis in Chronic Hepatitis C Genotype 4
Authors: Gamal Shiha, Seham Seif, Shahera Etreby, Khaled Zalata, Waleed Samir
Abstract:
Background: Transient Elastography (TE; FibroScan®) is a non-invasive technique to assess liver fibrosis. Aim: To compare TE and liver biopsy in hepatitis C virus (HCV) patients, genotype IV and evaluate the effect of steatosis and schistosomiasis on FibroScan. Methods: The fibrosis stage (METAVIR Score) TE, was assessed in 519 patients. The diagnostic performance of FibroScan is assessed by calculating the area under the receiver operating characteristic curves (AUROCs). Results: The cut-off value of ≥ F2 was 8.55 kPa, ≥ F3 was 10.2 kPa and cirrhosis = F4 was 16.3 kPa. The positive predictive value and negative predictive value were 70.1% and 81.7% for the diagnosis of ≥ F2, 62.6% and 96.22% for F ≥ 3, and 27.7% and 100% for F4. No significant difference between schistosomiasis, steatosis degree and FibroScan measurements. Conclusion: Fibroscan could accurately predict liver fibrosis.Keywords: chronic hepatitis C, FibroScan, liver biopsy, liver fibrosis
Procedia PDF Downloads 4091163 Morphology Operation and Discrete Wavelet Transform for Blood Vessels Segmentation in Retina Fundus
Authors: Rita Magdalena, N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Sofia Saidah, Bima Sakti
Abstract:
Vessel segmentation of retinal fundus is important for biomedical sciences in diagnosing ailments related to the eye. Segmentation can simplify medical experts in diagnosing retinal fundus image state. Therefore, in this study, we designed a software using MATLAB which enables the segmentation of the retinal blood vessels on retinal fundus images. There are two main steps in the process of segmentation. The first step is image preprocessing that aims to improve the quality of the image to be optimum segmented. The second step is the image segmentation in order to perform the extraction process to retrieve the retina’s blood vessel from the eye fundus image. The image segmentation methods that will be analyzed in this study are Morphology Operation, Discrete Wavelet Transform and combination of both. The amount of data that used in this project is 40 for the retinal image and 40 for manually segmentation image. After doing some testing scenarios, the average accuracy for Morphology Operation method is 88.46 % while for Discrete Wavelet Transform is 89.28 %. By combining the two methods mentioned in later, the average accuracy was increased to 89.53 %. The result of this study is an image processing system that can segment the blood vessels in retinal fundus with high accuracy and low computation time.Keywords: discrete wavelet transform, fundus retina, morphology operation, segmentation, vessel
Procedia PDF Downloads 1951162 Investigating the Post-Liver Transplant Complications and Their Management in Children Referred to the Children’s Medical Center
Authors: Hosein Alimadadi, Fatemeh Farahmand, Ali Jafarian, Nasir Fakhar, Mohammad Hassan Sohouli, Neda Raeesi
Abstract:
Backgroundsː Regarding the important role of liver transplantation as the only treatment in many cases of end-stage liver disease in children, the aim of this study is to investigate the complications of liver transplantation and their management in children referred to the Children's Medical Center. Methods: This study is a cross-sectional study on pediatric patients who have undergone liver transplants in the years 2016 to 2021. The indication for liver transplantation in this population was confirmed by a pediatric gastroenterologist, and a liver transplant was performed by a transplant surgeon. Finally, information about the patient before and after the transplantation was collected and recorded. Results: A total of 53 patients participated in this study, including 25 (47.2%) boys and 28 (52.8%) girls. The most common causes of liver transplantation were cholestatic and metabolic diseases. The most common early complication of liver transplantation in children was acute cellular rejection (ACR) and anastomotic biliary stricture. The most common late complication in these patients was an infection which was observed in 56.6% of patients. Among the drug side effects, neurotoxicity (convulsions) was seen more in patients, and 15.1% of the transplanted patients died. Conclusion: In this study, the most common early complication of liver transplantation in children was ACR and biliary stricture, and the most common late complication was infection. Neurotoxicity (convulsions) was the most common side effect of drugs.Keywords: liver transplantation, complication, infection, survival rate
Procedia PDF Downloads 821161 Gross Anatomical Study on the Tributaries of the Hepatic Portal Vein in Cattle Egret (Bubulcus Ibis)
Authors: Elsayed Fath Khalifa, Samer Mohamed Daghash
Abstract:
The aim of the current work study to increase the anatomical knowledge about the cattle egret which considered economically important for farmers. The study was carried out on ten adult, apparently healthy cattle egrets of both sexes. Each bird was exsanguinated; the caudal vena cava was cannulated and flushed with warm normal saline solution (0.9%) then injected with blue colored neoprine (60%) latex in order to study the tributaries of the hepatic portal vein. The origin, course and tributaries of the right and left hepatic portal veins were studied. The hepatic portal venous system collected venous blood from the abdominal viscera including; glandular and muscular stomachs, liver, pancreas, spleen, small intestine and large intestine. The hepatic portal vein was formed by the left and the right hepatic portal veins. The smaller left one drained blood from the glandular and muscular stomachs through the ventral and the left proventriculus as well as the left gastric veins. The most tributaries of the right hepatic portal vein drained blood from the rest of the gastrointestinal tract and the spleen by the proventriculosplenic, the gastropancreaticoduodenal and the common mesenteric veins.Keywords: cattle egret, common mesenteric vein, hepatic portal vein, anatomy
Procedia PDF Downloads 4121160 A Neural Approach for Color-Textured Images Segmentation
Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui
Abstract:
In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.Keywords: segmentation, color-texture, neural networks, fractal, watershed
Procedia PDF Downloads 3461159 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches
Authors: Gaokai Liu
Abstract:
Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.Keywords: deep learning, defect detection, image segmentation, nanomaterials
Procedia PDF Downloads 1491158 A Distinct Method Based on Mamba-Unet for Brain Tumor Image Segmentation
Authors: Djallel Bouamama, Yasser R. Haddadi
Abstract:
Accurate brain tumor segmentation is crucial for diagnosis and treatment planning, yet it remains a challenging task due to the variability in tumor shapes and intensities. This paper introduces a distinct approach to brain tumor image segmentation by leveraging an advanced architecture known as Mamba-Unet. Building on the well-established U-Net framework, Mamba-Unet incorporates distinct design enhancements to improve segmentation performance. Our proposed method integrates a multi-scale attention mechanism and a hybrid loss function to effectively capture fine-grained details and contextual information in brain MRI scans. We demonstrate that Mamba-Unet significantly enhances segmentation accuracy compared to conventional U-Net models by utilizing a comprehensive dataset of annotated brain MRI scans. Quantitative evaluations reveal that Mamba-Unet surpasses traditional U-Net architectures and other contemporary segmentation models regarding Dice coefficient, sensitivity, and specificity. The improvements are attributed to the method's ability to manage class imbalance better and resolve complex tumor boundaries. This work advances the state-of-the-art in brain tumor segmentation and holds promise for improving clinical workflows and patient outcomes through more precise and reliable tumor detection.Keywords: brain tumor classification, image segmentation, CNN, U-NET
Procedia PDF Downloads 331157 Design of a Graphical User Interface for Data Preprocessing and Image Segmentation Process in 2D MRI Images
Authors: Enver Kucukkulahli, Pakize Erdogmus, Kemal Polat
Abstract:
The 2D image segmentation is a significant process in finding a suitable region in medical images such as MRI, PET, CT etc. In this study, we have focused on 2D MRI images for image segmentation process. We have designed a GUI (graphical user interface) written in MATLABTM for 2D MRI images. In this program, there are two different interfaces including data pre-processing and image clustering or segmentation. In the data pre-processing section, there are median filter, average filter, unsharp mask filter, Wiener filter, and custom filter (a filter that is designed by user in MATLAB). As for the image clustering, there are seven different image segmentations for 2D MR images. These image segmentation algorithms are as follows: PSO (particle swarm optimization), GA (genetic algorithm), Lloyds algorithm, k-means, the combination of Lloyds and k-means, mean shift clustering, and finally BBO (Biogeography Based Optimization). To find the suitable cluster number in 2D MRI, we have designed the histogram based cluster estimation method and then applied to these numbers to image segmentation algorithms to cluster an image automatically. Also, we have selected the best hybrid method for each 2D MR images thanks to this GUI software.Keywords: image segmentation, clustering, GUI, 2D MRI
Procedia PDF Downloads 3771156 Meta Mask Correction for Nuclei Segmentation in Histopathological Image
Authors: Jiangbo Shi, Zeyu Gao, Chen Li
Abstract:
Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations
Procedia PDF Downloads 1401155 Latest Advances in the Management of Liver Diseases
Authors: Rabab Makki, Deputy Chief Dietitian
Abstract:
Malnutrition is commonly seen in Liver Disease patients. Prevalence of malnutrition in cirrhosis, is as high as 65-90%. Protein depletion and reduced muscle function are common. There are many mechanisms of malnutrition in liver cirrhosis e.g. insulin resistance, low respiratory quotient, increased glucogenesis etc. Nutrition support improves outcome in patients unable to maintain an intake of 35-40 Kcal/kg and 1.2-1.5 gm/kg/day. Simple methods of assessment such as subjective global assessment, calorie counting, MMC are useful. The value of BCAAs remains uncertain despite a considerable number of studies. Normal protein diets have been given safely to patients with hepatic encephalopathy. Restriction of protein not more than 48 hours pre- and pro-biotic, glutamine, fish oil etc are all part of the latest advanced techniques used.Keywords: liver cirrhosis, omega 3 for liver disease, nutrition management, malnutrition
Procedia PDF Downloads 2561154 Higher Freshwater Fish and Sea Fish Intake Is Inversely Associated with Liver Cancer in Patients with Hepatitis B
Authors: Maomao Cao
Abstract:
Background and aims While the association between higher consumption of fish and lower liver cancer risk has been confirmed, however, the association between specific fish intake and liver cancer risk remains unknown. We aimed to identify the association between specific fish consumption and the risk of liver cancer. Methods: Based on a community-based seropositive hepatitis B cohort involving 18404 individuals, face to face interview was conducted by a standardized questionnaire to acquire baseline information. Three common fish types in this study were analyzed, including freshwater fish, sea fish, and small fish (shrimp, crab, conch, and shell). All participants received liver cancer screening, and possible cases were identified by CT or MRI. Multivariable logistic models were applied to estimate the odds ratio (OR) and 95% confidence intervals (CI). Multivariate multiple imputations were utilized to impute observations with missing values. Results: 179 liver cancer cases were identified. Consumption of freshwater fish and sea fish at least once a week had a strong inverse association with liver cancer risk compared with the lowest intake level, with an adjusted OR of 0.53 (95% CI, 0.38-0.75) and 0.38 (95% CI, 0.19-0.73), respectively. This inverse association was also observed after the imputation. There was no statistically significant association between intake of small fish and liver cancer risk (OR=0.58, 95%, CI 0.32-1.08). Conclusions: Our findings suggest that consumption of freshwater fish and sea fish at least once a week could reduce liver cancer risk.Keywords: cross-sectional study, fish intake, liver cancer, risk factor
Procedia PDF Downloads 273