Search results for: hybrid image fusion
4798 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques
Authors: Tomas Trainys, Algimantas Venckauskas
Abstract:
Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.
Procedia PDF Downloads 1504797 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme
Authors: Andrey V. Timofeev, Dmitry V. Egorov
Abstract:
This paper introduces an original method of parametric optimization of the structure for multimodal decision-level fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.Keywords: classification accuracy, fusion solution, total error rate, multimodal fusion classifier
Procedia PDF Downloads 4664796 Age Determination from Epiphyseal Union of Bones at Shoulder Joint in Girls of Central India
Authors: B. Tirpude, V. Surwade, P. Murkey, P. Wankhade, S. Meena
Abstract:
There is no statistical data to establish variation in epiphyseal fusion in girls in central India population. This significant oversight can lead to exclusion of persons of interest in a forensic investigation. Epiphyseal fusion of proximal end of humerus in eighty females were analyzed on radiological basis to assess the range of variation of epiphyseal fusion at each age. In the study, the X ray films of the subjects were divided into three groups on the basis of degree of fusion. Firstly, those which were showing No Epiphyseal Fusion (N), secondly those showing Partial Union (PC), and thirdly those showing Complete Fusion (C). Observations made were compared with the previous studies.Keywords: epiphyseal union, shoulder joint, proximal end of humerus
Procedia PDF Downloads 4954795 Harnessing Cutting-Edge Technologies and Innovative Ideas in the Design, Development, and Management of Hybrid Operating Rooms
Authors: Samir Hessas
Abstract:
Modern medicine is witnessing a profound transformation as advanced technology reshapes surgical environments. Hybrid operating rooms, where state-of-the-art medical equipment, advanced imaging solutions, and Artificial Intelligence (AI) converge, are at the forefront of this revolution. In this comprehensive exploration, we scrutinize the multifaceted facets of AI and delve into an array of groundbreaking technologies. We also discuss visionary concepts that hold the potential to revolutionize hybrid operating rooms, making them more efficient and patient-centered. These innovations encompass real-time imaging, surgical simulation, IoT and remote monitoring, 3D printing, telemedicine, quantum computing, and nanotechnology. The outcome of this fusion of technology and imagination is a promising future of surgical precision, individualized patient care, and unprecedented medical advances in hybrid operating rooms.Keywords: artificial intelligence, hybrid operating rooms, telemedicine, monitoring
Procedia PDF Downloads 854794 Reliable Soup: Reliable-Driven Model Weight Fusion on Ultrasound Imaging Classification
Authors: Shuge Lei, Haonan Hu, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Yan Tong
Abstract:
It remains challenging to measure reliability from classification results from different machine learning models. This paper proposes a reliable soup optimization algorithm based on the model weight fusion algorithm Model Soup, aiming to improve reliability by using dual-channel reliability as the objective function to fuse a series of weights in the breast ultrasound classification models. Experimental results on breast ultrasound clinical datasets demonstrate that reliable soup significantly enhances the reliability of breast ultrasound image classification tasks. The effectiveness of the proposed approach was verified via multicenter trials. The results from five centers indicate that the reliability optimization algorithm can enhance the reliability of the breast ultrasound image classification model and exhibit low multicenter correlation.Keywords: breast ultrasound image classification, feature attribution, reliability assessment, reliability optimization
Procedia PDF Downloads 854793 A Robust Hybrid Blind Digital Image Watermarking System Using Discrete Wavelet Transform and Contourlet Transform
Authors: Nidal F. Shilbayeh, Belal AbuHaija, Zainab N. Al-Qudsy
Abstract:
In this paper, a hybrid blind digital watermarking system using Discrete Wavelet Transform (DWT) and Contourlet Transform (CT) has been implemented and tested. The implemented combined digital watermarking system has been tested against five common types of image attacks. The performance evaluation shows improved results in terms of imperceptibility, robustness, and high tolerance against these attacks; accordingly, the system is very effective and applicable.Keywords: discrete wavelet transform (DWT), contourlet transform (CT), digital image watermarking, copyright protection, geometric attack
Procedia PDF Downloads 3944792 A Robust Digital Image Watermarking Against Geometrical Attack Based on Hybrid Scheme
Authors: M. Samadzadeh Mahabadi, J. Shanbehzadeh
Abstract:
This paper presents a hybrid digital image-watermarking scheme, which is robust against varieties of attacks and geometric distortions. The image content is represented by important feature points obtained by an image-texture-based adaptive Harris corner detector. These feature points are extracted from LL2 of 2-D discrete wavelet transform which are obtained by using the Harris-Laplacian detector. We calculate the Fourier transform of circular regions around these points. The amplitude of this transform is rotation invariant. The experimental results demonstrate the robustness of the proposed method against the geometric distortions and various common image processing operations such as JPEG compression, colour reduction, Gaussian filtering, median filtering, and rotation.Keywords: digital watermarking, geometric distortions, geometrical attack, Harris Laplace, important feature points, rotation, scale invariant feature
Procedia PDF Downloads 5014791 Changes in the Median Sacral Crest Associated with Sacrocaudal Fusion in the Greyhound
Authors: S. M. Ismail, H-H Yen, C. M. Murray, H. M. S. Davies
Abstract:
A recent study reported a 33% incidence of complete sacrocaudal fusion in greyhounds compared to a 3% incidence in other dogs. In the dog, the median sacral crest is formed by the fusion of sacral spinous processes. Separation of the 1st spinous process from the median crest of the sacrum in the dog has been reported as a diagnostic tool of type one lumbosacral transitional vertebra (LTV). LTV is a congenital spinal anomaly, which includes either sacralization of the caudal lumbar part or lumbarization of the most cranial sacral segment of the spine. In this study, the absence or reduction of fusion (presence of separation) between the 1st and 2ndspinous processes of the median sacral crest has been identified in association with sacrocaudal fusion in the greyhound, without any feature of LTV. In order to provide quantitative data on the absence or reduction of fusion in the median sacral crest between the 1st and 2nd sacral spinous processes, in association with sacrocaudal fusion. 204 dog sacrums free of any pathological changes (192 greyhound, 9 beagles and 3 labradors) were grouped based on the occurrence and types of fusion and the presence, absence, or reduction in the median sacral crest between the 1st and 2nd sacral spinous processes., Sacrums were described and classified as follows: F: Complete fusion (crest is present), N: Absence (fusion is absent), and R: Short crest (fusion reduced but not absent (reduction). The incidence of sacrocaudal fusion in the 204 sacrums: 57% of the sacrums were standard (3 vertebrae) and 43% were fused (4 vertebrae). Type of sacrum had a significant (p < .05) association with the absence and reduction of fusion between the 1st and 2nd sacral spinous processes of the median sacral crest. In the 108 greyhounds with standard sacrums (3 vertebrae) the percentages of F, N and R were 45% 23% and 23% respectively, while in the 84 fused (4 vertebrae) sacrums, the percentages of F, N and R were 3%, 87% and 10% respectively and these percentages were significantly different between standard (3 vertebrae) and fused (4 vertebrae) sacrums (p < .05). This indicates that absence of spinous process fusion in the median sacral crest was found in a large percentage of the greyhounds in this study and was found to be particularly prevalent in those with sacrocaudal fusion – therefore in this breed, at least, absence of sacral spinous process fusion may be unlikely to be associated with LTV.Keywords: greyhound, median sacral crest, sacrocaudal fusion, sacral spinous process
Procedia PDF Downloads 4464790 Implementation of Sensor Fusion Structure of 9-Axis Sensors on the Multipoint Control Unit
Authors: Jun Gil Ahn, Jong Tae Kim
Abstract:
In this paper, we study the sensor fusion structure on the multipoint control unit (MCU). Sensor fusion using Kalman filter for 9-axis sensors is considered. The 9-axis inertial sensor is the combination of 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. We implement the sensor fusion structure among the sensor hubs in MCU and measure the execution time, power consumptions, and total energy. Experiments with real data from 9-axis sensor in 20Mhz show that the average power consumptions are 44mW and 48mW on Cortx-M0 and Cortex-M3 MCU, respectively. Execution times are 613.03 us and 305.6 us respectively.Keywords: 9-axis sensor, Kalman filter, MCU, sensor fusion
Procedia PDF Downloads 5044789 Liver Tumor Detection by Classification through FD Enhancement of CT Image
Authors: N. Ghatwary, A. Ahmed, H. Jalab
Abstract:
In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.
Procedia PDF Downloads 3584788 Image Segmentation: New Methods
Authors: Flaurence Benjamain, Michel Casperance
Abstract:
We present in this paper, first, a comparative study of three mathematical theories to achieve the fusion of information sources. This study aims to identify the characteristics inherent in theories of possibilities, belief functions (DST) and plausible and paradoxical reasoning to establish a strategy of choice that allows us to adopt the most appropriate theory to solve a problem of fusion in order, taking into account the acquired information and imperfections that accompany them. Using the new theory of plausible and paradoxical reasoning, also called Dezert-Smarandache Theory (DSmT), to fuse information multi-sources needs, at first step, the generation of the composites events witch is, in general, difficult. Thus, we present in this paper a new approach to construct pertinent paradoxical classes based on gray levels histograms, which also allows to reduce the cardinality of the hyper-powerset. Secondly, we developed a new technique for order and coding generalized focal elements. This method is exploited, in particular, to calculate the cardinality of Dezert and Smarandache. Then, we give an experimentation of classification of a remote sensing image that illustrates the given methods and we compared the result obtained by the DSmT with that resulting from the use of the DST and theory of possibilities.Keywords: segmentation, image, approach, vision computing
Procedia PDF Downloads 2754787 Development of Anterior Lumbar Interbody Fusion (ALIF) Peek Cage Based on the Korean Lumbar Anatomical Information
Authors: Chang Soo Chon, Cheol Woong Ko, Han Sung Kim
Abstract:
The aim of this study is to develop an anterior lumbar interbody fusion (ALIF) PEEK cage suitable for Korean people. In this study, CT images were obtained from Korean male (173cm, 71kg) and 3D Korean lumbar models were reconstructed based on the CT images to investigate anatomical characteristics. Major design parameters of anterior lumbar interbody fusion (ALIF) PEEK Cage were selected using the morphological measurement information of the Korean Lumbar models. Through finite element analysis and mechanical tests, the developed ALIF PEEK Cage prototype was compared with the Fidji Cage (Zimmer.Inc, USA) and it was found that the ALIF prototype showed similar and/or superior mechanical performance compared to the FidJi Cage. Also, clinical validation for the ALIF PEEK Cage prototype was carried out to check predictable troubles in surgical operations. Finally, it is considered that the convenience and stability of the prototype was clinically verified.Keywords: inter-body anterior fusion, ALIF cage, PEEK, Korean lumbar, CT image, animal test
Procedia PDF Downloads 5234786 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX Through Fusion of Vision and 3+1D Millimeter Wave Radar
Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma
Abstract:
Unmanned Surface Vehicles (USVs) are valuable due to their ability to perform dangerous and time-consuming tasks on the water. Object detection tasks are significant in these applications. However, inherent challenges, such as the complex distribution of obstacles, reflections from shore structures, water surface fog, etc., hinder the performance of object detection of USVs. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. MMW radar is complementary to vision sensors, providing robust environmental information. The radar 3D point cloud is transferred to 2D radar pseudo image to unify radar and vision information format by utilizing the point transformer. We propose a multi-source object detection network (RV-YOLOX )based on radar-vision fusion for inland waterways environment. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.Keywords: inland waterways, YOLO, sensor fusion, self-attention
Procedia PDF Downloads 1234785 Image Segmentation Techniques: Review
Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo
Abstract:
Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.Keywords: clustering-based, convolution-network, edge-based, region-growing
Procedia PDF Downloads 964784 Design of a Graphical User Interface for Data Preprocessing and Image Segmentation Process in 2D MRI Images
Authors: Enver Kucukkulahli, Pakize Erdogmus, Kemal Polat
Abstract:
The 2D image segmentation is a significant process in finding a suitable region in medical images such as MRI, PET, CT etc. In this study, we have focused on 2D MRI images for image segmentation process. We have designed a GUI (graphical user interface) written in MATLABTM for 2D MRI images. In this program, there are two different interfaces including data pre-processing and image clustering or segmentation. In the data pre-processing section, there are median filter, average filter, unsharp mask filter, Wiener filter, and custom filter (a filter that is designed by user in MATLAB). As for the image clustering, there are seven different image segmentations for 2D MR images. These image segmentation algorithms are as follows: PSO (particle swarm optimization), GA (genetic algorithm), Lloyds algorithm, k-means, the combination of Lloyds and k-means, mean shift clustering, and finally BBO (Biogeography Based Optimization). To find the suitable cluster number in 2D MRI, we have designed the histogram based cluster estimation method and then applied to these numbers to image segmentation algorithms to cluster an image automatically. Also, we have selected the best hybrid method for each 2D MR images thanks to this GUI software.Keywords: image segmentation, clustering, GUI, 2D MRI
Procedia PDF Downloads 3774783 Hybrid Temporal Correlation Based on Gaussian Mixture Model Framework for View Synthesis
Authors: Deng Zengming, Wang Mingjiang
Abstract:
As 3D video is explored as a hot research topic in the last few decades, free-viewpoint TV (FTV) is no doubt a promising field for its better visual experience and incomparable interactivity. View synthesis is obviously a crucial technology for FTV; it enables to render images in unlimited numbers of virtual viewpoints with the information from limited numbers of reference view. In this paper, a novel hybrid synthesis framework is proposed and blending priority is explored. In contrast to the commonly used View Synthesis Reference Software (VSRS), the presented synthesis process is driven in consideration of the temporal correlation of image sequences. The temporal correlations will be exploited to produce fine synthesis results even near the foreground boundaries. As for the blending priority, this scheme proposed that one of the two reference views is selected to be the main reference view based on the distance between the reference views and virtual view, another view is chosen as the auxiliary viewpoint, just assist to fill the hole pixel with the help of background information. Significant improvement of the proposed approach over the state-of –the-art pixel-based virtual view synthesis method is presented, the results of the experiments show that subjective gains can be observed, and objective PSNR average gains range from 0.5 to 1.3 dB, while SSIM average gains range from 0.01 to 0.05.Keywords: fusion method, Gaussian mixture model, hybrid framework, view synthesis
Procedia PDF Downloads 2504782 Efficient Corporate Image as a Strategy for Enhancing Profitability in Hotels
Authors: Lucila T. Magalong
Abstract:
The hotel industry has been using their corporate image and reputation to maintain service quality, customer satisfaction, and customer loyalty and to leverage themselves against competitors and facilitate their growth strategies. With the increasing pressure to perform, hotels have even created hybrid service strategy to fight in the niche markets across pricing and level-off service parameters.Keywords: corporate image, hotel industry, service quality, customer expectations
Procedia PDF Downloads 4654781 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image
Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche
Abstract:
The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter
Procedia PDF Downloads 1634780 Development of DEMO-FNS Hybrid Facility and Its Integration in Russian Nuclear Fuel Cycle
Authors: Yury S. Shpanskiy, Boris V. Kuteev
Abstract:
Development of a fusion-fission hybrid facility based on superconducting conventional tokamak DEMO-FNS runs in Russia since 2013. The main design goal is to reach the technical feasibility and outline prospects of industrial hybrid technologies providing the production of neutrons, fuel nuclides, tritium, high-temperature heat, electricity and subcritical transmutation in Fusion-Fission Hybrid Systems. The facility should operate in a steady-state mode at the fusion power of 40 MW and fission reactions of 400 MW. Major tokamak parameters are the following: major radius R=3.2 m, minor radius a=1.0 m, elongation 2.1, triangularity 0.5. The design provides the neutron wall loading of ~0.2 MW/m², the lifetime neutron fluence of ~2 MWa/m², with the surface area of the active cores and tritium breeding blanket ~100 m². Core plasma modelling showed that the neutron yield ~10¹⁹ n/s is maximal if the tritium/deuterium density ratio is 1.5-2.3. The design of the electromagnetic system (EMS) defined its basic parameters, accounting for the coils strength and stability, and identified the most problematic nodes in the toroidal field coils and the central solenoid. The EMS generates toroidal, poloidal and correcting magnetic fields necessary for the plasma shaping and confinement inside the vacuum vessel. EMC consists of eighteen superconducting toroidal field coils, eight poloidal field coils, five sections of a central solenoid, correction coils, in-vessel coils for vertical plasma control. Supporting structures, the thermal shield, and the cryostat maintain its operation. EMS operates with the pulse duration of up to 5000 hours at the plasma current up to 5 MA. The vacuum vessel (VV) is an all-welded two-layer toroidal shell placed inside the EMS. The free space between the vessel shells is filled with water and boron steel plates, which form the neutron protection of the EMS. The VV-volume is 265 m³, its mass with manifolds is 1800 tons. The nuclear blanket of DEMO-FNS facility was designed to provide functions of minor actinides transmutation, tritium production and enrichment of spent nuclear fuel. The vertical overloading of the subcritical active cores with MA was chosen as prospective. Analysis of the device neutronics and the hybrid blanket thermal-hydraulic characteristics has been performed for the system with functions covering transmutation of minor actinides, production of tritium and enrichment of spent nuclear fuel. A study of FNS facilities role in the Russian closed nuclear fuel cycle was performed. It showed that during ~100 years of operation three FNS facilities with fission power of 3 GW controlled by fusion neutron source with power of 40 MW can burn 98 tons of minor actinides and 198 tons of Pu-239 can be produced for startup loading of 20 fast reactors. Instead of Pu-239, up to 25 kg of tritium per year may be produced for startup of fusion reactors using blocks with lithium orthosilicate instead of fissile breeder blankets.Keywords: fusion-fission hybrid system, conventional tokamak, superconducting electromagnetic system, two-layer vacuum vessel, subcritical active cores, nuclear fuel cycle
Procedia PDF Downloads 1474779 Multi-Channel Information Fusion in C-OTDR Monitoring Systems: Various Approaches to Classify of Targeted Events
Authors: Andrey V. Timofeev
Abstract:
The paper presents new results concerning selection of optimal information fusion formula for ensembles of C-OTDR channels. The goal of information fusion is to create an integral classificator designed for effective classification of seismoacoustic target events. The LPBoost (LP-β and LP-B variants), the Multiple Kernel Learning, and Weighing of Inversely as Lipschitz Constants (WILC) approaches were compared. The WILC is a brand new approach to optimal fusion of Lipschitz Classifiers Ensembles. Results of practical usage are presented.Keywords: Lipschitz Classifier, classifiers ensembles, LPBoost, C-OTDR systems
Procedia PDF Downloads 4614778 Developing NAND Flash-Memory SSD-Based File System Design
Authors: Jaechun No
Abstract:
This paper focuses on I/O optimizations of N-hybrid (New-Form of hybrid), which provides a hybrid file system space constructed on SSD and HDD. Although the promising potentials of SSD, such as the absence of mechanical moving overhead and high random I/O throughput, have drawn a lot of attentions from IT enterprises, its high ratio of cost/capacity makes it less desirable to build a large-scale data storage subsystem composed of only SSDs. In this paper, we present N-hybrid that attempts to integrate the strengths of SSD and HDD, to offer a single, large hybrid file system space. Several experiments were conducted to verify the performance of N-hybrid.Keywords: SSD, data section, I/O optimizations, hybrid system
Procedia PDF Downloads 4184777 Variations in the 7th Lumbar (L7) Vertebra Length Associated with Sacrocaudal Fusion in Greyhounds
Authors: Sa`ad M. Ismail, Hung-Hsun Yen, Christina M. Murray, Helen M. S. Davies
Abstract:
The lumbosacral junction (where the 7th lumbar vertebra (L7) articulates with the sacrum) is a clinically important area in the dog. The 7th lumbar vertebra (L7) is normally shorter than other lumbar vertebrae, and it has been reported that variations in the L7 length may be associated with other abnormal anatomical findings. These variations included the reduction or absence of the portion of the median sacral crest. In this study, 53 greyhound cadavers were placed in right lateral recumbency, and two lateral radiographs were taken of the lumbosacral region for each greyhound. The length of the 6th lumbar (L6) vertebra and L7 were measured using radiographic measurement software and was defined to be the mean of three lines drawn from the caudal to the cranial edge of the L6 and L7 vertebrae (a dorsal, middle, and ventral line) between specific landmarks. Sacrocaudal fusion was found in 41.5% of the greyhounds. The mean values of the length of L6, L7, and the ratio of the L6/L7 length of the greyhounds with sacrocaudal fusion were all greater than those with standard sacrums (three sacral vertebrae). There was a significant difference (P < 0.05) in the mean values of the length of L7 between the greyhounds without sacrocaudal fusion (mean = 29.64, SD ± 2.07) and those with sacrocaudal fusion (mean = 30.86, SD ± 1.80), but, there was no significant difference in the mean value of the length of the L6 measurement. Among different types of sacrocaudal fusion, the longest L7 was found in greyhounds with sacrum type D, intermediate length in those with sacrum type B, and the shortest was found in those with sacrums type C, and the mean values of the ratio of the L6/L7 were 1.11 (SD ± 0.043), 1.15, (SD ± 0.025), and 1.15 (SD ± 0.011) for the types B, C, and D respectively. No significant differences in the mean values of the length of L6 or L7 were found among the different types of sacrocaudal fusion. The occurrence of sacrocaudal fusion might affect direct anatomically connected structures such as the L7. The variation in the length of L7 between greyhounds with sacrocaudal fusion and those without may reflect the possible sequences of the process of fusion. Variations in the length of the L7 vertebra in greyhounds may be associated with the occurrence of sacrocaudal fusion. The variation in the vertebral length may affect the alignment and biomechanical properties of the sacrum and may alter the loading. We concluded that any variations in the sacrum anatomical features might change the function of the sacrum or the surrounding anatomical structures.Keywords: biomechanics, Greyhound, sacrocaudal fusion, locomotion, 6th Lumbar (L6) Vertebra, 7th Lumbar (L7) Vertebra, ratio of the L6/L7 length
Procedia PDF Downloads 3714776 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background
Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong
Abstract:
Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.Keywords: deep learning, image fusion, image generation, layout analysis
Procedia PDF Downloads 1574775 Clinical Relevance of TMPRSS2-ERG Fusion Marker for Prostate Cancer
Authors: Shalu Jain, Anju Bansal, Anup Kumar, Sunita Saxena
Abstract:
Objectives: The novel TMPRSS2:ERG gene fusion is a common somatic event in prostate cancer that in some studies is linked with a more aggressive disease phenotype. Thus, this study aims to determine whether clinical variables are associated with the presence of TMPRSS2:ERG-fusion gene transcript in Indian patients of prostate cancer. Methods: We evaluated the clinical variables with presence and absence of TMPRSS2:ERG gene fusion in prostate cancer and BPH association of clinical patients. Patients referred for prostate biopsy because of abnormal DRE or/and elevated sPSA were enrolled for this prospective clinical study. TMPRSS2:ERG mRNA copies in samples were quantified using a Taqman chemistry by real time PCR assay in prostate biopsy samples (N=42). The T2:ERG assay detects the gene fusion mRNA isoform TMPRSS2 exon1 to ERG exon4. Results: Histopathology report has confirmed 25 cases as prostate cancer adenocarcinoma (PCa) and 17 patients as benign prostate hyperplasia (BPH). Out of 25 PCa cases, 16 (64%) were T2: ERG fusion positive. All 17 BPH controls were fusion negative. The T2:ERG fusion transcript was exclusively specific for prostate cancer as no case of BPH was detected having T2:ERG fusion, showing 100% specificity. The positive predictive value of fusion marker for prostate cancer is thus 100% and the negative predictive value is 65.3%. The T2:ERG fusion marker is significantly associated with clinical variables like no. of positive cores in prostate biopsy, Gleason score, serum PSA, perineural invasion, perivascular invasion and periprostatic fat involvement. Conclusions: Prostate cancer is a heterogeneous disease that may be defined by molecular subtypes such as the TMPRSS2:ERG fusion. In the present prospective study, the T2:ERG quantitative assay demonstrated high specificity for predicting biopsy outcome; sensitivity was similar to the prevalence of T2:ERG gene fusions in prostate tumors. These data suggest that further improvement in diagnostic accuracy could be achieved using a nomogram that combines T2:ERG with other markers and risk factors for prostate cancer.Keywords: prostate cancer, genetic rearrangement, TMPRSS2:ERG fusion, clinical variables
Procedia PDF Downloads 4444774 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition
Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie
Abstract:
In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks
Procedia PDF Downloads 1114773 Secure Transfer of Medical Images Using Hybrid Encryption
Authors: Boukhatem Mohamed Belkaid, Lahdi Mourad
Abstract:
In this paper, we propose a new encryption system for security issues medical images. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity, and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every new session of encryption, that will be used to encrypt each frame of the medical image basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.Keywords: AES, RSA, integrity, confidentiality, authentication, medical images, encryption, decryption, key, correlation
Procedia PDF Downloads 4434772 A Hybrid Normalized Gradient Correlation Based Thermal Image Registration for Morphoea
Authors: L. I. Izhar, T. Stathaki, K. Howell
Abstract:
Analyzing and interpreting of thermograms have been increasingly employed in the diagnosis and monitoring of diseases thanks to its non-invasive, non-harmful nature and low cost. In this paper, a novel system is proposed to improve diagnosis and monitoring of morphoea skin disorder based on integration with the published lines of Blaschko. In the proposed system, image registration based on global and local registration methods are found inevitable. This paper presents a modified normalized gradient cross-correlation (NGC) method to reduce large geometrical differences between two multimodal images that are represented by smooth gray edge maps is proposed for the global registration approach. This method is improved further by incorporating an iterative-based normalized cross-correlation coefficient (NCC) method. It is found that by replacing the final registration part of the NGC method where translational differences are solved in the spatial Fourier domain with the NCC method performed in the spatial domain, the performance and robustness of the NGC method can be greatly improved. It is shown in this paper that the hybrid NGC method not only outperforms phase correlation (PC) method but also improved misregistration due to translation, suffered by the modified NGC method alone for thermograms with ill-defined jawline. This also demonstrates that by using the gradients of the gray edge maps and a hybrid technique, the performance of the PC based image registration method can be greatly improved.Keywords: Blaschko’s lines, image registration, morphoea, thermal imaging
Procedia PDF Downloads 3104771 Hybrid-Nanoengineering™: A New Platform for Nanomedicine
Authors: Mewa Singh
Abstract:
Nanomedicine, a fusion of nanotechnology and medicine, is an emerging technology ideally suited to the targeted therapies. Nanoparticles overcome the low selectivity of anti-cancer drugs toward the tumor as compared to normal tissue and hence result-in less severe side-effects. Our new technology, HYBRID-NANOENGINEERING™, uses a new molecule (MR007) in the creation of nanoparticles that not only helps in nanonizing the medicine but also provides synergy to the medicine. The simplified manufacturing process will result in reduced manufacturing costs. Treatment is made more convenient because hybrid nanomedicines can be produced in oral, injectable or transdermal formulations. The manufacturing process uses no protein, oil or detergents. The particle size is below 180 nm with a narrow distribution of size. Importantly, these properties confer great stability of the structure. The formulation does not aggregate in plasma and is stable over a wide range of pH. The final hybrid formulation is stable for at least 18 months as a powder. More than 97 drugs, including paclitaxel, docetaxel, tamoxifen, doxorubicinm prednisone, and artemisinin have been nanonized in water soluble formulations. Preclinical studies on cell cultures of tumors show promising results. Our HYBRID-NANOENGINEERING™ platform enables the design and development of hybrid nano-pharmaceuticals that combine efficacy with tolerability, giving patients hope for both extended overall survival and improved quality of life. This study would discuss or present this new discovery of HYBRID-NANOENGINEERING™ which targets drug delivery, synergistic, and potentiating effects, and barriers of drug delivery and advanced drug delivery systems.Keywords: nano-medicine, nano-particles, drug delivery system, pharmaceuticals
Procedia PDF Downloads 4864770 Secure Transfer of Medical Images Using Hybrid Encryption Authentication, Confidentiality, Integrity
Authors: Boukhatem Mohammed Belkaid, Lahdir Mourad
Abstract:
In this paper, we propose a new encryption system for security issues medical images. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity, and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every new session of encryption, that will be used to encrypt each frame of the medical image basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.Keywords: AES, RSA, integrity, confidentiality, authentication, medical images, encryption, decryption, key, correlation
Procedia PDF Downloads 5404769 Sorting Fish by Hu Moments
Authors: J. M. Hernández-Ontiveros, E. E. García-Guerrero, E. Inzunza-González, O. R. López-Bonilla
Abstract:
This paper presents the implementation of an algorithm that identifies and accounts different fish species: Catfish, Sea bream, Sawfish, Tilapia, and Totoaba. The main contribution of the method is the fusion of the characteristics of invariance to the position, rotation and scale of the Hu moments, with the proper counting of fish. The identification and counting is performed, from an image under different noise conditions. From the experimental results obtained, it is inferred the potentiality of the proposed algorithm to be applied in different scenarios of aquaculture production.Keywords: counting fish, digital image processing, invariant moments, pattern recognition
Procedia PDF Downloads 408