Search results for: groundwater flow and contaminant transport modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9907

Search results for: groundwater flow and contaminant transport modeling

9877 Quantitative Analysis of Nutrient Inflow from River and Groundwater to Imazu Bay in Fukuoka, Japan

Authors: Keisuke Konishi, Yoshinari Hiroshiro, Kento Terashima, Atsushi Tsutsumi

Abstract:

Imazu Bay plays an important role for endangered species such as horseshoe crabs and black-faced spoonbills that stay in the bay for spawning or the passing of winter. However, this bay is semi-enclosed with slow water exchange, which could lead to eutrophication under the condition of excess nutrient inflow to the bay. Therefore, quantification of nutrient inflow is of great importance. Generally, analysis of nutrient inflow to the bays takes into consideration nutrient inflow from only the river, but that from groundwater should not be ignored for more accurate results. The main objective of this study is to estimate the amounts of nutrient inflow from river and groundwater to Imazu Bay by analyzing water budget in Zuibaiji River Basin and loads of T-N, T-P, NO3-N and NH4-N. The water budget computation in the basin is performed using groundwater recharge model and quasi three-dimensional two-phase groundwater flow model, and the multiplication of the measured amount of nutrient inflow with the computed discharge gives the total amount of nutrient inflow to the bay. In addition, in order to evaluate nutrient inflow to the bay, the result is compared with nutrient inflow from geologically similar river basins. The result shows that the discharge is 3.50×107 m3/year from the river and 1.04×107 m3/year from groundwater. The submarine groundwater discharge accounts for approximately 23 % of the total discharge, which is large compared to the other river basins. It is also revealed that the total nutrient inflow is not particularly large. The sum of NO3-N and NH4-N loadings from groundwater is less than 10 % of that from the river because of denitrification in groundwater. The Shin Seibu Sewage Treatment Plant located below the observation points discharges treated water of 15,400 m3/day and plans to increase it. However, the loads of T-N and T-P from the treatment plant are 3.9 mg/L and 0.19 mg/L, so that it does not contribute a lot to eutrophication.

Keywords: Eutrophication, groundwater recharge model, nutrient inflow, quasi three-dimensional two-phase groundwater flow model, submarine groundwater discharge

Procedia PDF Downloads 434
9876 Mapping of Potential Areas for Groundwater Storage in the Sais Plateau and Its Middle Atlas Borders, Morocco

Authors: Abdelghani Qadem, Zohair Qadem, Mohamed Lasri

Abstract:

At the level of the Moroccan Sais Plateau, groundwater constitutes strategic natural resources for agricultural, industrial, and domestic use. Today, due to climate change and population growth, the pressure on groundwater has increased considerably. This contribution aims to delineate and map potential areas for groundwater storage in the area in question using GIS and remote sensing. The methodology adopted is based on the identification of the thematic layers used to assess the potential recharge of the aquifer. The mapping of potential areas for groundwater storage is developed through the method of modeling and weighted overlay using the spatial analysis tool on the Geographic Information System. The results obtained can be used for the planning of future artificial recharge projects in the study area in order to ensure the good sustainable use of this underground gift.

Keywords: Morocco, climate change, groundwater, mapping, recharge

Procedia PDF Downloads 50
9875 Hydrodynamic Modeling of the Hydraulic Threshold El Haouareb

Authors: Sebai Amal, Massuel Sylvain

Abstract:

Groundwater is the key element of the development of most of the semi-arid areas where water resources are increasingly scarce due to an irregularity of precipitation, on the one hand, and an increasing demand on the other hand. This is the case of the watershed of the Central Tunisia Merguellil, object of the present study, which focuses on an implementation of an underground flows hydrodynamic model to understand the recharge processes of the Kairouan’s plain groundwater by aquifers boundary through the hydraulic threshold of El Haouareb. The construction of a conceptual geological 3D model by the Hydro GeoBuilder software has led to a definition of the aquifers geometry in the studied area thanks to the data acquired by the analysis of geologic sections of drilling and piezometers crossed shells partially or in full. Overall analyses of the piezometric Chronicles of different piezometers located at the level of the dam indicate that the influence of the dam is felt especially in the aquifer carbonate which confirms that the dynamics of this aquifer are highly correlated to the dam’s dynamic. Groundwater maps, high and low-water dam, show a flow that moves towards the threshold of El Haouareb to the discharge of the waters of Ain El Beidha discharge towards the plain of Kairouan. Software FEFLOW 5.2 steady hydrodynamic modeling to simulate the hydraulic threshold at the level of the dam El Haouareb in a satisfactory manner. However, the sensitivity study to the different parameters shows equivalence problems and a fix to calibrate the limestones’ permeability. This work could be improved by refining the timing steady and amending the representation of limestones in the model.

Keywords: Hydrodynamic modeling, lithological modeling, hydraulic, semi-arid, merguellil, central Tunisia

Procedia PDF Downloads 741
9874 Drying and Transport Processes in Distributed Hydrological Modelling Based on Finite Volume Schemes (Iber Model)

Authors: Carlos Caro, Ernest Bladé, Pedro Acosta, Camilo Lesmes

Abstract:

The drying-wet process is one of the topics to be more careful in distributed hydrological modeling using finite volume schemes as a means of solving the equations of Saint Venant. In a hydrologic and hydraulic computer model, surface flow phenomena depend mainly on the different flow accumulation and subsequent runoff generation. These accumulations are generated by routing, cell by cell, from the heights of water, which begin to appear due to the rain at each instant of time. Determine when it is considered a dry cell and when considered wet to include in the full calculation is an issue that directly affects the quantification of direct runoff or generation of flow at the end of a zone of contribution by accumulations flow generated from cells or finite volume.

Keywords: hydrology, transport processes, hydrological modelling, finite volume schemes

Procedia PDF Downloads 369
9873 Estimating Groundwater Seepage Rates: Case Study at Zegveld, Netherlands

Authors: Wondmyibza Tsegaye Bayou, Johannes C. Nonner, Joost Heijkers

Abstract:

This study aimed to identify and estimate dynamic groundwater seepage rates using four comparative methods; the Darcian approach, the water balance approach, the tracer method, and modeling. The theoretical background to these methods is put together in this study. The methodology was applied to a case study area at Zegveld following the advice of the Water Board Stichtse Rijnlanden. Data collection has been from various offices and a field campaign in the winter of 2008/09. In this complex confining layer of the study area, the location of the phreatic groundwater table is at a shallow depth compared to the piezometric water level. Data were available for the model years 1989 to 2000 and winter 2008/09. The higher groundwater table shows predominately-downward seepage in the study area. Results of the study indicated that net recharge to the groundwater table (precipitation excess) and the ditch system are the principal sources for seepage across the complex confining layer. Especially in the summer season, the contribution from the ditches is significant. Water is supplied from River Meije through a pumping system to meet the ditches' water demand. The groundwater seepage rate was distributed unevenly throughout the study area at the nature reserve averaging 0.60 mm/day for the model years 1989 to 2000 and 0.70 mm/day for winter 2008/09. Due to data restrictions, the seepage rates were mainly determined based on the Darcian method. Furthermore, the water balance approach and the tracer methods are applied to compute the flow exchange within the ditch system. The site had various validated groundwater levels and vertical flow resistance data sources. The phreatic groundwater level map compared with TNO-DINO groundwater level data values overestimated the groundwater level depth by 28 cm. The hydraulic resistance values obtained based on the 3D geological map compared with the TNO-DINO data agreed with the model values before calibration. On the other hand, the calibrated model significantly underestimated the downward seepage in the area compared with the field-based computations following the Darcian approach.

Keywords: groundwater seepage, phreatic water table, piezometric water level, nature reserve, Zegveld, The Netherlands

Procedia PDF Downloads 66
9872 Transport and Mixing Phenomena Developed by Vortex Formation in Flow around Airfoil Using Lagrangian Coherent Structures

Authors: Riaz Ahmad, Jiazhong Zhang, Asma Farooqi

Abstract:

In this study, mass transport between separation bubbles and the flow around a two-dimensional airfoil are numerically investigated using Lagrangian Coherent Structures (LCSs). Finite Time Lyapunov Exponent (FTLE) technique is used for the computation to identify invariant manifolds and LCSs. Moreover, the Characteristic Base Split (CBS) scheme combined with dual time stepping technique is applied to simulate such transient flow at low Reynolds number. We then investigate the evolution of vortex structures during the transport process with the aid of LCSs. To explore the vortex formation at the surface of the airfoil, the dynamics of separatrix is also taken into account which is formed by the combination of stable-unstable manifolds. The Lagrangian analysis gives a detailed understanding of vortex dynamics and separation bubbles which plays a significant role to explore the performance of the unsteady flow generated by the airfoil. Transport process and flow separation phenomena are studied extensively to analyze the flow pattern by Lagrangian point of view.

Keywords: transport phenomena, CBS Method, vortex formation, Lagrangian Coherent Structures

Procedia PDF Downloads 116
9871 Statistical and Analytical Comparison of GIS Overlay Modelings: An Appraisal on Groundwater Prospecting in Precambrian Metamorphics

Authors: Tapas Acharya, Monalisa Mitra

Abstract:

Overlay modeling is the most widely used conventional analysis for spatial decision support system. Overlay modeling requires a set of themes with different weightage computed in varied manners, which gives a resultant input for further integrated analysis. In spite of the popularity and most widely used technique; it gives inconsistent and erroneous results for similar inputs while processed in various GIS overlay techniques. This study is an attempt to compare and analyse the differences in the outputs of different overlay methods using GIS platform with same set of themes of the Precambrian metamorphic to obtain groundwater prospecting in Precambrian metamorphic rocks. The objective of the study is to emphasize the most suitable overlay method for groundwater prospecting in older Precambrian metamorphics. Seven input thematic layers like slope, Digital Elevation Model (DEM), soil thickness, lineament intersection density, average groundwater table fluctuation, stream density and lithology have been used in the spatial overlay models of fuzzy overlay, weighted overlay and weighted sum overlay methods to yield the suitable groundwater prospective zones. Spatial concurrence analysis with high yielding wells of the study area and the statistical comparative studies among the outputs of various overlay models using RStudio reveal that the Weighted Overlay model is the most efficient GIS overlay model to delineate the groundwater prospecting zones in the Precambrian metamorphic rocks.

Keywords: fuzzy overlay, GIS overlay model, groundwater prospecting, Precambrian metamorphics, weighted overlay, weighted sum overlay

Procedia PDF Downloads 102
9870 Electrokinetic Transport of Power Law Fluid through Hydrophobic Micro-Slits

Authors: Ainul Haque, Ameeye Kumar Nayak

Abstract:

Flow enhancement and species transport in a slit hydrophobic microchannel is studied for non-Newtonian fluids with the externally imposed electric field and pressure gradient. The incompressible Poisson-Nernst-Plank equations and the Navier-Stokes equations are approximated by lubrication theory to quantify the flow structure due to hydrophobic and hydrophilic surfaces. The analytical quantification of velocity and pressure of electroosmotic flow (EOF) is made with the numerical results due to the staggered grid based finite volume method for flow governing equations. The resistance force due to fluid friction and shear force along the surface are decreased by the hydrophobicity, enables the faster movement of fluid particles. The resulting flow enhancement factor Ef is increased with the low viscous fluid and provides maximum species transport. Also, the analytical comparison of EOF with pressure driven EOF justifies the flow enhancement due to hydrophobicity and shear impact on flow variation.

Keywords: electroosmotic flow, hydrophobic surface, power-law fluid, shear effect

Procedia PDF Downloads 348
9869 Groundwater Flow Dynamics in Shallow Coastal Plain Sands Aquifer, Abesan Area, Eastern Dahomey Basin, Southwestern Nigeria

Authors: Anne Joseph, Yinusa Asiwaju-Bello, Oluwaseun Olabode

Abstract:

Sustainable administration of groundwater resources tapped in Coastal Plain Sands aquifer in Abesan area, Eastern Dahomey Basin, Southwestern Nigeria necessitates the knowledge of the pattern of groundwater flow in meeting a suitable environmental need for habitation. Thirty hand-dug wells were identified and evaluated to study the groundwater flow dynamics and anionic species distribution in the study area. Topography and water table levels method with the aid of Surfer were adopted in the identification of recharge and discharge zones where six recharge and discharge zones were delineated correspondingly. Dissolved anionic species of HCO3-, Cl-, SO42-and NO3- were determined using titrimetric and spectrophotometric method. The trend of significant anionic concentrations of groundwater samples are in the order Cl- > HCO3-> SO42- > NO3-. The prominent anions in the discharge and recharge area are Cl- and HCO3- ranging from 0.22ppm to 3.67ppm and 2.59ppm to 0.72ppm respectively. Analysis of groundwater head distribution and the groundwater flow vector in Abesan area confirmed that Cl- concentration is higher than HCO3- concentration in recharge zones. Conversely, there is a high concentration of HCO3- than Cl- inland towards the continent; therefore, HCO3-concentration in the discharge zones is higher than the Cl- concentration. The anions were to be closely related to the recharge and discharge areas which were confirmed by comparison of activities such as rainfall regime and anthropogenic activities in Abesan area. A large percentage of the samples showed that HCO3-, Cl-, SO42-and NO3- falls within the permissible limit of the W.H.O standard. Most of the samples revealed Cl- / (CO3- + HCO3-) ratio higher than 0.5 indicating that there is saltwater intrusion imprints in the groundwater of the study area. Gibbs plot shown that most of the samples is from rock dominance, some from evaporation dominance and few from precipitation dominance. Potential salinity and SO42/ Cl- ratios signifies that most of the groundwater in Abesan is saline and falls in a water class found to be insuitable for irrigation. Continuous dissolution of these anionic species may pose a significant threat to the inhabitants of Abesan area in the nearest future.

Keywords: Abessan, Anionic species, Discharge, Groundwater flow, Recharge

Procedia PDF Downloads 94
9868 Groundwater Monitoring Using a Community: Science Approach

Authors: Shobha Kumari Yadav, Yubaraj Satyal, Ajaya Dixit

Abstract:

In addressing groundwater depletion, it is important to develop evidence base so to be used in assessing the state of its degradation. Groundwater data is limited compared to meteorological data, which impedes the groundwater use and management plan. Monitoring of groundwater levels provides information base to assess the condition of aquifers, their responses to water extraction, land-use change, and climatic variability. It is important to maintain a network of spatially distributed, long-term monitoring wells to support groundwater management plan. Monitoring involving local community is a cost effective approach that generates real time data to effectively manage groundwater use. This paper presents the relationship between rainfall and spring flow, which are the main source of freshwater for drinking, household consumptions and agriculture in hills of Nepal. The supply and withdrawal of water from springs depends upon local hydrology and the meteorological characteristics- such as rainfall, evapotranspiration and interflow. The study offers evidence of the use of scientific method and community based initiative for managing groundwater and springshed. The approach presents a method to replicate similar initiative in other parts of the country for maintaining integrity of springs.

Keywords: citizen science, groundwater, water resource management, Nepal

Procedia PDF Downloads 178
9867 Geophysical Mapping of the Groundwater Aquifer System in Gode Area, Northeastern Hosanna, Ethiopia

Authors: Esubalew Yehualaw Melaku

Abstract:

In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Gode area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area.

Keywords: vertical electrical sounding, magnetic survey, aquifer, groundwater potential

Procedia PDF Downloads 97
9866 Tide Contribution in the Flood Event of Jeddah City: Mathematical Modelling and Different Field Measurements of the Groundwater Rise

Authors: Aïssa Rezzoug

Abstract:

This paper is aimed to bring new elements that demonstrate the tide caused the groundwater to rise in the shoreline band, on which the urban areas occurs, especially in the western coastal cities of the Kingdom of Saudi Arabia like Jeddah. The reason for the last events of Jeddah inundation was the groundwater rise in the city coupled at the same time to a strong precipitation event. This paper will illustrate the tide participation in increasing the groundwater level significantly. It shows that the reason for internal groundwater recharge within the urban area is not only the excess of the water supply coming from surrounding areas, due to the human activity, with lack of sufficient and efficient sewage system, but also due to tide effect. The research study follows a quantitative method to assess groundwater level rise risks through many in-situ measurements and mathematical modelling. The proposed approach highlights groundwater level, in the urban areas of the city on the shoreline band, reaching the high tide level without considering any input from precipitation. Despite the small tide in the Red Sea compared to other oceanic coasts, the groundwater level is considerably enhanced by the tide from the seaside and by the freshwater table from the landside of the city. In these conditions, the groundwater level becomes high in the city and prevents the soil to evacuate quickly enough the surface flow caused by the storm event, as it was observed in the last historical flood catastrophe of Jeddah in 2009.

Keywords: flood, groundwater rise, Jeddah, tide

Procedia PDF Downloads 92
9865 Statistical Modeling and by Artificial Neural Networks of Suspended Sediment Mina River Watershed at Wadi El-Abtal Gauging Station (Northern Algeria)

Authors: Redhouane Ghernaout, Amira Fredj, Boualem Remini

Abstract:

Suspended sediment transport is a serious problem worldwide, but it is much more worrying in certain regions of the world, as is the case in the Maghreb and more particularly in Algeria. It continues to take disturbing proportions in Northern Algeria due to the variability of rains in time and in space and constant deterioration of vegetation. Its prediction is essential in order to identify its intensity and define the necessary actions for its reduction. The purpose of this study is to analyze the concentration data of suspended sediment measured at Wadi El-Abtal Hydrometric Station. It also aims to find and highlight regressive power relationships, which can explain the suspended solid flow by the measured liquid flow. The study strives to find models of artificial neural networks linking the flow, month and precipitation parameters with solid flow. The obtained results show that the power function of the solid transport rating curve and the models of artificial neural networks are appropriate methods for analysing and estimating suspended sediment transport in Wadi Mina at Wadi El-Abtal Hydrometric Station. They made it possible to identify in a fairly conclusive manner the model of neural networks with four input parameters: the liquid flow Q, the month and the daily precipitation measured at the representative stations (Frenda 013002 and Ain El-Hadid 013004 ) of the watershed. The model thus obtained makes it possible to estimate the daily solid flows (interpolate and extrapolate) even beyond the period of observation of solid flows (1985/86 to 1999/00), given the availability of the average daily liquid flows and daily precipitation since 1953/1954.

Keywords: suspended sediment, concentration, regression, liquid flow, solid flow, artificial neural network, modeling, mina, algeria

Procedia PDF Downloads 75
9864 Vulnerability Assessment of Groundwater Quality Deterioration Using PMWIN Model

Authors: A. Shakoor, M. Arshad

Abstract:

The utilization of groundwater resources in irrigation has significantly increased during the last two decades due to constrained canal water supplies. More than 70% of the farmers in the Punjab, Pakistan, depend directly or indirectly on groundwater to meet their crop water demands and hence, an unchecked paradigm shift has resulted in aquifer depletion and deterioration. Therefore, a comprehensive research was carried at central Punjab-Pakistan, regarding spatiotemporal variation in groundwater level and quality. Processing MODFLOW for window (PMWIN) and MT3D (solute transport model) models were used for existing and future prediction of groundwater level and quality till 2030. The comprehensive data set of aquifer lithology, canal network, groundwater level, groundwater salinity, evapotranspiration, groundwater abstraction, recharge etc. were used in PMWIN model development. The model was thus, successfully calibrated and validated with respect to groundwater level for the periods of 2003 to 2007 and 2008 to 2012, respectively. The coefficient of determination (R2) and model efficiency (MEF) for calibration and validation period were calculated as 0.89 and 0.98, respectively, which argued a high level of correlation between the calculated and measured data. For solute transport model (MT3D), the values of advection and dispersion parameters were used. The model used for future scenario up to 2030, by assuming that there would be no uncertain change in climate and groundwater abstraction rate would increase gradually. The model predicted results revealed that the groundwater would decline from 0.0131 to 1.68m/year during 2013 to 2030 and the maximum decline would be on the lower side of the study area, where infrastructure of canal system is very less. This lowering of groundwater level might cause an increase in the tubewell installation and pumping cost. Similarly, the predicted total dissolved solids (TDS) of the groundwater would increase from 6.88 to 69.88mg/L/year during 2013 to 2030 and the maximum increase would be on lower side. It was found that in 2030, the good quality would reduce by 21.4%, while marginal and hazardous quality water increased by 19.28 and 2%, respectively. It was found from the simulated results that the salinity of the study area had increased due to the intrusion of salts. The deterioration of groundwater quality would cause soil salinity and ultimately the reduction in crop productivity. It was concluded from the predicted results of groundwater model that the groundwater deteriorated with the depth of water table i.e. TDS increased with declining groundwater level. It is recommended that agronomic and engineering practices i.e. land leveling, rainwater harvesting, skimming well, ASR (Aquifer Storage and Recovery Wells) etc. should be integrated to meliorate management of groundwater for higher crop production in salt affected soils.

Keywords: groundwater quality, groundwater management, PMWIN, MT3D model

Procedia PDF Downloads 353
9863 Localized Recharge Modeling of a Coastal Aquifer from a Dam Reservoir (Korba, Tunisia)

Authors: Nejmeddine Ouhichi, Fethi Lachaal, Radhouane Hamdi, Olivier Grunberger

Abstract:

Located in Cap Bon peninsula (Tunisia), the Lebna dam was built in 1987 to balance local water salt intrusion taking place in the coastal aquifer of Korba. The first intention was to reduce coastal groundwater over-pumping by supplying surface water to a large irrigation system. The unpredicted beneficial effect was recorded with the occurrence of a direct localized recharge to the coastal aquifer by leakage through the geological material of the southern bank of the lake. The hydrological balance of the reservoir dam gave an estimation of the annual leakage volume, but dynamic processes and sound quantification of recharge inputs are still required to understand the localized effect of the recharge in terms of piezometry and quality. Present work focused on simulating the recharge process to confirm the hypothesis, and established a sound quantification of the water supply to the coastal aquifer and extend it to multi-annual effects. A spatial frame of 30km² was used for modeling. Intensive outcrops and geophysical surveys based on 68 electrical resistivity soundings were used to characterize the aquifer 3D geometry and the limit of the Plio-quaternary geological material concerned by the underground flow paths. Permeabilities were determined using 17 pumping tests on wells and piezometers. Six seasonal piezometric surveys on 71 wells around southern reservoir dam banks were performed during the 2019-2021 period. Eight monitoring boreholes of high frequency (15min) piezometric data were used to examine dynamical aspects. Model boundary conditions were specified using the geophysics interpretations coupled with the piezometric maps. The dam-groundwater flow model was performed using Visual MODFLOW software. Firstly, permanent state calibration based on the first piezometric map of February 2019 was established to estimate the permanent flow related to the different reservoir levels. Secondly, piezometric data for the 2019-2021 period were used for transient state calibration and to confirm the robustness of the model. Preliminary results confirmed the temporal link between the reservoir level and the localized recharge flow with a strong threshold effect for levels below 16 m.a.s.l. The good agreement of computed flow through recharge cells on the southern banks and hydrological budget of the reservoir open the path to future simulation scenarios of the dilution plume imposed by the localized recharge. The dam reservoir-groundwater flow-model simulation results approve a potential for storage of up to 17mm/year in existing wells, under gravity-feed conditions during level increases on the reservoir into the three years of operation. The Lebna dam groundwater flow model characterized a spatiotemporal relation between groundwater and surface water.

Keywords: leakage, MODFLOW, saltwater intrusion, surface water-groundwater interaction

Procedia PDF Downloads 121
9862 Development of Groundwater Management Model Using Groundwater Sustainability Index

Authors: S. S. Rwanga, J. M. Ndambuki, Y. Woyessa

Abstract:

Development of a groundwater management model is an important step in the exploitation and management of any groundwater aquifer as it assists in the long-term sustainable planning of the resource. The current study was conducted in Central Limpopo province of South Africa with the overall objective of determining how much water can be withdrawn from the aquifer without producing nonreversible impacts on the groundwater quantity, hence developing a model which can sustainably protect the aquifer. The development was done through the computation of Groundwater Sustainability Index (GSI). Values of GSI close to unity and above indicated overexploitation. In this study, an index of 0.8 was considered as overexploitation. The results indicated that there is potential for higher abstraction rates compared to the current abstraction rates. GSI approach can be used in the management of groundwater aquifer to sustainably develop the resource and also provides water managers and policy makers with fundamental information on where future water developments can be carried out.

Keywords: development, groundwater, groundwater sustainability index, model

Procedia PDF Downloads 147
9861 Public Transport Analysis and Introducing of Bus Rapid Transit (BRT) System in Kabul City

Authors: Ramin Mirzada

Abstract:

This research investigates the valuation of public transport importance in decreasing congestion and in introduction of bus rapid transit in Kabul city. The main concern and main problem of the Kabul city public transport is traffic congestion. When buses and trams are stuck in traffic jams, it is clear that they fall behind from the schedule and this cause lots of problem for Kabul residence. In this research, the main attention has been given to improve current public transport in Kabul city which Public transport has large share almost 50% share among all mode. The main purpose of this research is to improve public transport system, to examine the demand and the supply of public transport in Kabul city, and to improve public transport system by introducing Bus rapid transit (BRT) system in Kabul city. The data which is used in this research is gathered by Transport Ministry, Kabul Municipality and Japan Cooperation Agency in Afghanistan (JICA). Urban transportation modeling system (UTMS) which is also known as traditional four-step modeling is used as the methodology of this research. The outcome of this research shows that by improving public transport which is local bus system mostly congestion problem of Kabul city become solve, and for those lanes which has the high demand and has more congestion, it is needed to introduce bus rapid transit system.

Keywords: transportation, planning, public transport, bus rapid transit, Kabul, Afghanistan

Procedia PDF Downloads 460
9860 Geophysical Methods of Mapping Groundwater Aquifer System: Perspectives and Inferences From Lisana Area, Western Margin of the Central Main Ethiopian Rift

Authors: Esubalew Yehualaw Melaku, Tigistu Haile Eritro

Abstract:

In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Lisana area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area.

Keywords: vertical electrical sounding, magnetic survey, aquifer, groundwater potential

Procedia PDF Downloads 57
9859 CFD Modeling of Mixing Enhancement in a Pitted Micromixer by High Frequency Ultrasound Waves

Authors: Faezeh Mohammadi, Ebrahim Ebrahimi, Neda Azimi

Abstract:

Use of ultrasound waves is one of the techniques for increasing the mixing and mass transfer in the microdevices. Ultrasound propagation into liquid medium leads to stimulation of the fluid, creates turbulence and so increases the mixing performance. In this study, CFD modeling of two-phase flow in a pitted micromixer equipped with a piezoelectric with frequency of 1.7 MHz has been studied. CFD modeling of micromixer at different velocity of fluid flow in the absence of ultrasound waves and with ultrasound application has been performed. The hydrodynamic of fluid flow and mixing efficiency for using ultrasound has been compared with the layout of no ultrasound application. The result of CFD modeling shows well agreements with the experimental results. The results showed that the flow pattern inside the micromixer in the absence of ultrasound waves is parallel, while when ultrasound has been applied, it is not parallel. In fact, propagation of ultrasound energy into the fluid flow in the studied micromixer changed the hydrodynamic and the forms of the flow pattern and caused to mixing enhancement. In general, from the CFD modeling results, it can be concluded that the applying ultrasound energy into the liquid medium causes an increase in the turbulences and mixing and consequently, improves the mass transfer rate within the micromixer.

Keywords: CFD modeling, ultrasound, mixing, mass transfer

Procedia PDF Downloads 158
9858 Combining Bio-Molecular and Isotopic Tools to Determine the Fate of Halogenated Compounds in Polluted Groundwater

Authors: N. Balaban, A. Buernstein, F. Gelman, Z. Ronen

Abstract:

Brominated flame retardants are widespread pollutants, and are known to be toxic, carcinogenic, endocrinic disrupting as well as recalcitrant. The industrial complex Neot Hovav, in the Northern Negev, Israel, is situated above a fractured chalk aquitard, which is polluted by a wide variety of halogenated organic compounds. Two of the abundant pollutants found in the site are Dibromoneopentyl-glycol (DBNPG) and tribromoneopentyl-alcohol (TBNPA). Due to the elusive nature of the groundwater flow, it is difficult to connect between the spatial changes in contaminant concentrations to degradation. In this study, we attempt to determine whether these compounds are biodegraded in the groundwater, and to gain a better understanding concerning the bacterial community in the groundwater. This was achieved through the application of compound-specific isotope analysis (CSIA) of carbon (13^C/12^C) and bromine (81^Br/79^Br), and new-generation MiSeq pyrosequencing. The sampled boreholes were distributed among three main areas of the industrial complex: around the production plant of TBNPA and DBNPG; along the Hovav Wadi (small ephemeral stream) which crosses and drains the industrial complex; and downstream to the industrial area. TBNPA and DBNPG are found in all three areas, with no clear connection to the proximity of the borehole to the production plant. Initial isotopic data of TBNPA from boreholes in the area surrounding the production plant, reveal no changes in the carbon and bromine isotopic values. When observing the microbial groundwater community, the dominant phylum is Proteobacteria. Known anaerobic dehalogenating bacteria such as Dehalococcoides from the Chloroflexi phylum have also been detected. A statistical comparison of the groundwater microbial diversity using a multi-variant ordination of non-metric multidimensional scaling (NMDS) reveals three main clusters in accordance to spatial location in the industrial complex: all the boreholes sampled adjacent to the production plant cluster together and separately from the Wadi Hovav boreholes cluster and the downstream to the industrial area borehole cluster. This work provides the basis for the development and implication of an isotopic fractionation based tool for assessing the biodegradation of brominated organic compounds in contaminated environments, and a novel attempt to characterize the spatial microbial diversity in the contaminated site.

Keywords: biodegradation, brominated flame retardants, groundwater, isotopic fractionation, microbial diversity

Procedia PDF Downloads 216
9857 Turbulence Modeling of Source and Sink Flows

Authors: Israt Jahan Eshita

Abstract:

Flows developed between two parallel disks have many engineering applications. Two types of non-swirling flows can be generated in such a domain. One is purely source flow in disc type domain (outward flow). Other is purely sink flow in disc type domain (inward flow). This situation often appears in some turbo machinery components such as air bearings, heat exchanger, radial diffuser, vortex gyroscope, disc valves, and viscosity meters. The main goal of this paper is to show the mesh convergence, because mesh convergence saves time, and economical to run and increase the efficiency of modeling for both sink and source flow. Then flow field is resolved using a very fine mesh near-wall, using enhanced wall treatment. After that we are going to compare this flow using standard k-epsilon, RNG k-epsilon turbulence models. Lastly compare some experimental data with numerical solution for sink flow. The good agreement of numerical solution with the experimental works validates the current modeling.

Keywords: hydraulic diameter, k-epsilon model, meshes convergence, Reynolds number, RNG model, sink flow, source flow, wall y+

Procedia PDF Downloads 509
9856 Assessment of Groundwater Chemistry and Quality Characteristics in an Alluvial Aquifer and a Single Plane Fractured-Rock Aquifer in Bloemfontein, South Africa

Authors: Modreck Gomo

Abstract:

The evolution of groundwater chemistry and its quality is largely controlled by hydrogeochemical processes and their understanding is therefore important for groundwater quality assessments and protection of the water resources. A study was conducted in Bloemfontein town of South Africa to assess and compare the groundwater chemistry and quality characteristics in an alluvial aquifer and single-plane fractured-rock aquifers. 9 groundwater samples were collected from monitoring boreholes drilled into the two aquifer systems during a once-off sampling exercise. Samples were collected through low-flow purging technique and analysed for major ions and trace elements. In order to describe the hydrochemical facies and identify dominant hydrogeochemical processes, the groundwater chemistry data are interpreted using stiff diagrams and principal component analysis (PCA), as complimentary tools. The fitness of the groundwater quality for domestic and irrigation uses is also assessed. Results show that the alluvial aquifer is characterised by a Na-HCO3 hydrochemical facie while fractured-rock aquifer has a Ca-HCO3 facie. The groundwater in both aquifers originally evolved from the dissolution of calcite rocks that are common on land surface environments. However the groundwater in the alluvial aquifer further goes through another evolution as driven by cation exchange process in which Na in the sediments exchanges with Ca2+ in the Ca-HCO3 hydrochemical type to result in the Na-HCO3 hydrochemical type. Despite the difference in the hydrogeochemical processes between the alluvial aquifer and single-plane fractured-rock aquifer, this did not influence the groundwater quality. The groundwater in the two aquifers is very hard as influenced by the elevated magnesium and calcium ions that evolve from dissolution of carbonate minerals which typically occurs in surface environments. Based on total dissolved levels (600-900 mg/L), groundwater quality of the two aquifer systems is classified to be of fair quality. The negative potential impacts of the groundwater quality for domestic uses are highlighted.

Keywords: alluvial aquifer, fractured-rock aquifer, groundwater quality, hydrogeochemical processes

Procedia PDF Downloads 172
9855 Analysis of Sustainability of Groundwater Resources in Rote Island, Indonesia under HADCM3 Global Model Climate Scenarios: Groundwater Flow Simulation and Proposed Adaptive Strategies

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Developing tailored management strategies to ensure the sustainability of groundwater resource under climate and demographic changes is critical for tropical karst island, where relatively small watershed and highly porous soil nature make this natural resource highly susceptible and thus very sensitive to those changes. In this study, long-term impacts of climate variability on groundwater recharge and discharge at the Oemau spring, Rote Island, Indonesia were investigated. Following calibration and validation of groundwater model using MODFLOW code, groundwater flow was simulated for period of 2020-2090 under HadCM3 global model climate (GCM) scenarios, using input data of weather variables downscaled by Statistical Downscaling Model (SDSM). The reported analysis suggests that the sustainability of groundwater resources will be adversely affected by climate change during dry years. The area is projected to variably experience 2.53-22.80% decrease of spring discharge. A subsequent comprehensive set of management strategies as palliative and adaptive efforts was proposed to be implemented by relevant stakeholders to assist the community dealing with water deficit during the dry years. Three main adaptive strategies, namely socio-cultural, technical, and ecological measures, were proposed by incorporating physical and socio-economic characteristics of the area. This study presents a blueprint for assessing groundwater sustainability under climate change scenarios and developing tailored management strategies to cope with adverse impacts of climate change, which may become fundamental necessities across other tropical karst islands in the future.

Keywords: climate change, groundwater, management strategies, tropical karst island, Rote Island, Indonesia

Procedia PDF Downloads 126
9854 Effect of Different Porous Media Models on Drug Delivery to Solid Tumors: Mathematical Approach

Authors: Mostafa Sefidgar, Sohrab Zendehboudi, Hossein Bazmara, Madjid Soltani

Abstract:

Based on findings from clinical applications, most drug treatments fail to eliminate malignant tumors completely even though drug delivery through systemic administration may inhibit their growth. Therefore, better understanding of tumor formation is crucial in developing more effective therapeutics. For this purpose, nowadays, solid tumor modeling and simulation results are used to predict how therapeutic drugs are transported to tumor cells by blood flow through capillaries and tissues. A solid tumor is investigated as a porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multi scale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. In this work, the mathematical model in our previous studies is developed by considering two model of momentum equation for porous media: Darcy and Brinkman. The mathematical method involves processes such as fluid flow through solid tumor as porous media, extravasation of blood flow from vessels, blood flow through vessels and solute diffusion, convective transport in extracellular matrix. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model does.

Keywords: solid tumor, porous media, Darcy model, Brinkman model, drug delivery

Procedia PDF Downloads 275
9853 Spatio-temporal Distribution of the Groundwater Quality in the El Milia Plain, Kebir Rhumel Basin, Algeria

Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni

Abstract:

In this research, we analyzed the groundwater quality index in the El Milia plain, Kebir Rhumel Basin, Algeria. Thirty-three groundwater samples were collected from wells in the El Milia plain during April 2015. In this study, pH and electrical conductivity (EC) were conducted at each sampling well. Eight hydrochemical parameters such as calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), chlorid (Cl), sulfate (SO4), bicarbonate (HCO3), and Nnitrate (NO3) were analysed. The entropy water quality index (EWQI) method was employed to evaluate the groundwater quality in the study area. Moran’s I and the ordinary kriging (OK) interpolation technique were used to examine the spatial distribution pattern of the hydrochemical parameters in the groundwater. It was found that the hydrochemical parameters Ca, Cl, and HCO3 showed strong spatial autocorrelation in the El Milia plain, indicating a spatial dependence and clustering of these parameters in the groundwater. The groundwater quality was evaluated using the entropy water quality index (EWQI). The results showed that approximately 86% of the total groundwater samples in the study area fall within the moderate groundwater quality category. The spatial map of the EWQI values indicated an increasing trend from the south-west to the northeast, following the direction of groundwater flow. The highest EWQI values were observed near El Milia city in the center of the plain. This spatial pattern suggests variations in groundwater quality across the study area, with potentially higher risks near the city center. Therefore, the results obtained in this research provide very useful information to decision-makers.

Keywords: entropy water quality index (EWQI), moran’s i, ordinary kriging interpolation, el milia plain

Procedia PDF Downloads 29
9852 Groundwater Numerical Modeling, an Application of Remote Sensing, and GIS Techniques in South Darb El Arbaieen, Western Desert, Egypt

Authors: Abdallah M. Fayed

Abstract:

The study area is located in south Darb El Arbaieen, western desert of Egypt. It occupies the area between latitudes 22° 00/ and 22° 30/ North and Longitudes 29° 30/ and 30° 00/ East, from southern border of Egypt to the area north Bir Kuraiym and from the area East of East Owienat to the area west Tushka district, its area about 2750 Km2. The famous features; southern part of Darb El Arbaieen road, G Baraqat El Scab El Qarra, Bir Dibis, Bir El Shab and Bir Kuraiym, Interpretation of soil stratification shows layers that are related to Quaternary and Upper-Lower Cretaceous eras. It is dissected by a series of NE-SW striking faults. The regional groundwater flow direction is in SW-NE direction with a hydraulic gradient is 1m / 2km. Mathematical model program has been applied for evaluation of groundwater potentials in the main Aquifer –Nubian Sandstone- in the area of study and Remote sensing technique is considered powerful, accurate and saving time in this respect. These techniques are widely used for illustrating and analysis different phenomenon such as the new development in the desert (land reclamation), residential development (new communities), urbanization, etc. The major issues concerning water development objective of this work is to determine the new development areas in western desert of Egypt during the period from 2003 to 2015 using remote sensing technique, the impacts of the present and future development have been evaluated by using the two-dimensional numerical groundwater flow Simulation Package (visual modflow 4.2). The package was used to construct and calibrate a numerical model that can be used to simulate the response of the aquifer in the study area under implementing different management alternatives in the form of changes in piezometric levels and salinity. Total period of simulation is 100 years. After steady state calibration, two different scenarios are simulated for groundwater development. 21 production wells are installed at the study area and used in the model, with the total discharge for the two scenarios were 105000 m3/d, 210000 m3/d. The drawdown was 11.8 m and 23.7 m for the two scenarios in the end of 100 year. Contour maps for water heads and drawdown and hydrographs for piezometric head are represented. The drawdown was less than the half of the saturated thickness (the safe yield case).

Keywords: remote sensing, management of aquifer systems, simulation modeling, western desert, South Darb El Arbaieen

Procedia PDF Downloads 377
9851 Investigating the Effect of Groundwater Level on Nailing Arrangement in Excavation Stability

Authors: G. Khamooshian, A. Abbasimoshaei

Abstract:

Different methods are used to stabilize the sticks, among which the method of knitting is commonly used. In recent years, the use of nailing for the stability of excavation has been considered much, which is providing sufficient stability and controlling the structural defects of the guardian, also reduces the cost of the operation. In addition, this method is more prominent in deep excavations than other methods. The purpose of this paper is to investigate the effect of groundwater level and soil type on the length and designing of nails. In this paper, analysis and modeling for vertical arena with constant depth and different levels of groundwater have been done. Also, by changing the soil resistance parameters and design of the nails, an optimum arrangement was made and the effect of changes in groundwater level and soil's type on the design of the nails, the maximum axial force mobilized in the nails and the confidence coefficient for the stability of the groove was examined.

Keywords: excavation, soil effects, nailing, hole analyzing

Procedia PDF Downloads 159
9850 Numerical Modeling of Waves and Currents by Using a Hydro-Sedimentary Model

Authors: Mustapha Kamel Mihoubi, Hocine Dahmani

Abstract:

Over recent years much progress has been achieved in the fields of numerical modeling shoreline processes: waves, currents, waves and current. However, there are still some problems in the existing models to link the on the first, the hydrodynamics of waves and currents and secondly, the sediment transport processes and due to the variability in time, space and interaction and the simultaneous action of wave-current near the shore. This paper is the establishment of a numerical modeling to forecast the sediment transport from development scenarios of harbor structure. It is established on the basis of a numerical simulation of a water-sediment model via a 2D model using a set of codes calculation MIKE 21-DHI software. This is to examine the effect of the sediment transport drivers following the dominant incident wave in the direction to pass input harbor work under different variants planning studies to find the technical and economic limitations to the sediment transport and protection of the harbor structure optimum solution.

Keywords: swell, current, radiation, stress, mesh, mike21, sediment

Procedia PDF Downloads 441
9849 Comparative Analysis on the Evolution of Chlorinated Solvents Pollution in Granular Aquifers and Transition Zones to Aquitards

Authors: José M. Carmona, Diana Puigserver, Jofre Herrero

Abstract:

Chlorinated solvents belong to the group of nonaqueous phase liquids (DNAPL) and have been involved in many contamination episodes. They are carcinogenic and recalcitrant pollutants that may be found in granular aquifers as: i) pools accumulated on low hydraulic conductivity layers; ii) immobile residual phase retained at the pore-scale by capillary forces; iii) dissolved phase in groundwater; iv) sorbed by particulate organic matter; and v) stored into the matrix of low hydraulic conductivity layers where they penetrated by molecular diffusion. The transition zone between granular aquifers and basal aquitards constitute the lowermost part of the aquifer and presents numerous fine-grained interbedded layers that give rise to significant textural contrasts. These layers condition the transport and fate of contaminants and lead to differences from the rest of the aquifer, given that: i) hydraulic conductivity of these layers is lower; ii) DNAPL tends to accumulate on them; iii) groundwater flow is slower in the transition zone and consequently pool dissolution is much slower; iv) sorbed concentrations are higher in the fine-grained layers because of their higher content in organic matter; v) a significant mass of pollutant penetrates into the matrix of these layers; and vi) this contaminant mass back-diffuses after remediation and the aquifer becomes contaminated again. Thus, contamination sources of chlorinated solvents are extremely more recalcitrant in transition zones, which has far-reaching implications for the environment. The aim of this study is to analyze the spatial and temporal differences in the evolution of biogeochemical processes in the transition zone and in the rest of the aquifer. For this, an unconfined aquifer with a transition zone in the lower part was selected at Vilafant (NE Spain). This aquifer was contaminated by perchloroethylene (PCE) in the 80’s. Distribution of PCE and other chloroethenes in groundwater and porewater was analyzed in: a) conventional piezometers along the plume and in two multilevel wells at the source of contamination; and b) porewater of fine grained materials from cores recovered when drilled the two multilevel wells. Currently, the highest concentrations continue to be recorded in the source area in the transition zone. By contrast, the lowest concentrations in this area correspond to the central part of the aquifer, where flow velocities are higher and a greater washing of the residual phase initially retained has occurred. The major findings of the study were: i) PCE metabolites were detected in the transition zone, where conditions were more reducing than in the rest of the aquifer; ii) however, reductive dechlorination was partial since only the formation of cis-dicholoroethylene (DCE) was reached; iii) In the central part of the aquifer, where conditions were predominantly oxidizing, the presence of nitrate significantly hindered the reductive declination of PCE. The remediation strategies to be implemented should be directed to enhance dissolution of the source, especially in the transition zone, where it is more recalcitrant. For example, by combining chemical and bioremediation methods, already tested at the laboratory scale with groundwater and sediments of this site.

Keywords: chlorinated solvents, chloroethenes, DNAPL, partial reductive dechlorination, PCE, transition zone to basal aquitard

Procedia PDF Downloads 128
9848 Risk Prediction Based on Heavy Metal Distribution in Groundwater

Authors: Rama Bhattacharyya, S. N. Ojha, Umesh K. Singh

Abstract:

Anthropogenic control on groundwater chemistry has emerged as a critical concern now-a-days, especially in the industrial areas. In view of this, a comprehensive study on the distribution of the heavy metal in the groundwater was conducted to investigate the impact of urbanization in the aquatic media. Water samples either from well or borehole from Fourty different sites in and around, Durgapur, West Bengal were collected for this purpose. The samples were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for Calcium (Ca), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Potassium (K), Magnesium (Mg), Manganese (Mn), Sodium (Na), Nickel (Ni), Lead (Pb), Zinc (Zn) content and the levels were compared with WHO specified maximum contaminant level as well as permissible limits given by the Bureau of Indian Standards (BIS). The result obtained from the present study indicates a significant risk to the population of this important emerging ‘smart city’ of eastern India. Because of the toxicity of these metals and the fact that for many tube-wells, dug-wells and bore-wells are the only sources of the water supply for a major fraction of the population in this environment. In this study, an attempt has been made to develop metal contamination risk map.

Keywords: heavy metals, ground water, maximum contamination level, ICP-MS

Procedia PDF Downloads 194